Change all indentation
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2021-01-08 ven. 15:29 -->
|
||||
<!-- 2021-01-08 ven. 15:52 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Identification of the Stewart Platform using Simscape</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@@ -50,13 +50,13 @@
|
||||
</li>
|
||||
<li><a href="#orgfeed9a3">2. Transmissibility Analysis</a>
|
||||
<ul>
|
||||
<li><a href="#org7c6996a">2.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org5ba3096">2.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org279dcc8">2.2. Transmissibility</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org3ad92e9">3. Compliance Analysis</a>
|
||||
<ul>
|
||||
<li><a href="#org5ba3096">3.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#orgc957431">3.1. Initialize the Stewart platform</a></li>
|
||||
<li><a href="#org26cb46a">3.2. Compliance</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
@@ -64,18 +64,18 @@
|
||||
<ul>
|
||||
<li><a href="#org25ca725">4.1. Compute the Transmissibility</a>
|
||||
<ul>
|
||||
<li><a href="#orgeae7abf">Function description</a></li>
|
||||
<li><a href="#orge4c0895">Optional Parameters</a></li>
|
||||
<li><a href="#orgafb57d0">Function description</a></li>
|
||||
<li><a href="#orga00af61">Optional Parameters</a></li>
|
||||
<li><a href="#org17a8811">Identification of the Transmissibility Matrix</a></li>
|
||||
<li><a href="#orgfd96322">Computation of the Frobenius norm</a></li>
|
||||
<li><a href="#orgbc9a383">Computation of the Frobenius norm</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgb6e05b3">4.2. Compute the Compliance</a>
|
||||
<ul>
|
||||
<li><a href="#orgafb57d0">Function description</a></li>
|
||||
<li><a href="#orga00af61">Optional Parameters</a></li>
|
||||
<li><a href="#org210c0ca">Function description</a></li>
|
||||
<li><a href="#org24feeb1">Optional Parameters</a></li>
|
||||
<li><a href="#org2c35042">Identification of the Compliance Matrix</a></li>
|
||||
<li><a href="#orgbc9a383">Computation of the Frobenius norm</a></li>
|
||||
<li><a href="#orgb002200">Computation of the Frobenius norm</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -105,24 +105,24 @@ In this document, we discuss the various methods to identify the behavior of the
|
||||
<h3 id="org40f9c57"><span class="section-number-3">1.1</span> Initialize the Stewart Platform</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart);
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -132,23 +132,23 @@ In this document, we discuss the various methods to identify the behavior of the
|
||||
<h3 id="orgd9529ee"><span class="section-number-3">1.2</span> Identification</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Velocity of {B} w.r.t. {A}</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Controller'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Actuator Force Inputs [N]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Position/Orientation of {B} w.r.t. {A}</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Relative Motion Sensor'</span>], 2, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Velocity of {B} w.r.t. {A}</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
G = linearize(mdl, io);
|
||||
<span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span>
|
||||
<span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
G = linearize(mdl, io);
|
||||
<span class="org-comment">% G.InputName = {'tau1', 'tau2', 'tau3', 'tau4', 'tau5', 'tau6'};</span>
|
||||
<span class="org-comment">% G.OutputName = {'Xdx', 'Xdy', 'Xdz', 'Xrx', 'Xry', 'Xrz', 'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'};</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -156,7 +156,7 @@ In this document, we discuss the various methods to identify the behavior of the
|
||||
Let’s check the size of <code>G</code>:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> size(G)
|
||||
<pre class="src src-matlab">size(G)
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -173,7 +173,7 @@ ans =
|
||||
We expect to have only 12 states (corresponding to the 6dof of the mobile platform).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> Gm = minreal(G);
|
||||
<pre class="src src-matlab">Gm = minreal(G);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -196,7 +196,7 @@ And indeed, we obtain 12 states.
|
||||
We can perform the following transformation using the <code>ss2ss</code> command.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> Gt = ss2ss(Gm, Gm.C);
|
||||
<pre class="src src-matlab">Gt = ss2ss(Gm, Gm.C);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -212,14 +212,14 @@ The measurements are the 6 displacement and 6 velocities of mobile platform with
|
||||
We could perform the transformation by hand:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C);
|
||||
<pre class="src src-matlab">At = Gm.C<span class="org-type">*</span>Gm.A<span class="org-type">*</span>pinv(Gm.C);
|
||||
|
||||
Bt = Gm.C<span class="org-type">*</span>Gm.B;
|
||||
Bt = Gm.C<span class="org-type">*</span>Gm.B;
|
||||
|
||||
Ct = eye(12);
|
||||
Dt = zeros(12, 6);
|
||||
Ct = eye(12);
|
||||
Dt = zeros(12, 6);
|
||||
|
||||
Gt = ss(At, Bt, Ct, Dt);
|
||||
Gt = ss(At, Bt, Ct, Dt);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -229,7 +229,7 @@ We could perform the transformation by hand:
|
||||
<h3 id="org11e3698"><span class="section-number-3">1.4</span> Analysis</h3>
|
||||
<div class="outline-text-3" id="text-1-4">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> [V,D] = eig(Gt.A);
|
||||
<pre class="src src-matlab">[V,D] = eig(Gt.A);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -306,28 +306,28 @@ To visualize the i’th mode, we may excite the system using the inputs \(U_
|
||||
Let’s first sort the modes and just take the modes corresponding to a eigenvalue with a positive imaginary part.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> ws = imag(diag(D));
|
||||
[ws,I] = sort(ws)
|
||||
ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end);
|
||||
<pre class="src src-matlab">ws = imag(diag(D));
|
||||
[ws,I] = sort(ws)
|
||||
ws = ws(7<span class="org-type">:</span>end); I = I(7<span class="org-type">:</span>end);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(ws)</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span>
|
||||
<pre class="src src-matlab">i_mode = I(<span class="org-constant">i</span>); <span class="org-comment">% the argument is the i'th mode</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> lambda_i = D(i_mode, i_mode);
|
||||
xi_i = V(<span class="org-type">:</span>,i_mode);
|
||||
<pre class="src src-matlab">lambda_i = D(i_mode, i_mode);
|
||||
xi_i = V(<span class="org-type">:</span>,i_mode);
|
||||
|
||||
a_i = real(lambda_i);
|
||||
b_i = imag(lambda_i);
|
||||
a_i = real(lambda_i);
|
||||
b_i = imag(lambda_i);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -335,13 +335,13 @@ Let’s first sort the modes and just take the modes corresponding to a eige
|
||||
Let do 10 periods of the mode.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000);
|
||||
U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t)));
|
||||
<pre class="src src-matlab">t = linspace(0, 10<span class="org-type">/</span>(imag(lambda_i)<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), 1000);
|
||||
U_i = pinv(Gt.B) <span class="org-type">*</span> real(xi_i <span class="org-type">*</span> lambda_i <span class="org-type">*</span> (cos(b_i <span class="org-type">*</span> t) <span class="org-type">+</span> 1<span class="org-constant">i</span><span class="org-type">*</span>sin(b_i <span class="org-type">*</span> t)));
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> U = timeseries(U_i, t);
|
||||
<pre class="src src-matlab">U = timeseries(U_i, t);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -349,9 +349,9 @@ Let do 10 periods of the mode.
|
||||
Simulation:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> load(<span class="org-string">'mat/conf_simscape.mat'</span>);
|
||||
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>)));
|
||||
<span class="org-matlab-simulink-keyword">sim</span>(mdl);
|
||||
<pre class="src src-matlab">load(<span class="org-string">'mat/conf_simscape.mat'</span>);
|
||||
<span class="org-matlab-simulink-keyword">set_param</span>(<span class="org-variable-name">conf_simscape</span>, <span class="org-string">'StopTime'</span>, num2str(t(<span class="org-variable-name">end</span>)));
|
||||
<span class="org-matlab-simulink-keyword">sim</span>(mdl);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -359,15 +359,15 @@ Simulation:
|
||||
Save the movie of the mode shape.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ...
|
||||
<span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ...
|
||||
<span class="org-string">'FrameRate'</span>, 30, ...
|
||||
<span class="org-string">'FrameSize'</span>, [800, 400]);
|
||||
<pre class="src src-matlab">smwritevideo(mdl, sprintf(<span class="org-string">'figs/mode%i'</span>, <span class="org-constant">i</span>), ...
|
||||
<span class="org-string">'PlaybackSpeedRatio'</span>, 1<span class="org-type">/</span>(b_i<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span>), ...
|
||||
<span class="org-string">'FrameRate'</span>, 30, ...
|
||||
<span class="org-string">'FrameSize'</span>, [800, 400]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">end</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -402,21 +402,21 @@ Save the movie of the mode shape.
|
||||
<a id="org5213401"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org7c6996a" class="outline-3">
|
||||
<h3 id="org7c6996a"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
||||
<div id="outline-container-org5ba3096" class="outline-3">
|
||||
<h3 id="org5ba3096"><span class="section-number-3">2.1</span> Initialize the Stewart platform</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -424,9 +424,9 @@ Save the movie of the mode shape.
|
||||
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>, <span class="org-string">'rot_point'</span>, stewart.platform_F.FO_A);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -436,45 +436,45 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
|
||||
<h3 id="org279dcc8"><span class="section-number-3">2.2</span> Transmissibility</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
T = linearize(mdl, io, options);
|
||||
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
||||
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
T = linearize(mdl, io, options);
|
||||
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
||||
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = logspace(1, 4, 1000);
|
||||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||||
|
||||
<span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
ylim([1e<span class="org-type">-</span>5, 10]);
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
ylim([1e<span class="org-type">-</span>5, 10]);
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -487,13 +487,13 @@ From (<a href="#citeproc_bib_item_1">Preumont et al. 2007</a>), one can use the
|
||||
\end{align*}
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = logspace(1, 4, 1000);
|
||||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||||
|
||||
T_norm = zeros(length(freqs), 1);
|
||||
T_norm = zeros(length(freqs), 1);
|
||||
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -503,14 +503,14 @@ And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric compara
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> Gamma = T_norm<span class="org-type">/</span>sqrt(6);
|
||||
<pre class="src src-matlab">Gamma = T_norm<span class="org-type">/</span>sqrt(6);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-type">figure</span>;
|
||||
plot(freqs, Gamma)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
plot(freqs, Gamma)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -524,21 +524,21 @@ And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric compara
|
||||
<a id="org39baa25"></a>
|
||||
</p>
|
||||
</div>
|
||||
<div id="outline-container-org5ba3096" class="outline-3">
|
||||
<h3 id="org5ba3096"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
||||
<div id="outline-container-orgc957431" class="outline-3">
|
||||
<h3 id="orgc957431"><span class="section-number-3">3.1</span> Initialize the Stewart platform</h3>
|
||||
<div class="outline-text-3" id="text-3-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
<pre class="src src-matlab">stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>, 90e<span class="org-type">-</span>3, <span class="org-string">'MO_B'</span>, 45e<span class="org-type">-</span>3);
|
||||
stewart = generateGeneralConfiguration(stewart);
|
||||
stewart = computeJointsPose(stewart);
|
||||
stewart = initializeStrutDynamics(stewart);
|
||||
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
|
||||
stewart = initializeCylindricalPlatforms(stewart);
|
||||
stewart = initializeCylindricalStruts(stewart);
|
||||
stewart = computeJacobian(stewart);
|
||||
stewart = initializeStewartPose(stewart);
|
||||
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -546,9 +546,9 @@ And we normalize by a factor \(\sqrt{6}\) to obtain a performance metric compara
|
||||
We set the rotation point of the ground to be at the same point at frames \(\{A\}\) and \(\{B\}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
<pre class="src src-matlab">ground = initializeGround(<span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
|
||||
payload = initializePayload(<span class="org-string">'type'</span>, <span class="org-string">'rigid'</span>);
|
||||
controller = initializeController(<span class="org-string">'type'</span>, <span class="org-string">'open-loop'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -558,45 +558,45 @@ We set the rotation point of the ground to be at the same point at frames \(\{A\
|
||||
<h3 id="org26cb46a"><span class="section-number-3">3.2</span> Compliance</h3>
|
||||
<div class="outline-text-3" id="text-3-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'openoutput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
C = linearize(mdl, io, options);
|
||||
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
||||
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
C = linearize(mdl, io, options);
|
||||
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
||||
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = logspace(1, 4, 1000);
|
||||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||||
|
||||
<span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
ylim([1e<span class="org-type">-</span>10, 1e<span class="org-type">-</span>3]);
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
ylim([1e<span class="org-type">-</span>10, 1e<span class="org-type">-</span>3]);
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -605,20 +605,20 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = logspace(1, 4, 1000);
|
||||
<pre class="src src-matlab">freqs = logspace(1, 4, 1000);
|
||||
|
||||
C_norm = zeros(length(freqs), 1);
|
||||
C_norm = zeros(length(freqs), 1);
|
||||
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-type">figure</span>;
|
||||
plot(freqs, C_norm)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
plot(freqs, C_norm)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -637,42 +637,42 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgeae7abf" class="outline-4">
|
||||
<h4 id="orgeae7abf">Function description</h4>
|
||||
<div class="outline-text-4" id="text-orgeae7abf">
|
||||
<div id="outline-container-orgafb57d0" class="outline-4">
|
||||
<h4 id="orgafb57d0">Function description</h4>
|
||||
<div class="outline-text-4" id="text-orgafb57d0">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeTransmissibility -</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Inputs:</span>
|
||||
<span class="org-comment">% - args - Structure with the following fields:</span>
|
||||
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
||||
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Outputs:</span>
|
||||
<span class="org-comment">% - T [6x6 ss] - Transmissibility matrix</span>
|
||||
<span class="org-comment">% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix</span>
|
||||
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[T, T_norm, freqs]</span> = <span class="org-function-name">computeTransmissibility</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeTransmissibility -</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Syntax: [T, T_norm, freqs] = computeTransmissibility(args)</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Inputs:</span>
|
||||
<span class="org-comment">% - args - Structure with the following fields:</span>
|
||||
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
||||
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Outputs:</span>
|
||||
<span class="org-comment">% - T [6x6 ss] - Transmissibility matrix</span>
|
||||
<span class="org-comment">% - T_norm [length(freqs)x1] - Frobenius norm of the Transmissibility matrix</span>
|
||||
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge4c0895" class="outline-4">
|
||||
<h4 id="orge4c0895">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-orge4c0895">
|
||||
<div id="outline-container-orga00af61" class="outline-4">
|
||||
<h4 id="orga00af61">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-orga00af61">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">arguments</span>
|
||||
<span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
<span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||||
<span class="org-keyword">end</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">arguments</span>
|
||||
<span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
<span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = args.freqs;
|
||||
<pre class="src src-matlab">freqs = args.freqs;
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -682,22 +682,22 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
<h4 id="org17a8811">Identification of the Transmissibility Matrix</h4>
|
||||
<div class="outline-text-4" id="text-org17a8811">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/D_w'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Base Motion [m, rad]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
T = linearize(mdl, io, options);
|
||||
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
||||
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
T = linearize(mdl, io, options);
|
||||
T.InputName = {<span class="org-string">'Wdx'</span>, <span class="org-string">'Wdy'</span>, <span class="org-string">'Wdz'</span>, <span class="org-string">'Wrx'</span>, <span class="org-string">'Wry'</span>, <span class="org-string">'Wrz'</span>};
|
||||
T.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -705,23 +705,23 @@ We can try to use the Frobenius norm to obtain a scalar value representing the 6
|
||||
If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> p_handle = zeros(6<span class="org-type">*</span>6,1);
|
||||
<pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1);
|
||||
|
||||
<span class="org-keyword">if</span> args.plots
|
||||
<span class="org-keyword">if</span> args.plots
|
||||
fig = <span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(T(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
|
||||
linkaxes(p_handle, <span class="org-string">'xy'</span>)
|
||||
@@ -733,37 +733,37 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
han.YLabel.Visible = <span class="org-string">'on'</span>;
|
||||
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
||||
ylabel(han, <span class="org-string">'Transmissibility [m/m]'</span>);
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgfd96322" class="outline-4">
|
||||
<h4 id="orgfd96322">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-orgfd96322">
|
||||
<div id="outline-container-orgbc9a383" class="outline-4">
|
||||
<h4 id="orgbc9a383">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-orgbc9a383">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> T_norm = zeros(length(freqs), 1);
|
||||
<pre class="src src-matlab">T_norm = zeros(length(freqs), 1);
|
||||
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
T_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(T, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> T_norm = T_norm<span class="org-type">/</span>sqrt(6);
|
||||
<pre class="src src-matlab">T_norm = T_norm<span class="org-type">/</span>sqrt(6);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">if</span> args.plots
|
||||
<pre class="src src-matlab"><span class="org-keyword">if</span> args.plots
|
||||
<span class="org-type">figure</span>;
|
||||
plot(freqs, T_norm)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
xlabel(<span class="org-string">'Frequency [Hz]'</span>);
|
||||
ylabel(<span class="org-string">'Transmissibility - Frobenius Norm'</span>);
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -778,42 +778,42 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgafb57d0" class="outline-4">
|
||||
<h4 id="orgafb57d0">Function description</h4>
|
||||
<div class="outline-text-4" id="text-orgafb57d0">
|
||||
<div id="outline-container-org210c0ca" class="outline-4">
|
||||
<h4 id="org210c0ca">Function description</h4>
|
||||
<div class="outline-text-4" id="text-org210c0ca">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeCompliance -</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Syntax: [C, C_norm, freqs] = computeCompliance(args)</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Inputs:</span>
|
||||
<span class="org-comment">% - args - Structure with the following fields:</span>
|
||||
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
||||
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Outputs:</span>
|
||||
<span class="org-comment">% - C [6x6 ss] - Compliance matrix</span>
|
||||
<span class="org-comment">% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix</span>
|
||||
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[C, C_norm, freqs]</span> = <span class="org-function-name">computeCompliance</span>(<span class="org-variable-name">args</span>)
|
||||
<span class="org-comment">% computeCompliance -</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Syntax: [C, C_norm, freqs] = computeCompliance(args)</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Inputs:</span>
|
||||
<span class="org-comment">% - args - Structure with the following fields:</span>
|
||||
<span class="org-comment">% - plots [true/false] - Should plot the transmissilibty matrix and its Frobenius norm</span>
|
||||
<span class="org-comment">% - freqs [] - Frequency vector to estimate the Frobenius norm</span>
|
||||
<span class="org-comment">%</span>
|
||||
<span class="org-comment">% Outputs:</span>
|
||||
<span class="org-comment">% - C [6x6 ss] - Compliance matrix</span>
|
||||
<span class="org-comment">% - C_norm [length(freqs)x1] - Frobenius norm of the Compliance matrix</span>
|
||||
<span class="org-comment">% - freqs [length(freqs)x1] - Frequency vector in [Hz]</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga00af61" class="outline-4">
|
||||
<h4 id="orga00af61">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-orga00af61">
|
||||
<div id="outline-container-org24feeb1" class="outline-4">
|
||||
<h4 id="org24feeb1">Optional Parameters</h4>
|
||||
<div class="outline-text-4" id="text-org24feeb1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">arguments</span>
|
||||
<span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
<span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||||
<span class="org-keyword">end</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">arguments</span>
|
||||
<span class="org-variable-name">args</span>.plots logical {mustBeNumericOrLogical} = <span class="org-constant">false</span>
|
||||
<span class="org-variable-name">args</span>.freqs double {mustBeNumeric, mustBeNonnegative} = logspace(1,4,1000)
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = args.freqs;
|
||||
<pre class="src src-matlab">freqs = args.freqs;
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -823,22 +823,22 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
<h4 id="org2c35042">Identification of the Compliance Matrix</h4>
|
||||
<div class="outline-text-4" id="text-org2c35042">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Options for Linearized</span></span>
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
|
||||
mdl = <span class="org-string">'stewart_platform_model'</span>;
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Input/Output definition</span></span>
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Disturbances/F_ext'</span>], 1, <span class="org-string">'openinput'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% External forces [N, N*m]</span>
|
||||
io(io_i) = linio([mdl, <span class="org-string">'/Absolute Motion Sensor'</span>], 1, <span class="org-string">'output'</span>); io_i = io_i <span class="org-type">+</span> 1; <span class="org-comment">% Absolute Motion [m, rad]</span>
|
||||
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
C = linearize(mdl, io, options);
|
||||
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
||||
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
<span class="org-matlab-cellbreak"><span class="org-comment">%% Run the linearization</span></span>
|
||||
C = linearize(mdl, io, options);
|
||||
C.InputName = {<span class="org-string">'Fdx'</span>, <span class="org-string">'Fdy'</span>, <span class="org-string">'Fdz'</span>, <span class="org-string">'Mdx'</span>, <span class="org-string">'Mdy'</span>, <span class="org-string">'Mdz'</span>};
|
||||
C.OutputName = {<span class="org-string">'Edx'</span>, <span class="org-string">'Edy'</span>, <span class="org-string">'Edz'</span>, <span class="org-string">'Erx'</span>, <span class="org-string">'Ery'</span>, <span class="org-string">'Erz'</span>};
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -846,23 +846,23 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> p_handle = zeros(6<span class="org-type">*</span>6,1);
|
||||
<pre class="src src-matlab">p_handle = zeros(6<span class="org-type">*</span>6,1);
|
||||
|
||||
<span class="org-keyword">if</span> args.plots
|
||||
<span class="org-keyword">if</span> args.plots
|
||||
fig = <span class="org-type">figure</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">ix</span> = <span class="org-constant">1:6</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">iy</span> = <span class="org-constant">1:6</span>
|
||||
p_handle((ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy) = subplot(6, 6, (ix<span class="org-type">-</span>1)<span class="org-type">*</span>6 <span class="org-type">+</span> iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(C(ix, iy), freqs, <span class="org-string">'Hz'</span>))), <span class="org-string">'k-'</span>);
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
<span class="org-keyword">if</span> ix <span class="org-type"><</span> 6
|
||||
xticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">if</span> iy <span class="org-type">></span> 1
|
||||
yticklabels({});
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
|
||||
linkaxes(p_handle, <span class="org-string">'xy'</span>)
|
||||
@@ -873,34 +873,34 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
han.YLabel.Visible = <span class="org-string">'on'</span>;
|
||||
xlabel(han, <span class="org-string">'Frequency [Hz]'</span>);
|
||||
ylabel(han, <span class="org-string">'Compliance [m/N, rad/(N*m)]'</span>);
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgbc9a383" class="outline-4">
|
||||
<h4 id="orgbc9a383">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-orgbc9a383">
|
||||
<div id="outline-container-orgb002200" class="outline-4">
|
||||
<h4 id="orgb002200">Computation of the Frobenius norm</h4>
|
||||
<div class="outline-text-4" id="text-orgb002200">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> freqs = args.freqs;
|
||||
<pre class="src src-matlab">freqs = args.freqs;
|
||||
|
||||
C_norm = zeros(length(freqs), 1);
|
||||
C_norm = zeros(length(freqs), 1);
|
||||
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(freqs)</span>
|
||||
C_norm(<span class="org-constant">i</span>) = sqrt(trace(freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">*</span>freqresp(C, freqs(<span class="org-constant">i</span>), <span class="org-string">'Hz'</span>)<span class="org-type">'</span>));
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> <span class="org-keyword">if</span> args.plots
|
||||
<pre class="src src-matlab"><span class="org-keyword">if</span> args.plots
|
||||
<span class="org-type">figure</span>;
|
||||
plot(freqs, C_norm)
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'XScale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'YScale'</span>, <span class="org-string">'log'</span>);
|
||||
xlabel(<span class="org-string">'Frequency [Hz]'</span>);
|
||||
ylabel(<span class="org-string">'Compliance - Frobenius Norm'</span>);
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -915,7 +915,7 @@ If wanted, the 6x6 transmissibility matrix is plotted.
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2021-01-08 ven. 15:29</p>
|
||||
<p class="date">Created: 2021-01-08 ven. 15:52</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user