Add definition of K ronde
This commit is contained in:
parent
dc72858a1f
commit
192841352e
599
index.html
599
index.html
File diff suppressed because it is too large
Load Diff
23
index.org
23
index.org
@ -1929,6 +1929,14 @@ The stiffness matrix in the frame $\{K\}$ can be expressed as:
|
|||||||
where:
|
where:
|
||||||
- $J_{\{K\}}$ is the Jacobian transformation from the struts to the frame $\{K\}$
|
- $J_{\{K\}}$ is the Jacobian transformation from the struts to the frame $\{K\}$
|
||||||
- $\mathcal{K}$ is a diagonal matrix with the strut stiffnesses on the diagonal
|
- $\mathcal{K}$ is a diagonal matrix with the strut stiffnesses on the diagonal
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal{K} = \begin{bmatrix}
|
||||||
|
k_1 & & & 0 \\
|
||||||
|
& k_2 & & \\
|
||||||
|
& & \ddots & \\
|
||||||
|
0 & & & k_n
|
||||||
|
\end{bmatrix}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
The Jacobian for a planar manipulator, evaluated in a frame $\{K\}$, can be expressed as follows:
|
The Jacobian for a planar manipulator, evaluated in a frame $\{K\}$, can be expressed as follows:
|
||||||
\begin{equation} \label{eq:jacobian_planar}
|
\begin{equation} \label{eq:jacobian_planar}
|
||||||
@ -2203,8 +2211,17 @@ For a fully parallel manipulator, the stiffness matrix $K_{\{K\}}$ expressed in
|
|||||||
K_{\{K\}} = J_{\{K\}}^T \mathcal{K} J_{\{K\}}
|
K_{\{K\}} = J_{\{K\}}^T \mathcal{K} J_{\{K\}}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where:
|
where:
|
||||||
- $K_{\{K\}}$ is the Jacobian transformation from the struts to the frame $\{K\}$
|
- $J_{\{K\}}$ is the Jacobian transformation from the struts to the frame $\{K\}$
|
||||||
- $\mathcal{K}$ is a diagonal matrix with the strut stiffnesses on the diagonal
|
- $\mathcal{K}$ is a diagonal matrix with the strut stiffnesses on the diagonal:
|
||||||
|
\begin{equation}
|
||||||
|
\mathcal{K} = \begin{bmatrix}
|
||||||
|
k_1 & & & 0 \\
|
||||||
|
& k_2 & & \\
|
||||||
|
& & \ddots & \\
|
||||||
|
0 & & & k_n
|
||||||
|
\end{bmatrix}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
The analytical expression of $J_{\{K\}}$ is:
|
The analytical expression of $J_{\{K\}}$ is:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -2286,7 +2303,7 @@ Taking the transpose and re-arranging:
|
|||||||
k_i ({}^Mb_i \times \hat{s}_i) \hat{s}_i^T = k_i ({}^MO_K \times \hat{s}_i) \hat{s}_i^T
|
k_i ({}^Mb_i \times \hat{s}_i) \hat{s}_i^T = k_i ({}^MO_K \times \hat{s}_i) \hat{s}_i^T
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
As the vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector, we obtain:
|
As the vector cross product also can be expressed as the product of a skew-symmetric matrix and a vehttps://rwth.zoom.us/j/92311133102?pwd=UTAzS21YYkUwT2pMZDBLazlGNzdvdz09tor, we obtain:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
k_i ({}^Mb_i \times \hat{s}_i) \hat{s}_i^T = {}^M\bm{O}_{K} ( k_i \hat{s}_i \hat{s}_i^T )
|
k_i ({}^Mb_i \times \hat{s}_i) \hat{s}_i^T = {}^M\bm{O}_{K} ( k_i \hat{s}_i \hat{s}_i^T )
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
Loading…
Reference in New Issue
Block a user