1124 lines
50 KiB
HTML
1124 lines
50 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2020-03-02 lun. 17:57 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<title>Identification of the Stewart Platform using Simscape</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<style type="text/css">
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
.title { text-align: center;
|
|
margin-bottom: .2em; }
|
|
.subtitle { text-align: center;
|
|
font-size: medium;
|
|
font-weight: bold;
|
|
margin-top:0; }
|
|
.todo { font-family: monospace; color: red; }
|
|
.done { font-family: monospace; color: green; }
|
|
.priority { font-family: monospace; color: orange; }
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
.timestamp { color: #bebebe; }
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
.underline { text-decoration: underline; }
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
p.verse { margin-left: 3%; }
|
|
pre {
|
|
border: 1px solid #ccc;
|
|
box-shadow: 3px 3px 3px #eee;
|
|
padding: 8pt;
|
|
font-family: monospace;
|
|
overflow: auto;
|
|
margin: 1.2em;
|
|
}
|
|
pre.src {
|
|
position: relative;
|
|
overflow: visible;
|
|
padding-top: 1.2em;
|
|
}
|
|
pre.src:before {
|
|
display: none;
|
|
position: absolute;
|
|
background-color: white;
|
|
top: -10px;
|
|
right: 10px;
|
|
padding: 3px;
|
|
border: 1px solid black;
|
|
}
|
|
pre.src:hover:before { display: inline;}
|
|
/* Languages per Org manual */
|
|
pre.src-asymptote:before { content: 'Asymptote'; }
|
|
pre.src-awk:before { content: 'Awk'; }
|
|
pre.src-C:before { content: 'C'; }
|
|
/* pre.src-C++ doesn't work in CSS */
|
|
pre.src-clojure:before { content: 'Clojure'; }
|
|
pre.src-css:before { content: 'CSS'; }
|
|
pre.src-D:before { content: 'D'; }
|
|
pre.src-ditaa:before { content: 'ditaa'; }
|
|
pre.src-dot:before { content: 'Graphviz'; }
|
|
pre.src-calc:before { content: 'Emacs Calc'; }
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
pre.src-fortran:before { content: 'Fortran'; }
|
|
pre.src-gnuplot:before { content: 'gnuplot'; }
|
|
pre.src-haskell:before { content: 'Haskell'; }
|
|
pre.src-hledger:before { content: 'hledger'; }
|
|
pre.src-java:before { content: 'Java'; }
|
|
pre.src-js:before { content: 'Javascript'; }
|
|
pre.src-latex:before { content: 'LaTeX'; }
|
|
pre.src-ledger:before { content: 'Ledger'; }
|
|
pre.src-lisp:before { content: 'Lisp'; }
|
|
pre.src-lilypond:before { content: 'Lilypond'; }
|
|
pre.src-lua:before { content: 'Lua'; }
|
|
pre.src-matlab:before { content: 'MATLAB'; }
|
|
pre.src-mscgen:before { content: 'Mscgen'; }
|
|
pre.src-ocaml:before { content: 'Objective Caml'; }
|
|
pre.src-octave:before { content: 'Octave'; }
|
|
pre.src-org:before { content: 'Org mode'; }
|
|
pre.src-oz:before { content: 'OZ'; }
|
|
pre.src-plantuml:before { content: 'Plantuml'; }
|
|
pre.src-processing:before { content: 'Processing.js'; }
|
|
pre.src-python:before { content: 'Python'; }
|
|
pre.src-R:before { content: 'R'; }
|
|
pre.src-ruby:before { content: 'Ruby'; }
|
|
pre.src-sass:before { content: 'Sass'; }
|
|
pre.src-scheme:before { content: 'Scheme'; }
|
|
pre.src-screen:before { content: 'Gnu Screen'; }
|
|
pre.src-sed:before { content: 'Sed'; }
|
|
pre.src-sh:before { content: 'shell'; }
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
pre.src-sqlite:before { content: 'SQLite'; }
|
|
/* additional languages in org.el's org-babel-load-languages alist */
|
|
pre.src-forth:before { content: 'Forth'; }
|
|
pre.src-io:before { content: 'IO'; }
|
|
pre.src-J:before { content: 'J'; }
|
|
pre.src-makefile:before { content: 'Makefile'; }
|
|
pre.src-maxima:before { content: 'Maxima'; }
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
|
pre.src-scala:before { content: 'Scala'; }
|
|
pre.src-shell:before { content: 'Shell Script'; }
|
|
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
|
/* additional language identifiers per "defun org-babel-execute"
|
|
in ob-*.el */
|
|
pre.src-cpp:before { content: 'C++'; }
|
|
pre.src-abc:before { content: 'ABC'; }
|
|
pre.src-coq:before { content: 'Coq'; }
|
|
pre.src-groovy:before { content: 'Groovy'; }
|
|
/* additional language identifiers from org-babel-shell-names in
|
|
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
|
the execution function name together. */
|
|
pre.src-bash:before { content: 'bash'; }
|
|
pre.src-csh:before { content: 'csh'; }
|
|
pre.src-ash:before { content: 'ash'; }
|
|
pre.src-dash:before { content: 'dash'; }
|
|
pre.src-ksh:before { content: 'ksh'; }
|
|
pre.src-mksh:before { content: 'mksh'; }
|
|
pre.src-posh:before { content: 'posh'; }
|
|
/* Additional Emacs modes also supported by the LaTeX listings package */
|
|
pre.src-ada:before { content: 'Ada'; }
|
|
pre.src-asm:before { content: 'Assembler'; }
|
|
pre.src-caml:before { content: 'Caml'; }
|
|
pre.src-delphi:before { content: 'Delphi'; }
|
|
pre.src-html:before { content: 'HTML'; }
|
|
pre.src-idl:before { content: 'IDL'; }
|
|
pre.src-mercury:before { content: 'Mercury'; }
|
|
pre.src-metapost:before { content: 'MetaPost'; }
|
|
pre.src-modula-2:before { content: 'Modula-2'; }
|
|
pre.src-pascal:before { content: 'Pascal'; }
|
|
pre.src-ps:before { content: 'PostScript'; }
|
|
pre.src-prolog:before { content: 'Prolog'; }
|
|
pre.src-simula:before { content: 'Simula'; }
|
|
pre.src-tcl:before { content: 'tcl'; }
|
|
pre.src-tex:before { content: 'TeX'; }
|
|
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
|
pre.src-verilog:before { content: 'Verilog'; }
|
|
pre.src-vhdl:before { content: 'VHDL'; }
|
|
pre.src-xml:before { content: 'XML'; }
|
|
pre.src-nxml:before { content: 'XML'; }
|
|
/* add a generic configuration mode; LaTeX export needs an additional
|
|
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
|
pre.src-conf:before { content: 'Configuration File'; }
|
|
|
|
table { border-collapse:collapse; }
|
|
caption.t-above { caption-side: top; }
|
|
caption.t-bottom { caption-side: bottom; }
|
|
td, th { vertical-align:top; }
|
|
th.org-right { text-align: center; }
|
|
th.org-left { text-align: center; }
|
|
th.org-center { text-align: center; }
|
|
td.org-right { text-align: right; }
|
|
td.org-left { text-align: left; }
|
|
td.org-center { text-align: center; }
|
|
dt { font-weight: bold; }
|
|
.footpara { display: inline; }
|
|
.footdef { margin-bottom: 1em; }
|
|
.figure { padding: 1em; }
|
|
.figure p { text-align: center; }
|
|
.equation-container {
|
|
display: table;
|
|
text-align: center;
|
|
width: 100%;
|
|
}
|
|
.equation {
|
|
vertical-align: middle;
|
|
}
|
|
.equation-label {
|
|
display: table-cell;
|
|
text-align: right;
|
|
vertical-align: middle;
|
|
}
|
|
.inlinetask {
|
|
padding: 10px;
|
|
border: 2px solid gray;
|
|
margin: 10px;
|
|
background: #ffffcc;
|
|
}
|
|
#org-div-home-and-up
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
textarea { overflow-x: auto; }
|
|
.linenr { font-size: smaller }
|
|
.code-highlighted { background-color: #ffff00; }
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
#org-info-js_console-label
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
.org-info-js_search-highlight
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
.org-svg { width: 90%; }
|
|
/*]]>*/-->
|
|
</style>
|
|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
<script src="./js/jquery.min.js"></script>
|
|
<script src="./js/bootstrap.min.js"></script>
|
|
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
|
<script src="./js/readtheorg.js"></script>
|
|
<script type="text/javascript">
|
|
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
function CodeHighlightOn(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(null != target) {
|
|
elem.cacheClassElem = elem.className;
|
|
elem.cacheClassTarget = target.className;
|
|
target.className = "code-highlighted";
|
|
elem.className = "code-highlighted";
|
|
}
|
|
}
|
|
function CodeHighlightOff(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(elem.cacheClassElem)
|
|
elem.className = elem.cacheClassElem;
|
|
if(elem.cacheClassTarget)
|
|
target.className = elem.cacheClassTarget;
|
|
}
|
|
/*]]>*///-->
|
|
// @license-end
|
|
</script>
|
|
<script>
|
|
MathJax = {
|
|
tex: { macros: {
|
|
bm: ["\\boldsymbol{#1}",1],
|
|
}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript"
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="./index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="./index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Identification of the Stewart Platform using Simscape</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#orgcb2f4c2">1. Modal Analysis of the Stewart Platform</a>
|
|
<ul>
|
|
<li><a href="#org66d09e9">1.1. Initialize the Stewart Platform</a></li>
|
|
<li><a href="#org8b1c587">1.2. Identification</a></li>
|
|
<li><a href="#orge68adea">1.3. Coordinate transformation</a></li>
|
|
<li><a href="#org4973ae1">1.4. Analysis</a></li>
|
|
<li><a href="#orge7b97c8">1.5. Visualizing the modes</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org2891722">2. Transmissibility Analysis</a>
|
|
<ul>
|
|
<li><a href="#org55d2544">2.1. Initialize the Stewart platform</a></li>
|
|
<li><a href="#org5338f20">2.2. Transmissibility</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgc94edbd">3. Compliance Analysis</a>
|
|
<ul>
|
|
<li><a href="#org499fd6a">3.1. Initialize the Stewart platform</a></li>
|
|
<li><a href="#org1177029">3.2. Compliance</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org68ca336">4. Functions</a>
|
|
<ul>
|
|
<li><a href="#org487c4d4">4.1. Compute the Transmissibility</a>
|
|
<ul>
|
|
<li><a href="#org3cf1d13">Function description</a></li>
|
|
<li><a href="#org726b57d">Optional Parameters</a></li>
|
|
<li><a href="#org4629501">Identification of the Transmissibility Matrix</a></li>
|
|
<li><a href="#org1019eaf">Computation of the Frobenius norm</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org50e35a6">4.2. Compute the Compliance</a>
|
|
<ul>
|
|
<li><a href="#orgf1e6c32">Function description</a></li>
|
|
<li><a href="#orgda14a2f">Optional Parameters</a></li>
|
|
<li><a href="#orgef06b63">Identification of the Compliance Matrix</a></li>
|
|
<li><a href="#orgc21ec39">Computation of the Frobenius norm</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<p>
|
|
In this document, we discuss the various methods to identify the behavior of the Stewart platform.
|
|
</p>
|
|
|
|
<ul class="org-ul">
|
|
<li><a href="#org7981e88">1</a></li>
|
|
<li><a href="#orga989615">2</a></li>
|
|
<li><a href="#org4579374">3</a></li>
|
|
</ul>
|
|
|
|
<div id="outline-container-orgcb2f4c2" class="outline-2">
|
|
<h2 id="orgcb2f4c2"><span class="section-number-2">1</span> Modal Analysis of the Stewart Platform</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
<p>
|
|
<a id="org7981e88"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-org66d09e9" class="outline-3">
|
|
<h3 id="org66d09e9"><span class="section-number-3">1.1</span> Initialize the Stewart Platform</h3>
|
|
<div class="outline-text-3" id="text-1-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org8b1c587" class="outline-3">
|
|
<h3 id="org8b1c587"><span class="section-number-3">1.2</span> Identification</h3>
|
|
<div class="outline-text-3" id="text-1-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Velocity of {B} w.r.t. {A}</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
G = linearize(mdl, io);
|
|
<span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span>
|
|
<span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Let’s check the size of <code>G</code>:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">size(G)
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
size(G)
|
|
State-space model with 12 outputs, 6 inputs, and 18 states.
|
|
'org_babel_eoe'
|
|
ans =
|
|
'org_babel_eoe'
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
We expect to have only 12 states (corresponding to the 6dof of the mobile platform).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gm = minreal(G);
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
Gm = minreal(G);
|
|
6 states removed.
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
And indeed, we obtain 12 states.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge68adea" class="outline-3">
|
|
<h3 id="orge68adea"><span class="section-number-3">1.3</span> Coordinate transformation</h3>
|
|
<div class="outline-text-3" id="text-1-3">
|
|
<p>
|
|
We can perform the following transformation using the <code>ss2ss</code> command.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gt = ss2ss(Gm, Gm.C);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Then, the <code>C</code> matrix of <code>Gt</code> is the unity matrix which means that the states of the state space model are equal to the measurements \(\bm{Y}\).
|
|
</p>
|
|
|
|
<p>
|
|
The measurements are the 6 displacement and 6 velocities of mobile platform with respect to \(\{B\}\).
|
|
</p>
|
|
|
|
<p>
|
|
We could perform the transformation by hand:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C);
|
|
|
|
Bt = Gm.C<span class="org-type">*</span>Gm.B;
|
|
|
|
Ct = eye(12);
|
|
Dt = zeros(12, 6);
|
|
|
|
Gt = ss(At, Bt, Ct, Dt);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4973ae1" class="outline-3">
|
|
<h3 id="org4973ae1"><span class="section-number-3">1.4</span> Analysis</h3>
|
|
<div class="outline-text-3" id="text-1-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">[V,D] = eig(Gt.A);
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<thead>
|
|
<tr>
|
|
<th scope="col" class="org-right">Mode Number</th>
|
|
<th scope="col" class="org-right">Resonance Frequency [Hz]</th>
|
|
<th scope="col" class="org-right">Damping Ratio [%]</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">1.0</td>
|
|
<td class="org-right">780.6</td>
|
|
<td class="org-right">0.4</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">2.0</td>
|
|
<td class="org-right">780.6</td>
|
|
<td class="org-right">0.3</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">3.0</td>
|
|
<td class="org-right">903.9</td>
|
|
<td class="org-right">0.3</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">4.0</td>
|
|
<td class="org-right">1061.4</td>
|
|
<td class="org-right">0.3</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">5.0</td>
|
|
<td class="org-right">1061.4</td>
|
|
<td class="org-right">0.2</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">6.0</td>
|
|
<td class="org-right">1269.6</td>
|
|
<td class="org-right">0.2</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orge7b97c8" class="outline-3">
|
|
<h3 id="orge7b97c8"><span class="section-number-3">1.5</span> Visualizing the modes</h3>
|
|
<div class="outline-text-3" id="text-1-5">
|
|
<p>
|
|
To visualize the i’th mode, we may excite the system using the inputs \(U_i\) such that \(B U_i\) is co-linear to \(\xi_i\) (the mode we want to excite).
|
|
</p>
|
|
|
|
<p>
|
|
\[ U(t) = e^{\alpha t} ( ) \]
|
|
</p>
|
|
|
|
<p>
|
|
Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">ws = imag(diag(D));
|
|
[ws,I] = sort(ws)
|
|
ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">lambda_i = D(i_mode, i_mode);
|
|
xi_i = V(<span class="org-type">:</span>,i_mode);
|
|
|
|
a_i = real(lambda_i);
|
|
b_i = imag(lambda_i);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Let do 10 periods of the mode.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000);
|
|
U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t)));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">U = timeseries(U_i, t);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Simulation:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>);
|
|
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>)));
|
|
<span class="org-matlab-simulink-keyword">sim</span>(mdl);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Save the movie of the mode shape.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ...
|
|
<span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ...
|
|
<span class="org-string">'FrameRate'</span>, 30, ...
|
|
<span class="org-string">'FrameSize'</span>, [800, 400]);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgb15855a" class="figure">
|
|
<p><img src="figs/mode1.gif" alt="mode1.gif" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Identified mode - 1</p>
|
|
</div>
|
|
|
|
|
|
<div id="org1816e59" class="figure">
|
|
<p><img src="figs/mode3.gif" alt="mode3.gif" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>Identified mode - 3</p>
|
|
</div>
|
|
|
|
|
|
<div id="org01c8dca" class="figure">
|
|
<p><img src="figs/mode5.gif" alt="mode5.gif" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Identified mode - 5</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2891722" class="outline-2">
|
|
<h2 id="org2891722"><span class="section-number-2">2</span> Transmissibility Analysis</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
<p>
|
|
<a id="orga989615"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-org55d2544" class="outline-3">
|
|
<h3 id="org55d2544"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
|
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
|
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5338f20" class="outline-3">
|
|
<h3 id="org5338f20"><span class="section-number-3">2.2</span> Transmissibility</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
T = linearize(mdl, io, options);
|
|
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
|
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
|
|
|
<span class="org-type">figure</span>;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
|
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
ylim([1e<span class="org-type">-</span>5, 10]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
|
xticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
|
yticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
From <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>, one can use the Frobenius norm of the transmissibility matrix to obtain a scalar indicator of the transmissibility performance of the system:
|
|
</p>
|
|
\begin{align*}
|
|
\| \bm{T}(\omega) \| &= \sqrt{\text{Trace}[\bm{T}(\omega) \bm{T}(\omega)^H]}\\
|
|
&= \sqrt{\Sigma_{i=1}^6 \Sigma_{j=1}^6 |T_{ij}|^2}
|
|
\end{align*}
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
|
|
|
T_norm = zeros(length(freqs), 1);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
|
T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric comparable to the transmissibility of a one-axis isolator:
|
|
\[ \Gamma(\omega) = \|\bm{T}(\omega)\| / \sqrt{6} \]
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Gamma = T_norm<span class="org-type">/</span>sqrt(6);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
plot(freqs, Gamma)
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc94edbd" class="outline-2">
|
|
<h2 id="orgc94edbd"><span class="section-number-2">3</span> Compliance Analysis</h2>
|
|
<div class="outline-text-2" id="text-3">
|
|
<p>
|
|
<a id="org4579374"></a>
|
|
</p>
|
|
</div>
|
|
<div id="outline-container-org499fd6a" class="outline-3">
|
|
<h3 id="org499fd6a"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
|
<div class="outline-text-3" id="text-3-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
|
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
|
stewart = generateGeneralConfiguration(stewart);
|
|
stewart = computeJointsPose(stewart);
|
|
stewart = initializeStrutDynamics(stewart);
|
|
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
|
stewart = initializeCylindricalPlatforms(stewart);
|
|
stewart = initializeCylindricalStruts(stewart);
|
|
stewart = computeJacobian(stewart);
|
|
stewart = initializeStewartPose(stewart);
|
|
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
|
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
|
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1177029" class="outline-3">
|
|
<h3 id="org1177029"><span class="section-number-3">3.2</span> Compliance</h3>
|
|
<div class="outline-text-3" id="text-3-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
C = linearize(mdl, io, options);
|
|
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
|
|
|
<span class="org-type">figure</span>;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
|
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
ylim([1e<span class="org-type">-</span>10, 1e<span class="org-type">-</span>3]);
|
|
xlim([freqs(1), freqs(end)]);
|
|
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
|
xticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
|
yticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We can try to use the Frobenius norm to obtain a scalar value representing the 6-dof compliance of the Stewart platform.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
|
|
|
C_norm = zeros(length(freqs), 1);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
|
C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
plot(freqs, C_norm)
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org68ca336" class="outline-2">
|
|
<h2 id="org68ca336"><span class="section-number-2">4</span> Functions</h2>
|
|
<div class="outline-text-2" id="text-4">
|
|
</div>
|
|
<div id="outline-container-org487c4d4" class="outline-3">
|
|
<h3 id="org487c4d4"><span class="section-number-3">4.1</span> Compute the Transmissibility</h3>
|
|
<div class="outline-text-3" id="text-4-1">
|
|
<p>
|
|
<a id="orgbca579c"></a>
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org3cf1d13" class="outline-4">
|
|
<h4 id="org3cf1d13">Function description</h4>
|
|
<div class="outline-text-4" id="text-org3cf1d13">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>)
|
|
<span class="org-comment">% computeTransmissibility -</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Inputs:</span>
|
|
<span class="org-comment">% - args - Structure with the following fields:</span>
|
|
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
|
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Outputs:</span>
|
|
<span class="org-comment">% - T [6x6 ss] - Transmissibility matrix</span>
|
|
<span class="org-comment">% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix</span>
|
|
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org726b57d" class="outline-4">
|
|
<h4 id="org726b57d">Optional Parameters</h4>
|
|
<div class="outline-text-4" id="text-org726b57d">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">arguments
|
|
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
|
args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = args.freqs;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4629501" class="outline-4">
|
|
<h4 id="org4629501">Identification of the Transmissibility Matrix</h4>
|
|
<div class="outline-text-4" id="text-org4629501">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
T = linearize(mdl, io, options);
|
|
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
|
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
If wanted, the 6x6 transmissibility matrix is plotted.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1);
|
|
|
|
<span class="org-keyword">if</span> args.plots
|
|
fig = <span class="org-type">figure</span>;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
|
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
|
xticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
|
yticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
|
|
linkaxes(p_handle, <span class="org-string">'xy'</span>)
|
|
xlim([freqs(1), freqs(end)]);
|
|
ylim([1e<span class="org-type">-</span>5, 1e2]);
|
|
|
|
han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>);
|
|
han.XLabel.Visible = <span class="org-string">'on'</span>;
|
|
han.YLabel.Visible = <span class="org-string">'on'</span>;
|
|
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
|
ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1019eaf" class="outline-4">
|
|
<h4 id="org1019eaf">Computation of the Frobenius norm</h4>
|
|
<div class="outline-text-4" id="text-org1019eaf">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">T_norm = zeros(length(freqs), 1);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
|
T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">T_norm = T_norm<span class="org-type">/</span>sqrt(6);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">if</span> args.plots
|
|
<span class="org-type">figure</span>;
|
|
plot(freqs, T_norm)
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
xlabel(<span class="org-string">'Frequency [Hz]'</span>);
|
|
ylabel(<span class="org-string">'Transmissibility - Frobenius Norm'</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org50e35a6" class="outline-3">
|
|
<h3 id="org50e35a6"><span class="section-number-3">4.2</span> Compute the Compliance</h3>
|
|
<div class="outline-text-3" id="text-4-2">
|
|
<p>
|
|
<a id="org0a73574"></a>
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf1e6c32" class="outline-4">
|
|
<h4 id="orgf1e6c32">Function description</h4>
|
|
<div class="outline-text-4" id="text-orgf1e6c32">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>)
|
|
<span class="org-comment">% computeCompliance -</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Syntax: [C, C_norm, freqs] = computeCompliance(args)</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Inputs:</span>
|
|
<span class="org-comment">% - args - Structure with the following fields:</span>
|
|
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
|
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Outputs:</span>
|
|
<span class="org-comment">% - C [6x6 ss] - Compliance matrix</span>
|
|
<span class="org-comment">% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix</span>
|
|
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgda14a2f" class="outline-4">
|
|
<h4 id="orgda14a2f">Optional Parameters</h4>
|
|
<div class="outline-text-4" id="text-orgda14a2f">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">arguments
|
|
args.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
|
args.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = args.freqs;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgef06b63" class="outline-4">
|
|
<h4 id="orgef06b63">Identification of the Compliance Matrix</h4>
|
|
<div class="outline-text-4" id="text-orgef06b63">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
|
options = linearizeOptions;
|
|
options.SampleTime = 0;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
|
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span>
|
|
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
|
|
|
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
|
C = linearize(mdl, io, options);
|
|
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
|
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
If wanted, the 6x6 transmissibility matrix is plotted.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1);
|
|
|
|
<span class="org-keyword">if</span> args.plots
|
|
fig = <span class="org-type">figure</span>;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
|
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
|
xticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
|
yticklabels({});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
|
|
linkaxes(p_handle, <span class="org-string">'xy'</span>)
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
han = <span class="org-type">axes</span>(fig, <span class="org-string">'visible'</span>, <span class="org-string">'off'</span>);
|
|
han.XLabel.Visible = <span class="org-string">'on'</span>;
|
|
han.YLabel.Visible = <span class="org-string">'on'</span>;
|
|
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
|
ylabel(han, <span class="org-string">'Compliance [m/N, rad/(N*m)]'</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc21ec39" class="outline-4">
|
|
<h4 id="orgc21ec39">Computation of the Frobenius norm</h4>
|
|
<div class="outline-text-4" id="text-orgc21ec39">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">freqs = args.freqs;
|
|
|
|
C_norm = zeros(length(freqs), 1);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
|
C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">if</span> args.plots
|
|
<span class="org-type">figure</span>;
|
|
plot(freqs, C_norm)
|
|
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
|
xlabel(<span class="org-string">'Frequency [Hz]'</span>);
|
|
ylabel(<span class="org-string">'Compliance - Frobenius Norm'</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2020-03-02 lun. 17:57</p>
|
|
</div>
|
|
</body>
|
|
</html>
|