Change gravimeter axis
This commit is contained in:
		@@ -20,6 +20,10 @@ open('gravimeter.slx')
 | 
			
		||||
% #+caption: Model of the gravimeter
 | 
			
		||||
% [[file:figs/gravimeter_model.png]]
 | 
			
		||||
 | 
			
		||||
% #+name: fig:leg_model
 | 
			
		||||
% #+caption: Model of the struts
 | 
			
		||||
% [[file:figs/leg_model.png]]
 | 
			
		||||
 | 
			
		||||
% The parameters used for the simulation are the following:
 | 
			
		||||
 | 
			
		||||
l  = 1.0; % Length of the mass [m]
 | 
			
		||||
@@ -57,7 +61,7 @@ io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Az1', 'Ax2', 'Az2'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -125,22 +129,22 @@ end
 | 
			
		||||
 | 
			
		||||
% The Jacobian corresponding to the sensors and actuators are defined below:
 | 
			
		||||
 | 
			
		||||
Ja = [1 0  h/2
 | 
			
		||||
      0 1 -l/2
 | 
			
		||||
      1 0 -h/2
 | 
			
		||||
Ja = [1 0 -h/2
 | 
			
		||||
      0 1  l/2
 | 
			
		||||
      1 0  h/2
 | 
			
		||||
      0 1  0];
 | 
			
		||||
 | 
			
		||||
Jt = [1 0  ha
 | 
			
		||||
      0 1 -la
 | 
			
		||||
      0 1  la];
 | 
			
		||||
Jt = [1 0 -ha
 | 
			
		||||
      0 1  la
 | 
			
		||||
      0 1 -la];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the plant $\bm{G}_x$ is computed:
 | 
			
		||||
 | 
			
		||||
Gx = pinv(Ja)*G*pinv(Jt');
 | 
			
		||||
Gx.InputName  = {'Fx', 'Fz', 'My'};
 | 
			
		||||
Gx.OutputName  = {'Dx', 'Dz', 'Ry'};
 | 
			
		||||
Gx.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
			
		||||
Gx.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
			
		||||
 | 
			
		||||
size(Gx)
 | 
			
		||||
 | 
			
		||||
@@ -385,6 +389,43 @@ legend('location', 'southwest');
 | 
			
		||||
linkaxes([ax1,ax2],'y');
 | 
			
		||||
ylim([1e-5, 1e1]);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gravimeter_rga
 | 
			
		||||
% #+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/gravimeter_rga.png]]
 | 
			
		||||
 | 
			
		||||
% The RGA-number is also a measure of diagonal dominance:
 | 
			
		||||
% \begin{equation}
 | 
			
		||||
%   \text{RGA-number} = \| \Lambda(G) - I \|_\text{sum}
 | 
			
		||||
% \end{equation}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Relative Gain Array for the decoupled plant using SVD:
 | 
			
		||||
RGA_svd = zeros(size(Gsvd,1), size(Gsvd,2), length(freqs));
 | 
			
		||||
Gsvd_inv = inv(Gsvd);
 | 
			
		||||
for f_i = 1:length(freqs)
 | 
			
		||||
  RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
% Relative Gain Array for the decoupled plant using the Jacobian:
 | 
			
		||||
RGA_x = zeros(size(Gx,1), size(Gx,2), length(freqs));
 | 
			
		||||
Gx_inv = inv(Gx);
 | 
			
		||||
for f_i = 1:length(freqs)
 | 
			
		||||
  RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
 | 
			
		||||
end
 | 
			
		||||
 | 
			
		||||
RGA_num_svd = squeeze(sum(sum(RGA_svd - eye(3))));
 | 
			
		||||
RGA_num_x = squeeze(sum(sum(RGA_x - eye(3))));
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, RGA_num_svd)
 | 
			
		||||
plot(freqs, RGA_num_x)
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('RGA-Number');
 | 
			
		||||
 | 
			
		||||
% Obtained Decoupled Plants
 | 
			
		||||
% <<sec:gravimeter_decoupled_plant>>
 | 
			
		||||
 | 
			
		||||
@@ -457,7 +498,7 @@ plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5],
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_y/M_y$');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_z/M_z$');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
 | 
			
		||||
@@ -605,7 +646,7 @@ plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
			
		||||
title('$D_z/D_{w,z}$');
 | 
			
		||||
title('$D_y/D_{w,y}$');
 | 
			
		||||
 | 
			
		||||
ax3 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
@@ -615,8 +656,421 @@ plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
			
		||||
title('$R_y/R_{w,y}$');
 | 
			
		||||
title('$R_z/R_{w,z}$');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3],'xy');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gravimeter_platform_simscape_cl_transmissibility
 | 
			
		||||
% #+caption: Obtained Transmissibility
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% [[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
hold on;
 | 
			
		||||
for out_i = 1:3
 | 
			
		||||
    for in_i = out_i+1:3
 | 
			
		||||
        set(gca,'ColorOrderIndex',1)
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(G(    out_i,in_i), freqs, 'Hz'))));
 | 
			
		||||
        set(gca,'ColorOrderIndex',2)
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(G_cen(out_i,in_i), freqs, 'Hz'))));
 | 
			
		||||
        set(gca,'ColorOrderIndex',3)
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(G_svd(out_i,in_i), freqs, 'Hz'))), '--');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
 | 
			
		||||
 | 
			
		||||
% Robustness to a change of actuator position
 | 
			
		||||
 | 
			
		||||
% Let say we change the position of the actuators:
 | 
			
		||||
 | 
			
		||||
la = l/2*0.7; % Position of Act. [m]
 | 
			
		||||
ha = h/2*0.7; % Position of Act. [m]
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'gravimeter';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
 | 
			
		||||
G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
 | 
			
		||||
 | 
			
		||||
% The closed-loop system are still stable, and their
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(-2, 2, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
ax1 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
 | 
			
		||||
title('$D_x/D_{w,x}$');
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
ax2 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
			
		||||
title('$D_y/D_{w,y}$');
 | 
			
		||||
 | 
			
		||||
ax3 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
 | 
			
		||||
title('$R_z/R_{w,z}$');
 | 
			
		||||
 | 
			
		||||
linkaxes([ax1,ax2,ax3],'xy');
 | 
			
		||||
xlim([freqs(1), freqs(end)]);
 | 
			
		||||
xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
 | 
			
		||||
 | 
			
		||||
% Decoupling of the mass matrix
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gravimeter_model_M
 | 
			
		||||
% #+caption: Choice of {O} such that the Mass Matrix is Diagonal
 | 
			
		||||
% [[file:figs/gravimeter_model_M.png]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
la = l/2; % Position of Act. [m]
 | 
			
		||||
ha = h/2; % Position of Act. [m]
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'gravimeter';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Decoupling at the CoM (Mass decoupled)
 | 
			
		||||
 | 
			
		||||
JMa = [1 0 -h/2
 | 
			
		||||
       0 1  l/2
 | 
			
		||||
       1 0  h/2
 | 
			
		||||
       0 1  0];
 | 
			
		||||
 | 
			
		||||
JMt = [1 0 -ha
 | 
			
		||||
       0 1  la
 | 
			
		||||
       0 1 -la];
 | 
			
		||||
 | 
			
		||||
GM = pinv(JMa)*G*pinv(JMt');
 | 
			
		||||
GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
			
		||||
GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 | 
			
		||||
% Decoupling of the stiffness matrix
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gravimeter_model_K
 | 
			
		||||
% #+caption: Choice of {O} such that the Stiffness Matrix is Diagonal
 | 
			
		||||
% [[file:figs/gravimeter_model_K.png]]
 | 
			
		||||
 | 
			
		||||
% Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):
 | 
			
		||||
 | 
			
		||||
JKa = [1 0  0
 | 
			
		||||
       0 1 -l/2
 | 
			
		||||
       1 0 -h
 | 
			
		||||
       0 1  0];
 | 
			
		||||
 | 
			
		||||
JKt = [1 0  0
 | 
			
		||||
       0 1 -la
 | 
			
		||||
       0 1  la];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% And the plant $\bm{G}_x$ is computed:
 | 
			
		||||
 | 
			
		||||
GK = pinv(JKa)*G*pinv(JKt');
 | 
			
		||||
GK.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
			
		||||
GK.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 | 
			
		||||
% Combined decoupling of the mass and stiffness matrices
 | 
			
		||||
 | 
			
		||||
% #+name: fig:gravimeter_model_KM
 | 
			
		||||
% #+caption: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal
 | 
			
		||||
% [[file:figs/gravimeter_model_KM.png]]
 | 
			
		||||
 | 
			
		||||
% To do so, the actuator position should be modified
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
la = l/2; % Position of Act. [m]
 | 
			
		||||
ha = 0; % Position of Act. [m]
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'gravimeter';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
JMa = [1 0 -h/2
 | 
			
		||||
       0 1  l/2
 | 
			
		||||
       1 0  h/2
 | 
			
		||||
       0 1  0];
 | 
			
		||||
 | 
			
		||||
JMt = [1 0 -ha
 | 
			
		||||
       0 1  la
 | 
			
		||||
       0 1 -la];
 | 
			
		||||
 | 
			
		||||
GKM = pinv(JMa)*G*pinv(JMt');
 | 
			
		||||
GKM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
			
		||||
GKM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 | 
			
		||||
% SVD decoupling performances                                     :noexport:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
la = l/2; % Position of Act. [m]
 | 
			
		||||
ha = 0; % Position of Act. [m]
 | 
			
		||||
 | 
			
		||||
c = 2e1; % Actuator Damping [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'gravimeter';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
wc = 2*pi*10; % Decoupling frequency [rad/s]
 | 
			
		||||
H1 = evalfr(G, j*wc);
 | 
			
		||||
D = pinv(real(H1'*H1));
 | 
			
		||||
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
 | 
			
		||||
[U,S,V] = svd(H1);
 | 
			
		||||
Gsvd = inv(U)*G*inv(V');
 | 
			
		||||
 | 
			
		||||
c = 5e2; % Actuator Damping [N/(m/s)]
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'gravimeter';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
G.InputName  = {'F1', 'F2', 'F3'};
 | 
			
		||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
 | 
			
		||||
 | 
			
		||||
wc = 2*pi*10; % Decoupling frequency [rad/s]
 | 
			
		||||
H1 = evalfr(G, j*wc);
 | 
			
		||||
D = pinv(real(H1'*H1));
 | 
			
		||||
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
 | 
			
		||||
[U,S,V] = svd(H1);
 | 
			
		||||
Gsvdd = inv(U)*G*inv(V');
 | 
			
		||||
 | 
			
		||||
JMa = [1 0 -h/2
 | 
			
		||||
       0 1  l/2
 | 
			
		||||
       1 0  h/2
 | 
			
		||||
       0 1  0];
 | 
			
		||||
 | 
			
		||||
JMt = [1 0 -ha
 | 
			
		||||
       0 1  la
 | 
			
		||||
       0 1 -la];
 | 
			
		||||
 | 
			
		||||
GM = pinv(JMa)*G*pinv(JMt');
 | 
			
		||||
GM.InputName  = {'Fx', 'Fy', 'Mz'};
 | 
			
		||||
GM.OutputName  = {'Dx', 'Dy', 'Rz'};
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
 | 
			
		||||
% Magnitude
 | 
			
		||||
hold on;
 | 
			
		||||
for i_in = 1:3
 | 
			
		||||
    for i_out = [1:i_in-1, i_in+1:3]
 | 
			
		||||
        plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
             'HandleVisibility', 'off');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
 | 
			
		||||
     'DisplayName', '$G_x(i,j)\ i \neq j$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
for i_in_out = 1:3
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
 | 
			
		||||
end
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
 | 
			
		||||
legend('location', 'southeast');
 | 
			
		||||
ylim([1e-8, 1e0]);
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user