Add study of active damping techniques

This commit is contained in:
Thomas Dehaeze 2020-02-06 15:39:35 +01:00
parent 053329875b
commit f06a119922
33 changed files with 1587 additions and 93 deletions

View File

@ -0,0 +1,2 @@
<?xml version='1.0' encoding='UTF-8'?>
<Info Ref="matlab" Type="Relative" />

View File

@ -1,14 +1,13 @@
<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head> <head>
<!-- 2020-01-22 mer. 16:31 --> <!-- 2020-02-06 jeu. 15:39 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Active Damping</title> <title>Stewart Platform - Decentralized Active Damping</title>
<meta name="generator" content="Org mode" /> <meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" /> <meta name="author" content="Dehaeze Thomas" />
<style type="text/css"> <style type="text/css">
@ -247,6 +246,16 @@ for the JavaScript code in this tag.
} }
/*]]>*///--> /*]]>*///-->
</script> </script>
<script>
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head> </head>
<body> <body>
<div id="org-div-home-and-up"> <div id="org-div-home-and-up">
@ -254,55 +263,72 @@ for the JavaScript code in this tag.
| |
<a accesskey="H" href="./index.html"> HOME </a> <a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content"> </div><div id="content">
<h1 class="title">Stewart Platform - Active Damping</h1> <h1 class="title">Stewart Platform - Decentralized Active Damping</h1>
<div id="table-of-contents"> <div id="table-of-contents">
<h2>Table of Contents</h2> <h2>Table of Contents</h2>
<div id="text-table-of-contents"> <div id="text-table-of-contents">
<ul> <ul>
<li><a href="#orgbab9da7">1. Inertial Control</a> <li><a href="#orgfba33d4">1. Inertial Control</a>
<ul> <ul>
<li><a href="#orgd9e8d20">1.1. Simscape Model</a></li> <li><a href="#org0ea4bd4">1.1. Identification of the Dynamics</a></li>
<li><a href="#orge6285ea">1.2. Initialize the Stewart model</a></li> <li><a href="#org5a29480">1.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#org471f4bb">1.3. Identification of the Dynamics</a></li> <li><a href="#orga92be75">1.3. Obtained Damping</a></li>
<li><a href="#org30b2e11">1.4. Analysis</a></li> <li><a href="#orgb29f377">1.4. Conclusion</a></li>
<li><a href="#org7f07dca">1.5. Conclusion</a></li> </ul>
</li>
<li><a href="#org5fde56d">2. Integral Force Feedback</a>
<ul>
<li><a href="#org8823e64">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org2aff899">2.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#org40dffdd">2.3. Obtained Damping</a></li>
<li><a href="#org2ae5aaf">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org9425768">3. Direct Velocity Feedback</a>
<ul>
<li><a href="#org61043ac">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org8f71141">3.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#org87c6911">3.3. Obtained Damping</a></li>
<li><a href="#org516fed1">3.4. Conclusion</a></li>
</ul> </ul>
</li> </li>
</ul> </ul>
</div> </div>
</div> </div>
<div id="outline-container-orgbab9da7" class="outline-2"> <p>
<h2 id="orgbab9da7"><span class="section-number-2">1</span> Inertial Control</h2> The following decentralized active damping techniques are briefly studied:
</p>
<ul class="org-ul">
<li>Inertial Control (proportional feedback of the absolute velocity): Section <a href="#org3c68d9e">1</a></li>
<li>Integral Force Feedback: Section <a href="#org62cd19c">2</a></li>
<li>Direct feedback of the relative velocity of each strut: Section <a href="#org587277a">3</a></li>
</ul>
<div id="outline-container-orgfba33d4" class="outline-2">
<h2 id="orgfba33d4"><span class="section-number-2">1</span> Inertial Control</h2>
<div class="outline-text-2" id="text-1"> <div class="outline-text-2" id="text-1">
<p>
<a id="org3c68d9e"></a>
</p>
</div> </div>
<div id="outline-container-orgd9e8d20" class="outline-3">
<h3 id="orgd9e8d20"><span class="section-number-3">1.1</span> Simscape Model</h3> <div id="outline-container-org0ea4bd4" class="outline-3">
<h3 id="org0ea4bd4"><span class="section-number-3">1.1</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-1-1"> <div class="outline-text-3" id="text-1-1">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'simulink/stewart_active_damping.slx'</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-orge6285ea" class="outline-3">
<h3 id="orge6285ea"><span class="section-number-3">1.2</span> Initialize the Stewart model</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3); <pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateCubicConfiguration(stewart, <span class="org-string">'Hc'</span>, 40e<span class="org-type">-</span>3, <span class="org-string">'FOc'</span>, 45e<span class="org-type">-</span>3, <span class="org-string">'FHa'</span>, 5e<span class="org-type">-</span>3, <span class="org-string">'MHb'</span>, 5e<span class="org-type">-</span>3); stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart); stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, <span class="org-string">'Ki'</span>, 1e6<span class="org-type">*</span>ones(6,1), <span class="org-string">'Ci'</span>, 1e2<span class="org-type">*</span>ones(6,1)); stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart); stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre> </pre>
</div> </div>
</div>
</div>
<div id="outline-container-org471f4bb" class="outline-3">
<h3 id="org471f4bb"><span class="section-number-3">1.3</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-1-3">
<div class="org-src-container"> <div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span> <pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions; options = linearizeOptions;
@ -313,59 +339,373 @@ mdl = <span class="org-string">'stewart_active_damping'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1; clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/WVB'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; io(io_i) = linio([mdl, <span class="org-string">'/Vm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute velocity of each leg [m/s]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Dm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span> <span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options); G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}; G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Vx'</span>, <span class="org-string">'Vy'</span>, <span class="org-string">'Vz'</span>, <span class="org-string">'Wx'</span>, <span class="org-string">'Wy'</span>, <span class="org-string">'Wz'</span>, ... G.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
<span class="org-string">'D1'</span>, <span class="org-string">'D2'</span>, <span class="org-string">'D3'</span>, <span class="org-string">'D4'</span>, <span class="org-string">'D5'</span>, <span class="org-string">'D6'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-org30b2e11" class="outline-3">
<h3 id="org30b2e11"><span class="section-number-3">1.4</span> Analysis</h3>
<div class="outline-text-3" id="text-1-4">
<div class="org-src-container">
<pre class="src src-matlab">freqs = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>logspace(1, 4, 1000);
<span class="org-type">figure</span>;
bode(G({<span class="org-string">'D1'</span>, <span class="org-string">'D2'</span>, <span class="org-string">'D3'</span>, <span class="org-string">'D4'</span>, <span class="org-string">'D5'</span>, <span class="org-string">'D6'</span>}, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}), freqs)
<span class="org-type">figure</span>;
bode(stewart.J<span class="org-type">*</span>G({<span class="org-string">'Vx'</span>, <span class="org-string">'Vy'</span>, <span class="org-string">'Vz'</span>, <span class="org-string">'Wx'</span>, <span class="org-string">'Wy'</span>, <span class="org-string">'Wz'</span>}, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}), freqs)
</pre> </pre>
</div> </div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
bode(G({<span class="org-string">'D1'</span>, <span class="org-string">'D2'</span>, <span class="org-string">'D3'</span>, <span class="org-string">'D4'</span>, <span class="org-string">'D5'</span>, <span class="org-string">'D6'</span>}, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}), stewart.J<span class="org-type">*</span>G({<span class="org-string">'Vx'</span>, <span class="org-string">'Vy'</span>, <span class="org-string">'Vz'</span>, <span class="org-string">'Wx'</span>, <span class="org-string">'Wy'</span>, <span class="org-string">'Wz'</span>}, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}), freqs)
</pre>
</div>
</div>
</div>
<div id="outline-container-org7f07dca" class="outline-3">
<h3 id="org7f07dca"><span class="section-number-3">1.5</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-5">
<p> <p>
It is similar to use: The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgfc5367b">1</a>.
</p> </p>
<ul class="org-ul">
<li>one 6dof inertial sensor and the Jacobian the have the velocity of each lim</li> <div id="orgfc5367b" class="figure">
<li>6 1dof inertial sensor in each top part of the limbs</li> <p><img src="figs/inertial_plant_coupling.png" alt="inertial_plant_coupling.png" />
</ul> </p>
<p><span class="figure-number">Figure 1: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity of the same leg \(v_{m,i}\) and to the absolute velocity of the other legs \(v_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/inertial_plant_coupling.png">png</a>, <a href="./figs/inertial_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org5a29480" class="outline-3">
<h3 id="org5a29480"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#org2ee5d65">2</a>.
</p>
<div id="org2ee5d65" class="figure">
<p><img src="figs/inertial_plant_flexible_joint_decentralized.png" alt="inertial_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Transfer function from the Actuator force \(F_{i}\) to the absolute velocity sensor \(v_{m,i}\) (<a href="./figs/inertial_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/inertial_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orga92be75" class="outline-3">
<h3 id="orga92be75"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure proportional action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{bmatrix} \]
</p>
<p>
The root locus is shown in figure <a href="#org78a599c">3</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org0b6bb28">4</a>.
</p>
<div id="org78a599c" class="figure">
<p><img src="figs/root_locus_inertial_rot_stiffness.png" alt="root_locus_inertial_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/root_locus_inertial_rot_stiffness.png">png</a>, <a href="./figs/root_locus_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="org0b6bb28" class="figure">
<p><img src="figs/pole_damping_gain_inertial_rot_stiffness.png" alt="pole_damping_gain_inertial_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_inertial_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgb29f377" class="outline-3">
<h3 id="orgb29f377"><span class="section-number-3">1.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-4">
<div class="important">
<p>
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org5fde56d" class="outline-2">
<h2 id="org5fde56d"><span class="section-number-2">2</span> Integral Force Feedback</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org62cd19c"></a>
</p>
</div>
<div id="outline-container-org8823e64" class="outline-3">
<h3 id="org8823e64"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>
<p>
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_active_damping'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Fm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Force Sensor Outputs [N]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
</div>
<p>
The transfer function from actuator forces to force sensors is shown in Figure <a href="#orgae4e327">5</a>.
</p>
<div id="orgae4e327" class="figure">
<p><img src="figs/iff_plant_coupling.png" alt="iff_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org2aff899" class="outline-3">
<h3 id="org2aff899"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#orgd21a8a8">6</a>.
</p>
<div id="orgd21a8a8" class="figure">
<p><img src="figs/iff_plant_flexible_joint_decentralized.png" alt="iff_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org40dffdd" class="outline-3">
<h3 id="org40dffdd"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure integration action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
\frac{1}{s} & & 0 \\
& \ddots & \\
0 & & \frac{1}{s}
\end{bmatrix} \]
</p>
<p>
The root locus is shown in figure <a href="#org2cdbf69">7</a> and the obtained pole damping function of the control gain is shown in figure <a href="#orge344229">8</a>.
</p>
<div id="org2cdbf69" class="figure">
<p><img src="figs/root_locus_iff_rot_stiffness.png" alt="root_locus_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="orge344229" class="figure">
<p><img src="figs/pole_damping_gain_iff_rot_stiffness.png" alt="pole_damping_gain_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org2ae5aaf" class="outline-3">
<h3 id="org2ae5aaf"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
The joint stiffness has a huge impact on the attainable active damping performance when using force sensors.
Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org9425768" class="outline-2">
<h2 id="org9425768"><span class="section-number-2">3</span> Direct Velocity Feedback</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org587277a"></a>
</p>
</div>
<div id="outline-container-org61043ac" class="outline-3">
<h3 id="org61043ac"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first initialize the Stewart platform without joint stiffness.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeFramesPositions(<span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
</pre>
</div>
<p>
And we identify the dynamics from force actuators to force sensors.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
options = linearizeOptions;
options.SampleTime = 0;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
mdl = <span class="org-string">'stewart_active_damping'</span>;
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
clear io; io_i = 1;
io(io_i) = linio([mdl, <span class="org-string">'/F'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
io(io_i) = linio([mdl, <span class="org-string">'/Dm'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Relative Displacement Outputs [N]</span>
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
G = linearize(mdl, io, options);
G.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>
<p>
The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgd8d51db">9</a>.
</p>
<div id="orgd8d51db" class="figure">
<p><img src="figs/dvf_plant_coupling.png" alt="dvf_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org8f71141" class="outline-3">
<h3 id="org8f71141"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#orgb18f950">10</a>.
</p>
<div id="orgb18f950" class="figure">
<p><img src="figs/dvf_plant_flexible_joint_decentralized.png" alt="dvf_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org87c6911" class="outline-3">
<h3 id="org87c6911"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure derivative action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
s & & \\
& \ddots & \\
& & s
\end{bmatrix} \]
</p>
<p>
The root locus is shown in figure <a href="#org5cb31c8">11</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org4618492">12</a>.
</p>
<div id="org5cb31c8" class="figure">
<p><img src="figs/root_locus_dvf_rot_stiffness.png" alt="root_locus_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="org4618492" class="figure">
<p><img src="figs/pole_damping_gain_dvf_rot_stiffness.png" alt="pole_damping_gain_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/pole_damping_gain_dvf_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org516fed1" class="outline-3">
<h3 id="org516fed1"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
</p>
</div>
</div> </div>
</div> </div>
</div> </div>
</div> </div>
<div id="postamble" class="status"> <div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p> <p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-01-22 mer. 16:31</p> <p class="date">Created: 2020-02-06 jeu. 15:39</p>
</div> </div>
</body> </body>
</html> </html>

View File

@ -1,4 +1,4 @@
#+TITLE: Stewart Platform - Active Damping #+TITLE: Stewart Platform - Decentralized Active Damping
:DRAWER: :DRAWER:
#+HTML_LINK_HOME: ./index.html #+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html #+HTML_LINK_UP: ./index.html
@ -20,7 +20,249 @@
#+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :output-dir figs
:END: :END:
* Introduction :ignore:
The following decentralized active damping techniques are briefly studied:
- Inertial Control (proportional feedback of the absolute velocity): Section [[sec:active_damping_inertial]]
- Integral Force Feedback: Section [[sec:active_damping_iff]]
- Direct feedback of the relative velocity of each strut: Section [[sec:active_damping_dvf]]
* Inertial Control * Inertial Control
:PROPERTIES:
:header-args:matlab+: :tangle matlab/active_damping_inertial.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:active_damping_inertial>>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
simulinkproject('./');
#+end_src
#+begin_src matlab
open('simulink/stewart_active_damping.slx')
#+end_src
** Identification of the Dynamics
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
#+end_src
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_active_damping';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
#+end_src
The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/inertial_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:inertial_plant_coupling
#+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity of the same leg $v_{m,i}$ and to the absolute velocity of the other legs $v_{m,j}$ with $i \neq j$ in grey ([[./figs/inertial_plant_coupling.png][png]], [[./figs/inertial_plant_coupling.pdf][pdf]])
[[file:figs/inertial_plant_coupling.png]]
** Effect of the Flexible Joint stiffness on the Dynamics
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
#+begin_src matlab
stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
#+end_src
The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest')
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/inertial_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:inertial_plant_flexible_joint_decentralized
#+caption: Transfer function from the Actuator force $F_{i}$ to the absolute velocity sensor $v_{m,i}$ ([[./figs/inertial_plant_flexible_joint_decentralized.png][png]], [[./figs/inertial_plant_flexible_joint_decentralized.pdf][pdf]])
[[file:figs/inertial_plant_flexible_joint_decentralized.png]]
** Obtained Damping
The control is a performed in a decentralized manner.
The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{bmatrix} \]
The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_inertial_rot_stiffness]].
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, gains(i)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,2000]);
xlim([-2000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/root_locus_inertial_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:root_locus_inertial_rot_stiffness
#+caption: Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/root_locus_inertial_rot_stiffness.png][png]], [[./figs/root_locus_inertial_rot_stiffness.pdf][pdf]])
[[file:figs/root_locus_inertial_rot_stiffness.png]]
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, gains(i)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/pole_damping_gain_inertial_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:pole_damping_gain_inertial_rot_stiffness
#+caption: Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/pole_damping_gain_inertial_rot_stiffness.png][png]], [[./figs/pole_damping_gain_inertial_rot_stiffness.pdf][pdf]])
[[file:figs/pole_damping_gain_inertial_rot_stiffness.png]]
** Conclusion
#+begin_important
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
#+end_important
* Integral Force Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/active_damping_iff.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:active_damping_iff>>
** Introduction :ignore:
** Matlab Init :noexport:ignore: ** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>> <<matlab-dir>>
@ -34,24 +276,25 @@
simulinkproject('./'); simulinkproject('./');
#+end_src #+end_src
** Simscape Model
#+begin_src matlab #+begin_src matlab
open('simulink/stewart_active_damping.slx') open('simulink/stewart_active_damping.slx')
#+end_src #+end_src
** Initialize the Stewart model ** Identification of the Dynamics with perfect Joints
We first initialize the Stewart platform without joint stiffness.
#+begin_src matlab #+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3); stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateCubicConfiguration(stewart, 'Hc', 40e-3, 'FOc', 45e-3, 'FHa', 5e-3, 'MHb', 5e-3); stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart); stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, 'Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1)); stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart); stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart); stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart); stewart = initializeStewartPose(stewart);
#+end_src #+end_src
** Identification of the Dynamics And we identify the dynamics from force actuators to force sensors.
#+begin_src matlab #+begin_src matlab
%% Options for Linearized %% Options for Linearized
options = linearizeOptions; options = linearizeOptions;
@ -62,34 +305,414 @@
%% Input/Output definition %% Input/Output definition
clear io; io_i = 1; clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/WVB'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor Outputs [N]
io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1;
%% Run the linearization %% Run the linearization
G = linearize(mdl, io, options); G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz', ... G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
#+end_src #+end_src
** Analysis The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/iff_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:iff_plant_coupling
#+caption: Transfer function from the Actuator force $F_{i}$ to the Force sensor of the same leg $F_{m,i}$ and to the force sensor of the other legs $F_{m,j}$ with $i \neq j$ in grey ([[./figs/iff_plant_coupling.png][png]], [[./figs/iff_plant_coupling.pdf][pdf]])
[[file:figs/iff_plant_coupling.png]]
** Effect of the Flexible Joint stiffness on the Dynamics
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
#+begin_src matlab #+begin_src matlab
freqs = 2*pi*logspace(1, 4, 1000); stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
figure; Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
bode(G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs) Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
figure;
bode(stewart.J*G({'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs)
#+end_src #+end_src
#+begin_src matlab The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure; figure;
bode(G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), stewart.J*G({'Vx', 'Vy', 'Vz', 'Wx', 'Wy', 'Wz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}), freqs)
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest')
linkaxes([ax1,ax2],'x');
#+end_src #+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/iff_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:iff_plant_flexible_joint_decentralized
#+caption: Transfer function from the Actuator force $F_{i}$ to the force sensor $F_{m,i}$ ([[./figs/iff_plant_flexible_joint_decentralized.png][png]], [[./figs/iff_plant_flexible_joint_decentralized.pdf][pdf]])
[[file:figs/iff_plant_flexible_joint_decentralized.png]]
** Obtained Damping
The control is a performed in a decentralized manner.
The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
\frac{1}{s} & & 0 \\
& \ddots & \\
0 & & \frac{1}{s}
\end{bmatrix} \]
The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]].
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,inf]);
xlim([-3000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/root_locus_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:root_locus_iff_rot_stiffness
#+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]])
[[file:figs/root_locus_iff_rot_stiffness.png]]
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/pole_damping_gain_iff_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:pole_damping_gain_iff_rot_stiffness
#+caption: Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/pole_damping_gain_iff_rot_stiffness.png][png]], [[./figs/pole_damping_gain_iff_rot_stiffness.pdf][pdf]])
[[file:figs/pole_damping_gain_iff_rot_stiffness.png]]
** Conclusion ** Conclusion
It is similar to use: #+begin_important
- one 6dof inertial sensor and the Jacobian the have the velocity of each lim The joint stiffness has a huge impact on the attainable active damping performance when using force sensors.
- 6 1dof inertial sensor in each top part of the limbs Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized.
#+end_important
* Direct Velocity Feedback
:PROPERTIES:
:header-args:matlab+: :tangle matlab/active_damping_dvf.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
<<sec:active_damping_dvf>>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
simulinkproject('./');
#+end_src
#+begin_src matlab
open('simulink/stewart_active_damping.slx')
#+end_src
** Identification of the Dynamics with perfect Joints
We first initialize the Stewart platform without joint stiffness.
#+begin_src matlab
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
#+end_src
And we identify the dynamics from force actuators to force sensors.
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_active_damping';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
The transfer function from actuator forces to relative motion sensors is shown in Figure [[fig:dvf_plant_coupling]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$D_{m,i}/F_i$', '$D_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/dvf_plant_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:dvf_plant_coupling
#+caption: Transfer function from the Actuator force $F_{i}$ to the Relative Motion Sensor $D_{m,j}$ with $i \neq j$ ([[./figs/dvf_plant_coupling.png][png]], [[./figs/dvf_plant_coupling.pdf][pdf]])
[[file:figs/dvf_plant_coupling.png]]
** Effect of the Flexible Joint stiffness on the Dynamics
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
#+begin_src matlab
stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
#+end_src
The new dynamics from force actuator to relative motion sensor is shown in Figure [[fig:dvf_plant_flexible_joint_decentralized]].
#+begin_src matlab :exports none
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/dvf_plant_flexible_joint_decentralized.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:dvf_plant_flexible_joint_decentralized
#+caption: Transfer function from the Actuator force $F_{i}$ to the relative displacement sensor $D_{m,i}$ ([[./figs/dvf_plant_flexible_joint_decentralized.png][png]], [[./figs/dvf_plant_flexible_joint_decentralized.pdf][pdf]])
[[file:figs/dvf_plant_flexible_joint_decentralized.png]]
** Obtained Damping
The control is a performed in a decentralized manner.
The $6 \times 6$ control is a diagonal matrix with pure derivative action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
s & & \\
& \ddots & \\
& & s
\end{bmatrix} \]
The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_dvf_rot_stiffness]].
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, (gains(i)*s)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,inf]);
xlim([-3000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/root_locus_dvf_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:root_locus_dvf_rot_stiffness
#+caption: Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/root_locus_dvf_rot_stiffness.png][png]], [[./figs/root_locus_dvf_rot_stiffness.pdf][pdf]])
[[file:figs/root_locus_dvf_rot_stiffness.png]]
#+begin_src matlab :exports none
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, (gains(i)*s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);
#+end_src
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/pole_damping_gain_dvf_rot_stiffness.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:pole_damping_gain_dvf_rot_stiffness
#+caption: Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/pole_damping_gain_dvf_rot_stiffness.png][png]], [[./figs/pole_damping_gain_dvf_rot_stiffness.pdf][pdf]])
[[file:figs/pole_damping_gain_dvf_rot_stiffness.png]]
** Conclusion
#+begin_important
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
#+end_important

BIN
figs/dvf_plant_coupling.pdf Normal file

Binary file not shown.

BIN
figs/dvf_plant_coupling.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

BIN
figs/iff_plant_coupling.pdf Normal file

Binary file not shown.

BIN
figs/iff_plant_coupling.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

178
matlab/active_damping_dvf.m Normal file
View File

@ -0,0 +1,178 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
simulinkproject('./');
open('simulink/stewart_active_damping.slx')
% Identification of the Dynamics with perfect Joints
% We first initialize the Stewart platform without joint stiffness.
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
% And we identify the dynamics from force actuators to force sensors.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_active_damping';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Dm'], 1, 'openoutput'); io_i = io_i + 1; % Relative Displacement Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
% The transfer function from actuator forces to relative motion sensors is shown in Figure [[fig:dvf_plant_coupling]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Dm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$D_{m,i}/F_i$', '$D_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
% Effect of the Flexible Joint stiffness on the Dynamics
% We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'};
% The new dynamics from force actuator to relative motion sensor is shown in Figure [[fig:dvf_plant_flexible_joint_decentralized]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Dm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
% Obtained Damping
% The control is a performed in a decentralized manner.
% The $6 \times 6$ control is a diagonal matrix with pure derivative action on the diagonal:
% \[ K(s) = g
% \begin{bmatrix}
% s & & \\
% & \ddots & \\
% & & s
% \end{bmatrix} \]
% The root locus is shown in figure [[fig:root_locus_dvf_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_dvf_rot_stiffness]].
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, (gains(i)*s)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,inf]);
xlim([-3000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
% #+name: fig:root_locus_dvf_rot_stiffness
% #+caption: Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints ([[./figs/root_locus_dvf_rot_stiffness.png][png]], [[./figs/root_locus_dvf_rot_stiffness.pdf][pdf]])
% [[file:figs/root_locus_dvf_rot_stiffness.png]]
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, (gains(i)*s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, (gains(i)*s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);

178
matlab/active_damping_iff.m Normal file
View File

@ -0,0 +1,178 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
simulinkproject('./');
open('simulink/stewart_active_damping.slx')
% Identification of the Dynamics with perfect Joints
% We first initialize the Stewart platform without joint stiffness.
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
% And we identify the dynamics from force actuators to force sensors.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_active_damping';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor Outputs [N]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
% The transfer function from actuator forces to force sensors is shown in Figure [[fig:iff_plant_coupling]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
% Effect of the Flexible Joint stiffness on the Dynamics
% We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
% The new dynamics from force actuator to force sensor is shown in Figure [[fig:iff_plant_flexible_joint_decentralized]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Fm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest')
linkaxes([ax1,ax2],'x');
% Obtained Damping
% The control is a performed in a decentralized manner.
% The $6 \times 6$ control is a diagonal matrix with pure integration action on the diagonal:
% \[ K(s) = g
% \begin{bmatrix}
% \frac{1}{s} & & 0 \\
% & \ddots & \\
% 0 & & \frac{1}{s}
% \end{bmatrix} \]
% The root locus is shown in figure [[fig:root_locus_iff_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_iff_rot_stiffness]].
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,inf]);
xlim([-3000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
% #+name: fig:root_locus_iff_rot_stiffness
% #+caption: Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints ([[./figs/root_locus_iff_rot_stiffness.png][png]], [[./figs/root_locus_iff_rot_stiffness.pdf][pdf]])
% [[file:figs/root_locus_iff_rot_stiffness.png]]
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, (gains(i)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, (gains(i)/s)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);

View File

@ -0,0 +1,173 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
simulinkproject('./');
open('simulink/stewart_active_damping.slx')
% Identification of the Dynamics
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'disable', true);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_active_damping';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
% The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 2:6
set(gca,'ColorOrderIndex',2);
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',1);
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
linkaxes([ax1,ax2],'x');
% Effect of the Flexible Joint stiffness on the Dynamics
% We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
% The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]].
freqs = logspace(1, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest')
linkaxes([ax1,ax2],'x');
% Obtained Damping
% The control is a performed in a decentralized manner.
% The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal:
% \[ K(s) = g
% \begin{bmatrix}
% 1 & & 0 \\
% & \ddots & \\
% 0 & & 1
% \end{bmatrix} \]
% The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_inertial_rot_stiffness]].
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(G)), imag(pole(G)), 'x');
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
set(gca,'ColorOrderIndex',1);
plot(real(tzero(G)), imag(tzero(G)), 'o');
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
for i = 1:length(gains)
cl_poles = pole(feedback(G, gains(i)*eye(6)));
set(gca,'ColorOrderIndex',1);
plot(real(cl_poles), imag(cl_poles), '.');
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
set(gca,'ColorOrderIndex',2);
plot(real(cl_poles), imag(cl_poles), '.');
end
ylim([0,2000]);
xlim([-2000,0]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
% #+name: fig:root_locus_inertial_rot_stiffness
% #+caption: Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/root_locus_inertial_rot_stiffness.png][png]], [[./figs/root_locus_inertial_rot_stiffness.pdf][pdf]])
% [[file:figs/root_locus_inertial_rot_stiffness.png]]
gains = logspace(0, 5, 1000);
figure;
hold on;
for i = 1:length(gains)
set(gca,'ColorOrderIndex',1);
cl_poles = pole(feedback(G, gains(i)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
set(gca,'ColorOrderIndex',2);
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
end
xlabel('Control Gain');
ylabel('Damping of the Poles');
set(gca, 'XScale', 'log');
ylim([0,pi/2]);

Binary file not shown.