1498 lines
61 KiB
HTML
1498 lines
61 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2020-02-06 jeu. 17:25 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<title>Cubic configuration for the Stewart Platform</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<style type="text/css">
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
.title { text-align: center;
|
|
margin-bottom: .2em; }
|
|
.subtitle { text-align: center;
|
|
font-size: medium;
|
|
font-weight: bold;
|
|
margin-top:0; }
|
|
.todo { font-family: monospace; color: red; }
|
|
.done { font-family: monospace; color: green; }
|
|
.priority { font-family: monospace; color: orange; }
|
|
.tag { background-color: #eee; font-family: monospace;
|
|
padding: 2px; font-size: 80%; font-weight: normal; }
|
|
.timestamp { color: #bebebe; }
|
|
.timestamp-kwd { color: #5f9ea0; }
|
|
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
|
|
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
|
|
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
|
|
.underline { text-decoration: underline; }
|
|
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
|
|
p.verse { margin-left: 3%; }
|
|
pre {
|
|
border: 1px solid #ccc;
|
|
box-shadow: 3px 3px 3px #eee;
|
|
padding: 8pt;
|
|
font-family: monospace;
|
|
overflow: auto;
|
|
margin: 1.2em;
|
|
}
|
|
pre.src {
|
|
position: relative;
|
|
overflow: visible;
|
|
padding-top: 1.2em;
|
|
}
|
|
pre.src:before {
|
|
display: none;
|
|
position: absolute;
|
|
background-color: white;
|
|
top: -10px;
|
|
right: 10px;
|
|
padding: 3px;
|
|
border: 1px solid black;
|
|
}
|
|
pre.src:hover:before { display: inline;}
|
|
/* Languages per Org manual */
|
|
pre.src-asymptote:before { content: 'Asymptote'; }
|
|
pre.src-awk:before { content: 'Awk'; }
|
|
pre.src-C:before { content: 'C'; }
|
|
/* pre.src-C++ doesn't work in CSS */
|
|
pre.src-clojure:before { content: 'Clojure'; }
|
|
pre.src-css:before { content: 'CSS'; }
|
|
pre.src-D:before { content: 'D'; }
|
|
pre.src-ditaa:before { content: 'ditaa'; }
|
|
pre.src-dot:before { content: 'Graphviz'; }
|
|
pre.src-calc:before { content: 'Emacs Calc'; }
|
|
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
|
|
pre.src-fortran:before { content: 'Fortran'; }
|
|
pre.src-gnuplot:before { content: 'gnuplot'; }
|
|
pre.src-haskell:before { content: 'Haskell'; }
|
|
pre.src-hledger:before { content: 'hledger'; }
|
|
pre.src-java:before { content: 'Java'; }
|
|
pre.src-js:before { content: 'Javascript'; }
|
|
pre.src-latex:before { content: 'LaTeX'; }
|
|
pre.src-ledger:before { content: 'Ledger'; }
|
|
pre.src-lisp:before { content: 'Lisp'; }
|
|
pre.src-lilypond:before { content: 'Lilypond'; }
|
|
pre.src-lua:before { content: 'Lua'; }
|
|
pre.src-matlab:before { content: 'MATLAB'; }
|
|
pre.src-mscgen:before { content: 'Mscgen'; }
|
|
pre.src-ocaml:before { content: 'Objective Caml'; }
|
|
pre.src-octave:before { content: 'Octave'; }
|
|
pre.src-org:before { content: 'Org mode'; }
|
|
pre.src-oz:before { content: 'OZ'; }
|
|
pre.src-plantuml:before { content: 'Plantuml'; }
|
|
pre.src-processing:before { content: 'Processing.js'; }
|
|
pre.src-python:before { content: 'Python'; }
|
|
pre.src-R:before { content: 'R'; }
|
|
pre.src-ruby:before { content: 'Ruby'; }
|
|
pre.src-sass:before { content: 'Sass'; }
|
|
pre.src-scheme:before { content: 'Scheme'; }
|
|
pre.src-screen:before { content: 'Gnu Screen'; }
|
|
pre.src-sed:before { content: 'Sed'; }
|
|
pre.src-sh:before { content: 'shell'; }
|
|
pre.src-sql:before { content: 'SQL'; }
|
|
pre.src-sqlite:before { content: 'SQLite'; }
|
|
/* additional languages in org.el's org-babel-load-languages alist */
|
|
pre.src-forth:before { content: 'Forth'; }
|
|
pre.src-io:before { content: 'IO'; }
|
|
pre.src-J:before { content: 'J'; }
|
|
pre.src-makefile:before { content: 'Makefile'; }
|
|
pre.src-maxima:before { content: 'Maxima'; }
|
|
pre.src-perl:before { content: 'Perl'; }
|
|
pre.src-picolisp:before { content: 'Pico Lisp'; }
|
|
pre.src-scala:before { content: 'Scala'; }
|
|
pre.src-shell:before { content: 'Shell Script'; }
|
|
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
|
|
/* additional language identifiers per "defun org-babel-execute"
|
|
in ob-*.el */
|
|
pre.src-cpp:before { content: 'C++'; }
|
|
pre.src-abc:before { content: 'ABC'; }
|
|
pre.src-coq:before { content: 'Coq'; }
|
|
pre.src-groovy:before { content: 'Groovy'; }
|
|
/* additional language identifiers from org-babel-shell-names in
|
|
ob-shell.el: ob-shell is the only babel language using a lambda to put
|
|
the execution function name together. */
|
|
pre.src-bash:before { content: 'bash'; }
|
|
pre.src-csh:before { content: 'csh'; }
|
|
pre.src-ash:before { content: 'ash'; }
|
|
pre.src-dash:before { content: 'dash'; }
|
|
pre.src-ksh:before { content: 'ksh'; }
|
|
pre.src-mksh:before { content: 'mksh'; }
|
|
pre.src-posh:before { content: 'posh'; }
|
|
/* Additional Emacs modes also supported by the LaTeX listings package */
|
|
pre.src-ada:before { content: 'Ada'; }
|
|
pre.src-asm:before { content: 'Assembler'; }
|
|
pre.src-caml:before { content: 'Caml'; }
|
|
pre.src-delphi:before { content: 'Delphi'; }
|
|
pre.src-html:before { content: 'HTML'; }
|
|
pre.src-idl:before { content: 'IDL'; }
|
|
pre.src-mercury:before { content: 'Mercury'; }
|
|
pre.src-metapost:before { content: 'MetaPost'; }
|
|
pre.src-modula-2:before { content: 'Modula-2'; }
|
|
pre.src-pascal:before { content: 'Pascal'; }
|
|
pre.src-ps:before { content: 'PostScript'; }
|
|
pre.src-prolog:before { content: 'Prolog'; }
|
|
pre.src-simula:before { content: 'Simula'; }
|
|
pre.src-tcl:before { content: 'tcl'; }
|
|
pre.src-tex:before { content: 'TeX'; }
|
|
pre.src-plain-tex:before { content: 'Plain TeX'; }
|
|
pre.src-verilog:before { content: 'Verilog'; }
|
|
pre.src-vhdl:before { content: 'VHDL'; }
|
|
pre.src-xml:before { content: 'XML'; }
|
|
pre.src-nxml:before { content: 'XML'; }
|
|
/* add a generic configuration mode; LaTeX export needs an additional
|
|
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
|
|
pre.src-conf:before { content: 'Configuration File'; }
|
|
|
|
table { border-collapse:collapse; }
|
|
caption.t-above { caption-side: top; }
|
|
caption.t-bottom { caption-side: bottom; }
|
|
td, th { vertical-align:top; }
|
|
th.org-right { text-align: center; }
|
|
th.org-left { text-align: center; }
|
|
th.org-center { text-align: center; }
|
|
td.org-right { text-align: right; }
|
|
td.org-left { text-align: left; }
|
|
td.org-center { text-align: center; }
|
|
dt { font-weight: bold; }
|
|
.footpara { display: inline; }
|
|
.footdef { margin-bottom: 1em; }
|
|
.figure { padding: 1em; }
|
|
.figure p { text-align: center; }
|
|
.equation-container {
|
|
display: table;
|
|
text-align: center;
|
|
width: 100%;
|
|
}
|
|
.equation {
|
|
vertical-align: middle;
|
|
}
|
|
.equation-label {
|
|
display: table-cell;
|
|
text-align: right;
|
|
vertical-align: middle;
|
|
}
|
|
.inlinetask {
|
|
padding: 10px;
|
|
border: 2px solid gray;
|
|
margin: 10px;
|
|
background: #ffffcc;
|
|
}
|
|
#org-div-home-and-up
|
|
{ text-align: right; font-size: 70%; white-space: nowrap; }
|
|
textarea { overflow-x: auto; }
|
|
.linenr { font-size: smaller }
|
|
.code-highlighted { background-color: #ffff00; }
|
|
.org-info-js_info-navigation { border-style: none; }
|
|
#org-info-js_console-label
|
|
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
|
|
.org-info-js_search-highlight
|
|
{ background-color: #ffff00; color: #000000; font-weight: bold; }
|
|
.org-svg { width: 90%; }
|
|
/*]]>*/-->
|
|
</style>
|
|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
<script src="./js/jquery.min.js"></script>
|
|
<script src="./js/bootstrap.min.js"></script>
|
|
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
|
<script src="./js/readtheorg.js"></script>
|
|
<script type="text/javascript">
|
|
/*
|
|
@licstart The following is the entire license notice for the
|
|
JavaScript code in this tag.
|
|
|
|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
|
|
The JavaScript code in this tag is free software: you can
|
|
redistribute it and/or modify it under the terms of the GNU
|
|
General Public License (GNU GPL) as published by the Free Software
|
|
Foundation, either version 3 of the License, or (at your option)
|
|
any later version. The code is distributed WITHOUT ANY WARRANTY;
|
|
without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
|
|
|
|
As additional permission under GNU GPL version 3 section 7, you
|
|
may distribute non-source (e.g., minimized or compacted) forms of
|
|
that code without the copy of the GNU GPL normally required by
|
|
section 4, provided you include this license notice and a URL
|
|
through which recipients can access the Corresponding Source.
|
|
|
|
|
|
@licend The above is the entire license notice
|
|
for the JavaScript code in this tag.
|
|
*/
|
|
<!--/*--><![CDATA[/*><!--*/
|
|
function CodeHighlightOn(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(null != target) {
|
|
elem.cacheClassElem = elem.className;
|
|
elem.cacheClassTarget = target.className;
|
|
target.className = "code-highlighted";
|
|
elem.className = "code-highlighted";
|
|
}
|
|
}
|
|
function CodeHighlightOff(elem, id)
|
|
{
|
|
var target = document.getElementById(id);
|
|
if(elem.cacheClassElem)
|
|
elem.className = elem.cacheClassElem;
|
|
if(elem.cacheClassTarget)
|
|
target.className = elem.cacheClassTarget;
|
|
}
|
|
/*]]>*///-->
|
|
</script>
|
|
<script>
|
|
MathJax = {
|
|
tex: { macros: {
|
|
bm: ["\\boldsymbol{#1}",1],
|
|
}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript"
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="./index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="./index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Cubic configuration for the Stewart Platform</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org43e4755">1. Questions we wish to answer with this analysis</a></li>
|
|
<li><a href="#org7c85269">2. <span class="todo TODO">TODO</span> Configuration Analysis - Stiffness Matrix</a>
|
|
<ul>
|
|
<li><a href="#org7a2e2af">2.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
|
|
<li><a href="#orgdd082ef">2.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
|
|
<li><a href="#org314610d">2.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
|
|
<li><a href="#org460e492">2.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
|
|
<li><a href="#orgccb5ef0">2.5. Conclusion</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org29d657d">3. <span class="todo TODO">TODO</span> Cubic size analysis</a></li>
|
|
<li><a href="#orgc12b0fc">4. Functions</a>
|
|
<ul>
|
|
<li><a href="#org12a207e">4.1. <code>generateCubicConfiguration</code>: Generate a Cubic Configuration</a>
|
|
<ul>
|
|
<li><a href="#orgecee38f">Function description</a></li>
|
|
<li><a href="#orgb9948d8">Documentation</a></li>
|
|
<li><a href="#orgbfb0bd5">Optional Parameters</a></li>
|
|
<li><a href="#orgcb22d51">Position of the Cube</a></li>
|
|
<li><a href="#org2f09e98">Compute the pose</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org4eaf218">5. <span class="todo TODO">TODO</span> initializeCubicConfiguration</a>
|
|
<ul>
|
|
<li><a href="#org4fb2bc6">5.1. Function description</a></li>
|
|
<li><a href="#orgb540658">5.2. Optional Parameters</a></li>
|
|
<li><a href="#org1474f46">5.3. Cube Creation</a></li>
|
|
<li><a href="#org03d2dd7">5.4. Vectors of each leg</a></li>
|
|
<li><a href="#orgfed36b2">5.5. Verification of Height of the Stewart Platform</a></li>
|
|
<li><a href="#orgdb27b02">5.6. Determinate the location of the joints</a></li>
|
|
<li><a href="#org5079890">5.7. Returns Stewart Structure</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#orgd9f1e20">6. <span class="todo TODO">TODO</span> Tests</a>
|
|
<ul>
|
|
<li><a href="#orgea7297c">6.1. First attempt to parametrisation</a></li>
|
|
<li><a href="#orgd6ed3c3">6.2. Second attempt</a></li>
|
|
<li><a href="#orgf39eafa">6.3. Generate the Stewart platform for a Cubic configuration</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<p>
|
|
The discovery of the Cubic configuration is done in <a class='org-ref-reference' href="#geng94_six_degree_of_freed_activ">geng94_six_degree_of_freed_activ</a>.
|
|
Further analysis is conducted in
|
|
</p>
|
|
|
|
<p>
|
|
The specificity of the Cubic configuration is that each actuator is orthogonal with the others.
|
|
</p>
|
|
|
|
<p>
|
|
The cubic (or orthogonal) configuration of the Stewart platform is now widely used (<a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>,<a class='org-ref-reference' href="#jafari03_orthog_gough_stewar_platf_microm">jafari03_orthog_gough_stewar_platf_microm</a>).
|
|
</p>
|
|
|
|
<p>
|
|
According to <a class='org-ref-reference' href="#preumont07_six_axis_singl_stage_activ">preumont07_six_axis_singl_stage_activ</a>, the cubic configuration provides a uniform stiffness in all directions and <b>minimizes the crosscoupling</b> from actuator to sensor of different legs (being orthogonal to each other).
|
|
</p>
|
|
|
|
<p>
|
|
To generate and study the Cubic configuration, <code>initializeCubicConfiguration</code> is used (description in section <a href="#org83d7db1">5</a>).
|
|
</p>
|
|
|
|
<div id="outline-container-org43e4755" class="outline-2">
|
|
<h2 id="org43e4755"><span class="section-number-2">1</span> Questions we wish to answer with this analysis</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
<p>
|
|
The goal is to study the benefits of using a cubic configuration:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>Equal stiffness in all the degrees of freedom?</li>
|
|
<li>No coupling between the actuators?</li>
|
|
<li>Is the center of the cube an important point?</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org7c85269" class="outline-2">
|
|
<h2 id="org7c85269"><span class="section-number-2">2</span> <span class="todo TODO">TODO</span> Configuration Analysis - Stiffness Matrix</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
</div>
|
|
<div id="outline-container-org7a2e2af" class="outline-3">
|
|
<h3 id="org7a2e2af"><span class="section-number-3">2.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<p>
|
|
We create a cubic Stewart platform (figure <a href="#org01dbe25">1</a>) in such a way that the center of the cube (black dot) is located at the center of the Stewart platform (blue dot).
|
|
The Jacobian matrix is estimated at the location of the center of the cube.
|
|
</p>
|
|
|
|
|
|
<div id="org01dbe25" class="figure">
|
|
<p><img src="./figs/3d-cubic-stewart-aligned.png" alt="3d-cubic-stewart-aligned.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Centered cubic configuration</p>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, 200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, 60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, 200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
opts = struct(...
|
|
<span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>50], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
|
<span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>50] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
|
|
save(<span class="org-string">'./mat/stewart.mat'</span>, <span class="org-string">'stewart'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">1.9e-18</td>
|
|
<td class="org-right">-2.3e-17</td>
|
|
<td class="org-right">1.8e-18</td>
|
|
<td class="org-right">5.5e-17</td>
|
|
<td class="org-right">-1.5e-17</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.9e-18</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">6.8e-18</td>
|
|
<td class="org-right">-6.1e-17</td>
|
|
<td class="org-right">-1.6e-18</td>
|
|
<td class="org-right">4.8e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-2.3e-17</td>
|
|
<td class="org-right">6.8e-18</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-6.7e-18</td>
|
|
<td class="org-right">4.9e-18</td>
|
|
<td class="org-right">5.3e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.8e-18</td>
|
|
<td class="org-right">-6.1e-17</td>
|
|
<td class="org-right">-6.7e-18</td>
|
|
<td class="org-right">0.0067</td>
|
|
<td class="org-right">-2.3e-20</td>
|
|
<td class="org-right">-6.1e-20</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">5.5e-17</td>
|
|
<td class="org-right">-1.6e-18</td>
|
|
<td class="org-right">4.9e-18</td>
|
|
<td class="org-right">-2.3e-20</td>
|
|
<td class="org-right">0.0067</td>
|
|
<td class="org-right">1e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-1.5e-17</td>
|
|
<td class="org-right">4.8e-18</td>
|
|
<td class="org-right">5.3e-19</td>
|
|
<td class="org-right">-6.1e-20</td>
|
|
<td class="org-right">1e-18</td>
|
|
<td class="org-right">0.027</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgdd082ef" class="outline-3">
|
|
<h3 id="orgdd082ef"><span class="section-number-3">2.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
<p>
|
|
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#org01dbe25">1</a>).
|
|
The Jacobian matrix is not estimated at the location of the center of the cube.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, 200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, 60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, 200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
opts = struct(...
|
|
<span class="org-string">'Jd_pos'</span>, [0, 0, 0], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
|
<span class="org-string">'Jf_pos'</span>, [0, 0, 0] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">1.9e-18</td>
|
|
<td class="org-right">-2.3e-17</td>
|
|
<td class="org-right">1.5e-18</td>
|
|
<td class="org-right">-0.1</td>
|
|
<td class="org-right">-1.5e-17</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.9e-18</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">6.8e-18</td>
|
|
<td class="org-right">0.1</td>
|
|
<td class="org-right">-1.6e-18</td>
|
|
<td class="org-right">4.8e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-2.3e-17</td>
|
|
<td class="org-right">6.8e-18</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-5.1e-19</td>
|
|
<td class="org-right">-5.5e-18</td>
|
|
<td class="org-right">5.3e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.5e-18</td>
|
|
<td class="org-right">0.1</td>
|
|
<td class="org-right">-5.1e-19</td>
|
|
<td class="org-right">0.012</td>
|
|
<td class="org-right">-3e-19</td>
|
|
<td class="org-right">3.1e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-0.1</td>
|
|
<td class="org-right">-1.6e-18</td>
|
|
<td class="org-right">-5.5e-18</td>
|
|
<td class="org-right">-3e-19</td>
|
|
<td class="org-right">0.012</td>
|
|
<td class="org-right">1.9e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-1.5e-17</td>
|
|
<td class="org-right">4.8e-18</td>
|
|
<td class="org-right">5.3e-19</td>
|
|
<td class="org-right">3.1e-19</td>
|
|
<td class="org-right">1.9e-18</td>
|
|
<td class="org-right">0.027</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org314610d" class="outline-3">
|
|
<h3 id="org314610d"><span class="section-number-3">2.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
|
|
<div class="outline-text-3" id="text-2-3">
|
|
<p>
|
|
Here, the “center” of the Stewart platform is not at the cube center (figure <a href="#org4aa7b60">2</a>).
|
|
The Jacobian is estimated at the cube center.
|
|
</p>
|
|
|
|
|
|
<div id="org4aa7b60" class="figure">
|
|
<p><img src="./figs/3d-cubic-stewart-misaligned.png" alt="3d-cubic-stewart-misaligned.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>Not centered cubic configuration</p>
|
|
</div>
|
|
|
|
<p>
|
|
The center of the cube is at \(z = 110\).
|
|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
|
|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
|
|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, 220<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, 60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, 75 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
opts = struct(...
|
|
<span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>65], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
|
<span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>65] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-1.8e-17</td>
|
|
<td class="org-right">2.6e-17</td>
|
|
<td class="org-right">3.3e-18</td>
|
|
<td class="org-right">0.04</td>
|
|
<td class="org-right">1.7e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-1.8e-17</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">1.9e-16</td>
|
|
<td class="org-right">-0.04</td>
|
|
<td class="org-right">2.2e-19</td>
|
|
<td class="org-right">-5.3e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">2.6e-17</td>
|
|
<td class="org-right">1.9e-16</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-8.9e-18</td>
|
|
<td class="org-right">6.5e-19</td>
|
|
<td class="org-right">-5.8e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">3.3e-18</td>
|
|
<td class="org-right">-0.04</td>
|
|
<td class="org-right">-8.9e-18</td>
|
|
<td class="org-right">0.0089</td>
|
|
<td class="org-right">-9.3e-20</td>
|
|
<td class="org-right">9.8e-20</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.04</td>
|
|
<td class="org-right">2.2e-19</td>
|
|
<td class="org-right">6.5e-19</td>
|
|
<td class="org-right">-9.3e-20</td>
|
|
<td class="org-right">0.0089</td>
|
|
<td class="org-right">-2.4e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.7e-19</td>
|
|
<td class="org-right">-5.3e-19</td>
|
|
<td class="org-right">-5.8e-19</td>
|
|
<td class="org-right">9.8e-20</td>
|
|
<td class="org-right">-2.4e-18</td>
|
|
<td class="org-right">0.032</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org460e492" class="outline-3">
|
|
<h3 id="org460e492"><span class="section-number-3">2.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
|
|
<div class="outline-text-3" id="text-2-4">
|
|
<p>
|
|
Here, the “center” of the Stewart platform is not at the cube center.
|
|
The Jacobian is estimated at the center of the Stewart platform.
|
|
</p>
|
|
|
|
<p>
|
|
The center of the cube is at \(z = 110\).
|
|
The Stewart platform is from \(z = H_0 = 75\) to \(z = H_0 + H_{tot} = 175\).
|
|
The center height of the Stewart platform is then at \(z = \frac{175-75}{2} = 50\).
|
|
The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, 100, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, 220<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, 60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, 75 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
opts = struct(...
|
|
<span class="org-string">'Jd_pos'</span>, [0, 0, <span class="org-type">-</span>60], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
|
<span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>60] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">K = stewart.Jf<span class="org-type">'*</span>stewart.Jf;
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-1.8e-17</td>
|
|
<td class="org-right">2.6e-17</td>
|
|
<td class="org-right">-5.7e-19</td>
|
|
<td class="org-right">0.03</td>
|
|
<td class="org-right">1.7e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-1.8e-17</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">1.9e-16</td>
|
|
<td class="org-right">-0.03</td>
|
|
<td class="org-right">2.2e-19</td>
|
|
<td class="org-right">-5.3e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">2.6e-17</td>
|
|
<td class="org-right">1.9e-16</td>
|
|
<td class="org-right">2</td>
|
|
<td class="org-right">-1.5e-17</td>
|
|
<td class="org-right">6.5e-19</td>
|
|
<td class="org-right">-5.8e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">-5.7e-19</td>
|
|
<td class="org-right">-0.03</td>
|
|
<td class="org-right">-1.5e-17</td>
|
|
<td class="org-right">0.0085</td>
|
|
<td class="org-right">4.9e-20</td>
|
|
<td class="org-right">1.7e-19</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.03</td>
|
|
<td class="org-right">2.2e-19</td>
|
|
<td class="org-right">6.5e-19</td>
|
|
<td class="org-right">4.9e-20</td>
|
|
<td class="org-right">0.0085</td>
|
|
<td class="org-right">-1.1e-18</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">1.7e-19</td>
|
|
<td class="org-right">-5.3e-19</td>
|
|
<td class="org-right">-5.8e-19</td>
|
|
<td class="org-right">1.7e-19</td>
|
|
<td class="org-right">-1.1e-18</td>
|
|
<td class="org-right">0.032</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiffness matrix is not diagonal.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgccb5ef0" class="outline-3">
|
|
<h3 id="orgccb5ef0"><span class="section-number-3">2.5</span> Conclusion</h3>
|
|
<div class="outline-text-3" id="text-2-5">
|
|
<div class="important">
|
|
<ul class="org-ul">
|
|
<li>The cubic configuration permits to have \(k_x = k_y = k_z\) and \(k_{\theta\x} = k_{\theta_y}\)</li>
|
|
<li>The stiffness matrix \(K\) is diagonal for the cubic configuration if the Stewart platform and the cube are centered <b>and</b> the Jacobian is estimated at the cube center</li>
|
|
</ul>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org29d657d" class="outline-2">
|
|
<h2 id="org29d657d"><span class="section-number-2">3</span> <span class="todo TODO">TODO</span> Cubic size analysis</h2>
|
|
<div class="outline-text-2" id="text-3">
|
|
<p>
|
|
We here study the effect of the size of the cube used for the Stewart configuration.
|
|
</p>
|
|
|
|
<p>
|
|
We fix the height of the Stewart platform, the center of the cube is at the center of the Stewart platform.
|
|
</p>
|
|
|
|
<p>
|
|
We only vary the size of the cube.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">H_cubes = 250<span class="org-type">:</span>20<span class="org-type">:</span>350;
|
|
stewarts = {zeros(length(H_cubes), 1)};
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(H_cubes)</span>
|
|
H_cube = H_cubes(<span class="org-constant">i</span>);
|
|
H_tot = 100;
|
|
H = 80;
|
|
|
|
opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, H_tot, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, H_cube<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, H, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, H_cube<span class="org-type">/</span>2<span class="org-type">-</span>H<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
stewart = initializeCubicConfiguration(opts);
|
|
|
|
opts = struct(...
|
|
<span class="org-string">'Jd_pos'</span>, [0, 0, H_cube<span class="org-type">/</span>2<span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
|
<span class="org-string">'Jf_pos'</span>, [0, 0, H_cube<span class="org-type">/</span>2<span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
|
);
|
|
stewart = computeGeometricalProperties(stewart, opts);
|
|
stewarts(<span class="org-constant">i</span>) = {stewart};
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
The Stiffness matrix is computed for all generated Stewart platforms.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ks = zeros(6, 6, length(H_cube));
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(H_cubes)</span>
|
|
Ks(<span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span>) = stewarts{<span class="org-constant">i</span>}.Jd<span class="org-type">'*</span>stewarts{<span class="org-constant">i</span>}.Jd;
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The only elements of \(K\) that vary are \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\).
|
|
</p>
|
|
|
|
<p>
|
|
Finally, we plot \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\)
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
hold on;
|
|
plot(H_cubes, squeeze(Ks(4, 4, <span class="org-type">:</span>)), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_{\theta_x}$'</span>);
|
|
plot(H_cubes, squeeze(Ks(6, 6, <span class="org-type">:</span>)), <span class="org-string">'DisplayName'</span>, <span class="org-string">'$k_{\theta_z}$'</span>);
|
|
hold off;
|
|
legend(<span class="org-string">'location'</span>, <span class="org-string">'northwest'</span>);
|
|
xlabel(<span class="org-string">'Cube Size [mm]'</span>); ylabel(<span class="org-string">'Rotational stiffnes [normalized]'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgeec8e66" class="figure">
|
|
<p><img src="figs/stiffness_cube_size.png" alt="stiffness_cube_size.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>\(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) function of the size of the cube</p>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
We observe that \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) increase linearly with the cube size.
|
|
</p>
|
|
|
|
<div class="important">
|
|
<p>
|
|
In order to maximize the rotational stiffness of the Stewart platform, the size of the cube should be the highest possible.
|
|
In that case, the legs will the further separated. Size of the cube is then limited by allowed space.
|
|
</p>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc12b0fc" class="outline-2">
|
|
<h2 id="orgc12b0fc"><span class="section-number-2">4</span> Functions</h2>
|
|
<div class="outline-text-2" id="text-4">
|
|
<p>
|
|
<a id="orgee0330a"></a>
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org12a207e" class="outline-3">
|
|
<h3 id="org12a207e"><span class="section-number-3">4.1</span> <code>generateCubicConfiguration</code>: Generate a Cubic Configuration</h3>
|
|
<div class="outline-text-3" id="text-4-1">
|
|
<p>
|
|
<a id="org0a684d8"></a>
|
|
</p>
|
|
|
|
<p>
|
|
This Matlab function is accessible <a href="src/generateCubicConfiguration.m">here</a>.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-orgecee38f" class="outline-4">
|
|
<h4 id="orgecee38f">Function description</h4>
|
|
<div class="outline-text-4" id="text-orgecee38f">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">generateCubicConfiguration</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
|
|
<span class="org-comment">% generateCubicConfiguration - Generate a Cubic Configuration</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Syntax: [stewart] = generateCubicConfiguration(stewart, args)</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Inputs:</span>
|
|
<span class="org-comment">% - stewart - A structure with the following fields</span>
|
|
<span class="org-comment">% - H [1x1] - Total height of the platform [m]</span>
|
|
<span class="org-comment">% - args - Can have the following fields:</span>
|
|
<span class="org-comment">% - Hc [1x1] - Height of the "useful" part of the cube [m]</span>
|
|
<span class="org-comment">% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]</span>
|
|
<span class="org-comment">% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]</span>
|
|
<span class="org-comment">% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]</span>
|
|
<span class="org-comment">%</span>
|
|
<span class="org-comment">% Outputs:</span>
|
|
<span class="org-comment">% - stewart - updated Stewart structure with the added fields:</span>
|
|
<span class="org-comment">% - Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}</span>
|
|
<span class="org-comment">% - Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgb9948d8" class="outline-4">
|
|
<h4 id="orgb9948d8">Documentation</h4>
|
|
<div class="outline-text-4" id="text-orgb9948d8">
|
|
|
|
<div id="orgff1f403" class="figure">
|
|
<p><img src="figs/cubic-configuration-definition.png" alt="cubic-configuration-definition.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Cubic Configuration</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgbfb0bd5" class="outline-4">
|
|
<h4 id="orgbfb0bd5">Optional Parameters</h4>
|
|
<div class="outline-text-4" id="text-orgbfb0bd5">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">arguments
|
|
stewart
|
|
args.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e<span class="org-type">-</span>3
|
|
args.FOc (1,1) double {mustBeNumeric} = 50e<span class="org-type">-</span>3
|
|
args.FHa (1,1) double {mustBeNumeric, mustBePositive} = 15e<span class="org-type">-</span>3
|
|
args.MHb (1,1) double {mustBeNumeric, mustBePositive} = 15e<span class="org-type">-</span>3
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgcb22d51" class="outline-4">
|
|
<h4 id="orgcb22d51">Position of the Cube</h4>
|
|
<div class="outline-text-4" id="text-orgcb22d51">
|
|
<p>
|
|
We define the useful points of the cube with respect to the Cube’s center.
|
|
\({}^{C}C\) are the 6 vertices of the cubes expressed in a frame {C} which is
|
|
located at the center of the cube and aligned with {F} and {M}.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">sx = [ 2; <span class="org-type">-</span>1; <span class="org-type">-</span>1];
|
|
sy = [ 0; 1; <span class="org-type">-</span>1];
|
|
sz = [ 1; 1; 1];
|
|
|
|
R = [sx, sy, sz]<span class="org-type">./</span>vecnorm([sx, sy, sz]);
|
|
|
|
L = args.Hc<span class="org-type">*</span>sqrt(3);
|
|
|
|
Cc = R<span class="org-type">'*</span>[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] <span class="org-type">-</span> [0;0;1.5<span class="org-type">*</span>args.Hc];
|
|
|
|
CCf = [Cc(<span class="org-type">:</span>,1), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,3), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,5), Cc(<span class="org-type">:</span>,1)]; <span class="org-comment">% CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg</span>
|
|
CCm = [Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,2), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,4), Cc(<span class="org-type">:</span>,6), Cc(<span class="org-type">:</span>,6)]; <span class="org-comment">% CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2f09e98" class="outline-4">
|
|
<h4 id="org2f09e98">Compute the pose</h4>
|
|
<div class="outline-text-4" id="text-org2f09e98">
|
|
<p>
|
|
We can compute the vector of each leg \({}^{C}\hat{\bm{s}}_{i}\) (unit vector from \({}^{C}C_{f}\) to \({}^{C}C_{m}\)).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">CSi = (CCm <span class="org-type">-</span> CCf)<span class="org-type">./</span>vecnorm(CCm <span class="org-type">-</span> CCf);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now which to compute the position of the joints \(a_{i}\) and \(b_{i}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">stewart.Fa = CCf <span class="org-type">+</span> [0; 0; args.FOc] <span class="org-type">+</span> ((args.FHa<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
|
|
stewart.Mb = CCf <span class="org-type">+</span> [0; 0; args.FOc<span class="org-type">-</span>stewart.H] <span class="org-type">+</span> ((stewart.H<span class="org-type">-</span>args.MHb<span class="org-type">-</span>(args.FOc<span class="org-type">-</span>args.Hc<span class="org-type">/</span>2))<span class="org-type">./</span>CSi(3,<span class="org-type">:</span>))<span class="org-type">.*</span>CSi;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org4eaf218" class="outline-2">
|
|
<h2 id="org4eaf218"><span class="section-number-2">5</span> <span class="todo TODO">TODO</span> initializeCubicConfiguration</h2>
|
|
<div class="outline-text-2" id="text-5">
|
|
<p>
|
|
<a id="org83d7db1"></a>
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org4fb2bc6" class="outline-3">
|
|
<h3 id="org4fb2bc6"><span class="section-number-3">5.1</span> Function description</h3>
|
|
<div class="outline-text-3" id="text-5-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">initializeCubicConfiguration</span>(<span class="org-variable-name">opts_param</span>)
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgb540658" class="outline-3">
|
|
<h3 id="orgb540658"><span class="section-number-3">5.2</span> Optional Parameters</h3>
|
|
<div class="outline-text-3" id="text-5-2">
|
|
<p>
|
|
Default values for opts.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">opts = struct(...
|
|
<span class="org-string">'H_tot'</span>, 90, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
|
|
<span class="org-string">'L'</span>, 110, ...<span class="org-comment"> % Size of the Cube [mm]</span>
|
|
<span class="org-string">'H'</span>, 40, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
|
|
<span class="org-string">'H0'</span>, 75 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
|
);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Populate opts with input parameters
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">if</span> exist(<span class="org-string">'opts_param'</span>,<span class="org-string">'var'</span>)
|
|
<span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames(opts_param)'</span>
|
|
opts.(opt{1}) = opts_param.(opt{1});
|
|
<span class="org-keyword">end</span>
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org1474f46" class="outline-3">
|
|
<h3 id="org1474f46"><span class="section-number-3">5.3</span> Cube Creation</h3>
|
|
<div class="outline-text-3" id="text-5-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">points = [0, 0, 0; ...
|
|
0, 0, 1; ...
|
|
0, 1, 0; ...
|
|
0, 1, 1; ...
|
|
1, 0, 0; ...
|
|
1, 0, 1; ...
|
|
1, 1, 0; ...
|
|
1, 1, 1];
|
|
points = opts.L<span class="org-type">*</span>points;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We create the rotation matrix to rotate the cube
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">sx = cross([1, 1, 1], [1 0 0]);
|
|
sx = sx<span class="org-type">/</span>norm(sx);
|
|
|
|
sy = <span class="org-type">-</span>cross(sx, [1, 1, 1]);
|
|
sy = sy<span class="org-type">/</span>norm(sy);
|
|
|
|
sz = [1, 1, 1];
|
|
sz = sz<span class="org-type">/</span>norm(sz);
|
|
|
|
R = [sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span>]<span class="org-type">'</span>;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We use to rotation matrix to rotate the cube
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">cube = zeros(size(points));
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:size(points, 1)</span>
|
|
cube(<span class="org-constant">i</span>, <span class="org-type">:</span>) = R <span class="org-type">*</span> points(<span class="org-constant">i</span>, <span class="org-type">:</span>)<span class="org-type">'</span>;
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org03d2dd7" class="outline-3">
|
|
<h3 id="org03d2dd7"><span class="section-number-3">5.4</span> Vectors of each leg</h3>
|
|
<div class="outline-text-3" id="text-5-4">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">leg_indices = [3, 4; ...
|
|
2, 4; ...
|
|
2, 6; ...
|
|
5, 6; ...
|
|
5, 7; ...
|
|
3, 7];
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Vectors are:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">legs = zeros(6, 3);
|
|
legs_start = zeros(6, 3);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
legs(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 2), <span class="org-type">:</span>) <span class="org-type">-</span> cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
|
|
legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgfed36b2" class="outline-3">
|
|
<h3 id="orgfed36b2"><span class="section-number-3">5.5</span> Verification of Height of the Stewart Platform</h3>
|
|
<div class="outline-text-3" id="text-5-5">
|
|
<p>
|
|
If the Stewart platform is not contained in the cube, throw an error.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Hmax = cube(4, 3) <span class="org-type">-</span> cube(2, 3);
|
|
<span class="org-keyword">if</span> opts.H0 <span class="org-type"><</span> cube(2, 3)
|
|
error(sprintf(<span class="org-string">'H0 is not high enought. Minimum H0 = %.1f'</span>, cube(2, 3)));
|
|
<span class="org-keyword">else</span> <span class="org-keyword">if</span> opts.H0 <span class="org-type">+</span> opts.H <span class="org-type">></span> cube(4, 3)
|
|
error(sprintf(<span class="org-string">'H0+H is too high. Maximum H0+H = %.1f'</span>, cube(4, 3)));
|
|
error(<span class="org-string">'H0+H is too high'</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgdb27b02" class="outline-3">
|
|
<h3 id="orgdb27b02"><span class="section-number-3">5.6</span> Determinate the location of the joints</h3>
|
|
<div class="outline-text-3" id="text-5-6">
|
|
<p>
|
|
We now determine the location of the joints on the fixed platform w.r.t the fixed frame \(\{A\}\).
|
|
\(\{A\}\) is fixed to the bottom of the base.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Aa = zeros(6, 3);
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
t = (opts.H0<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
|
|
Aa(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And the location of the joints on the mobile platform with respect to \(\{A\}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ab = zeros(6, 3);
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
t = (opts.H0<span class="org-type">+</span>opts.H<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
|
|
Ab(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And the location of the joints on the mobile platform with respect to \(\{B\}\).
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Bb = zeros(6, 3);
|
|
Bb = Ab <span class="org-type">-</span> (opts.H0 <span class="org-type">+</span> opts.H_tot<span class="org-type">/</span>2 <span class="org-type">+</span> opts.H<span class="org-type">/</span>2)<span class="org-type">*</span>[0, 0, 1];
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">h = opts.H0 <span class="org-type">+</span> opts.H<span class="org-type">/</span>2 <span class="org-type">-</span> opts.H_tot<span class="org-type">/</span>2;
|
|
Aa = Aa <span class="org-type">-</span> h<span class="org-type">*</span>[0, 0, 1];
|
|
Ab = Ab <span class="org-type">-</span> h<span class="org-type">*</span>[0, 0, 1];
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5079890" class="outline-3">
|
|
<h3 id="org5079890"><span class="section-number-3">5.7</span> Returns Stewart Structure</h3>
|
|
<div class="outline-text-3" id="text-5-7">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"> stewart = struct();
|
|
stewart.Aa = Aa;
|
|
stewart.Ab = Ab;
|
|
stewart.Bb = Bb;
|
|
stewart.H_tot = opts.H_tot;
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd9f1e20" class="outline-2">
|
|
<h2 id="orgd9f1e20"><span class="section-number-2">6</span> <span class="todo TODO">TODO</span> Tests</h2>
|
|
<div class="outline-text-2" id="text-6">
|
|
</div>
|
|
<div id="outline-container-orgea7297c" class="outline-3">
|
|
<h3 id="orgea7297c"><span class="section-number-3">6.1</span> First attempt to parametrisation</h3>
|
|
<div class="outline-text-3" id="text-6-1">
|
|
|
|
<div id="org65e66e5" class="figure">
|
|
<p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 5: </span>Schematic of the bottom plates with all the parameters</p>
|
|
</div>
|
|
|
|
<p>
|
|
The goal is to choose \(\alpha\), \(\beta\), \(R_\text{leg, t}\) and \(R_\text{leg, b}\) in such a way that the configuration is cubic.
|
|
</p>
|
|
|
|
|
|
<p>
|
|
The configuration is cubic if:
|
|
\[ \overrightarrow{a_i b_i} \cdot \overrightarrow{a_j b_j} = 0, \ \forall i, j = [1, \hdots, 6], i \ne j \]
|
|
</p>
|
|
|
|
<p>
|
|
Lets express \(a_i\), \(b_i\) and \(a_j\):
|
|
</p>
|
|
\begin{equation*}
|
|
a_1 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 - \alpha) \\ R_{\text{leg,b}} \cos(120 - \alpha) \\ 0\end{bmatrix} ; \quad
|
|
a_2 = \begin{bmatrix}R_{\text{leg,b}} \cos(120 + \alpha) \\ R_{\text{leg,b}} \cos(120 + \alpha) \\ 0\end{bmatrix} ; \quad
|
|
\end{equation*}
|
|
|
|
\begin{equation*}
|
|
b_1 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 - \beta) \\ R_{\text{leg,t}} \cos(120 - \beta\\ H\end{bmatrix} ; \quad
|
|
b_2 = \begin{bmatrix}R_{\text{leg,t}} \cos(120 + \beta) \\ R_{\text{leg,t}} \cos(120 + \beta\\ H\end{bmatrix} ; \quad
|
|
\end{equation*}
|
|
|
|
<p>
|
|
\[ \overrightarrow{a_1 b_1} = b_1 - a_1 = \begin{bmatrix}R_{\text{leg}} \cos(120 - \alpha) \\ R_{\text{leg}} \cos(120 - \alpha) \\ 0\end{bmatrix}\]
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd6ed3c3" class="outline-3">
|
|
<h3 id="orgd6ed3c3"><span class="section-number-3">6.2</span> Second attempt</h3>
|
|
<div class="outline-text-3" id="text-6-2">
|
|
<p>
|
|
We start with the point of a cube in space:
|
|
</p>
|
|
\begin{align*}
|
|
[0, 0, 0] ; \ [0, 0, 1]; \ ...
|
|
\end{align*}
|
|
|
|
<p>
|
|
We also want the cube to point upward:
|
|
\[ [1, 1, 1] \Rightarrow [0, 0, 1] \]
|
|
</p>
|
|
|
|
<p>
|
|
Then we have the direction of all the vectors expressed in the frame of the hexapod.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">points = [0, 0, 0; ...
|
|
0, 0, 1; ...
|
|
0, 1, 0; ...
|
|
0, 1, 1; ...
|
|
1, 0, 0; ...
|
|
1, 0, 1; ...
|
|
1, 1, 0; ...
|
|
1, 1, 1];
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
plot3(points(<span class="org-type">:</span>,1), points(<span class="org-type">:</span>,2), points(<span class="org-type">:</span>,3), <span class="org-string">'ko'</span>)
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">sx = cross([1, 1, 1], [1 0 0]);
|
|
sx = sx<span class="org-type">/</span>norm(sx);
|
|
|
|
sy = <span class="org-type">-</span>cross(sx, [1, 1, 1]);
|
|
sy = sy<span class="org-type">/</span>norm(sy);
|
|
|
|
sz = [1, 1, 1];
|
|
sz = sz<span class="org-type">/</span>norm(sz);
|
|
|
|
R = [sx<span class="org-type">'</span>, sy<span class="org-type">'</span>, sz<span class="org-type">'</span>]<span class="org-type">'</span>;
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">cube = zeros(size(points));
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:size(points, 1)</span>
|
|
cube(<span class="org-constant">i</span>, <span class="org-type">:</span>) = R <span class="org-type">*</span> points(<span class="org-constant">i</span>, <span class="org-type">:</span>)<span class="org-type">'</span>;
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
hold on;
|
|
plot3(points(<span class="org-type">:</span>,1), points(<span class="org-type">:</span>,2), points(<span class="org-type">:</span>,3), <span class="org-string">'ko'</span>);
|
|
plot3(cube(<span class="org-type">:</span>,1), cube(<span class="org-type">:</span>,2), cube(<span class="org-type">:</span>,3), <span class="org-string">'ro'</span>);
|
|
hold off;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Now we plot the legs of the hexapod.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">leg_indices = [3, 4; ...
|
|
2, 4; ...
|
|
2, 6; ...
|
|
5, 6; ...
|
|
5, 7; ...
|
|
3, 7]
|
|
|
|
<span class="org-type">figure</span>;
|
|
hold on;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
plot3(cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),1), cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),2), cube(leg_indices(<span class="org-constant">i</span>, <span class="org-type">:</span>),3), <span class="org-string">'-'</span>);
|
|
<span class="org-keyword">end</span>
|
|
hold off;
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Vectors are:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">legs = zeros(6, 3);
|
|
legs_start = zeros(6, 3);
|
|
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
legs(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 2), <span class="org-type">:</span>) <span class="org-type">-</span> cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>);
|
|
legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) = cube(leg_indices(<span class="org-constant">i</span>, 1), <span class="org-type">:</span>)
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now have the orientation of each leg.
|
|
</p>
|
|
|
|
<p>
|
|
We here want to see if the position of the “slice” changes something.
|
|
</p>
|
|
|
|
<p>
|
|
Let’s first estimate the maximum height of the Stewart platform.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Hmax = cube(4, 3) <span class="org-type">-</span> cube(2, 3);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Let’s then estimate the middle position of the platform
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Hmid = cube(8, 3)<span class="org-type">/</span>2;
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgf39eafa" class="outline-3">
|
|
<h3 id="orgf39eafa"><span class="section-number-3">6.3</span> Generate the Stewart platform for a Cubic configuration</h3>
|
|
<div class="outline-text-3" id="text-6-3">
|
|
<p>
|
|
First we defined the height of the Hexapod.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">H = Hmax<span class="org-type">/</span>2;
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Zs = 1.2<span class="org-type">*</span>cube(2, 3); <span class="org-comment">% Height of the fixed platform</span>
|
|
Ze = Zs <span class="org-type">+</span> H; <span class="org-comment">% Height of the mobile platform</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We now determine the location of the joints on the fixed platform.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Aa = zeros(6, 3);
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
t = (Zs<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
|
|
Aa(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And the location of the joints on the mobile platform
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ab = zeros(6, 3);
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
t = (Ze<span class="org-type">-</span>legs_start(<span class="org-constant">i</span>, 3))<span class="org-type">/</span>(legs(<span class="org-constant">i</span>, 3));
|
|
Ab(<span class="org-constant">i</span>, <span class="org-type">:</span>) = legs_start(<span class="org-constant">i</span>, <span class="org-type">:</span>) <span class="org-type">+</span> t<span class="org-type">*</span>legs(<span class="org-constant">i</span>, <span class="org-type">:</span>);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And we plot the legs.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
hold on;
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:6</span>
|
|
plot3([Ab(<span class="org-constant">i</span>, 1),Aa(<span class="org-constant">i</span>, 1)], [Ab(<span class="org-constant">i</span>, 2),Aa(<span class="org-constant">i</span>, 2)], [Ab(<span class="org-constant">i</span>, 3),Aa(<span class="org-constant">i</span>, 3)], <span class="org-string">'k-'</span>);
|
|
<span class="org-keyword">end</span>
|
|
hold off;
|
|
xlim([<span class="org-type">-</span>1, 1]);
|
|
ylim([<span class="org-type">-</span>1, 1]);
|
|
zlim([0, 2]);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<p>
|
|
|
|
<h1 class='org-ref-bib-h1'>Bibliography</h1>
|
|
<ul class='org-ref-bib'><li><a id="geng94_six_degree_of_freed_activ">[geng94_six_degree_of_freed_activ]</a> <a name="geng94_six_degree_of_freed_activ"></a>Geng & Haynes, Six Degree-Of-Freedom Active Vibration Control Using the Stewart Platforms, <i>IEEE Transactions on Control Systems Technology</i>, <b>2(1)</b>, 45-53 (1994). <a href="https://doi.org/10.1109/87.273110">link</a>. <a href="http://dx.doi.org/10.1109/87.273110">doi</a>.</li>
|
|
<li><a id="preumont07_six_axis_singl_stage_activ">[preumont07_six_axis_singl_stage_activ]</a> <a name="preumont07_six_axis_singl_stage_activ"></a>Preumont, Horodinca, Romanescu, de Marneffe, Avraam, Deraemaeker, Bossens & Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform, <i>Journal of Sound and Vibration</i>, <b>300(3-5)</b>, 644-661 (2007). <a href="https://doi.org/10.1016/j.jsv.2006.07.050">link</a>. <a href="http://dx.doi.org/10.1016/j.jsv.2006.07.050">doi</a>.</li>
|
|
<li><a id="jafari03_orthog_gough_stewar_platf_microm">[jafari03_orthog_gough_stewar_platf_microm]</a> <a name="jafari03_orthog_gough_stewar_platf_microm"></a>Jafari & McInroy, Orthogonal Gough-Stewart Platforms for Micromanipulation, <i>IEEE Transactions on Robotics and Automation</i>, <b>19(4)</b>, 595-603 (2003). <a href="https://doi.org/10.1109/tra.2003.814506">link</a>. <a href="http://dx.doi.org/10.1109/tra.2003.814506">doi</a>.</li>
|
|
</ul>
|
|
</p>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2020-02-06 jeu. 17:25</p>
|
|
</div>
|
|
</body>
|
|
</html>
|