Add few functions for kinematic study

This commit is contained in:
Thomas Dehaeze 2020-01-28 17:38:19 +01:00
parent d744e5f75f
commit e62d9098fe
4 changed files with 597 additions and 115 deletions

View File

@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-01-28 mar. 13:39 -->
<!-- 2020-01-28 mar. 17:18 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platforms</title>
@ -259,8 +259,8 @@ The goal of this project is to provide a Matlab/Simscape Toolbox to study Stewar
The project is divided into several section listed below.
</p>
<div id="outline-container-org2246378" class="outline-2">
<h2 id="org2246378"><span class="section-number-2">1</span> Simulink Project (<a href="simulink-project.html">link</a>)</h2>
<div id="outline-container-orge0ffde8" class="outline-2">
<h2 id="orge0ffde8"><span class="section-number-2">1</span> Simulink Project (<a href="simulink-project.html">link</a>)</h2>
<div class="outline-text-2" id="text-1">
<p>
The project is managed with a <b>Simulink Project</b>.
@ -269,8 +269,8 @@ Such project is briefly presented <a href="simulink-project.html">here</a>.
</div>
</div>
<div id="outline-container-org213a021" class="outline-2">
<h2 id="org213a021"><span class="section-number-2">2</span> Stewart Platform Architecture Definition (<a href="stewart-architecture.html">link</a>)</h2>
<div id="outline-container-org840f439" class="outline-2">
<h2 id="org840f439"><span class="section-number-2">2</span> Stewart Platform Architecture Definition (<a href="stewart-architecture.html">link</a>)</h2>
<div class="outline-text-2" id="text-2">
<p>
The way the Stewart Platform is defined <a href="stewart-architecture.html">here</a>.
@ -281,8 +281,8 @@ All the geometrical parameters are defined including:
</p>
<ul class="org-ul">
<li>Definition of the location of the frames</li>
<li>Size of the platforms and the limbs</li>
<li>Location/orientation of the limbs</li>
<li>Size/inertia of the platforms and the limbs</li>
</ul>
<p>
@ -290,14 +290,13 @@ Other parameters are also defined such as:
</p>
<ul class="org-ul">
<li>Stiffness and damping of the struts</li>
<li>Inertia of the different elements</li>
<li>Rest position of the Stewart platform</li>
</ul>
</div>
</div>
<div id="outline-container-org43ed1d4" class="outline-2">
<h2 id="org43ed1d4"><span class="section-number-2">3</span> Simscape Model of the Stewart Platform (<a href="simscape-model.html">link</a>)</h2>
<div id="outline-container-org91daed3" class="outline-2">
<h2 id="org91daed3"><span class="section-number-2">3</span> Simscape Model of the Stewart Platform (<a href="simscape-model.html">link</a>)</h2>
<div class="outline-text-2" id="text-3">
<p>
The Stewart Platform is then modeled using <a href="https://www.mathworks.com/products/simscape.html">Simscape</a>.
@ -309,8 +308,8 @@ The way to model is build and works is explained <a href="simscape-model.html">h
</div>
</div>
<div id="outline-container-org5851cea" class="outline-2">
<h2 id="org5851cea"><span class="section-number-2">4</span> Kinematic Analysis (<a href="kinematic-study.html">link</a>)</h2>
<div id="outline-container-orgf826a60" class="outline-2">
<h2 id="orgf826a60"><span class="section-number-2">4</span> Kinematic Analysis (<a href="kinematic-study.html">link</a>)</h2>
<div class="outline-text-2" id="text-4">
<p>
From the defined geometry of the Stewart platform, we can perform static analysis such as:
@ -330,8 +329,8 @@ All these analysis are described <a href="kinematic-study.html">here</a>.
</div>
</div>
<div id="outline-container-orgcc5dd70" class="outline-2">
<h2 id="orgcc5dd70"><span class="section-number-2">5</span> Identification of the Stewart Dynamics (<a href="identification.html">link</a>)</h2>
<div id="outline-container-org34ceac7" class="outline-2">
<h2 id="org34ceac7"><span class="section-number-2">5</span> Identification of the Stewart Dynamics (<a href="identification.html">link</a>)</h2>
<div class="outline-text-2" id="text-5">
<p>
The Dynamics of the Stewart platform can be identified using the Simscape model.
@ -352,8 +351,8 @@ The code that is used for identification is explained <a href="identification.ht
</div>
</div>
<div id="outline-container-org58fb0b9" class="outline-2">
<h2 id="org58fb0b9"><span class="section-number-2">6</span> Active Damping (<a href="active-damping.html">link</a>)</h2>
<div id="outline-container-org2c5545b" class="outline-2">
<h2 id="org2c5545b"><span class="section-number-2">6</span> Active Damping (<a href="active-damping.html">link</a>)</h2>
<div class="outline-text-2" id="text-6">
<p>
The use of different sensors are compared for active damping:
@ -371,8 +370,8 @@ The result of the analysis is accessible <a href="active-damping.html">here</a>.
</div>
</div>
<div id="outline-container-orgb149881" class="outline-2">
<h2 id="orgb149881"><span class="section-number-2">7</span> Motion Control of the Stewart Platform (<a href="control-study.html">link</a>)</h2>
<div id="outline-container-org8ab41c3" class="outline-2">
<h2 id="org8ab41c3"><span class="section-number-2">7</span> Motion Control of the Stewart Platform (<a href="control-study.html">link</a>)</h2>
<div class="outline-text-2" id="text-7">
<p>
Some control architecture for motion control of the Stewart platform are applied on the Simscape model and compared in <a href="control-study.html">this</a> document.
@ -380,8 +379,8 @@ Some control architecture for motion control of the Stewart platform are applied
</div>
</div>
<div id="outline-container-org6bf9b4a" class="outline-2">
<h2 id="org6bf9b4a"><span class="section-number-2">8</span> Cubic Configuration (<a href="cubic-configuration.html">link</a>)</h2>
<div id="outline-container-org46a0310" class="outline-2">
<h2 id="org46a0310"><span class="section-number-2">8</span> Cubic Configuration (<a href="cubic-configuration.html">link</a>)</h2>
<div class="outline-text-2" id="text-8">
<p>
The cubic configuration is a special class of Stewart platform that has interesting properties.

View File

@ -35,12 +35,11 @@ The way the Stewart Platform is defined [[file:stewart-architecture.org][here]].
All the geometrical parameters are defined including:
- Definition of the location of the frames
- Size of the platforms and the limbs
- Location/orientation of the limbs
- Size/inertia of the platforms and the limbs
Other parameters are also defined such as:
- Stiffness and damping of the struts
- Inertia of the different elements
- Rest position of the Stewart platform
* Simscape Model of the Stewart Platform ([[file:simscape-model.org][link]])

View File

@ -1,14 +1,15 @@
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2019-08-26 lun. 11:55 -->
<!-- 2020-01-28 mar. 17:38 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Kinematic Study of the Stewart Platform</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Thomas Dehaeze" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
@ -204,7 +205,7 @@
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2019 Free Software Foundation, Inc.
Copyright (C) 2012-2020 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
@ -245,6 +246,31 @@ for the JavaScript code in this tag.
}
/*]]>*///-->
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em",
Macros: {
bm: ["{\\boldsymbol #1}",1],
}
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="org-div-home-and-up">
@ -257,93 +283,116 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org4a99119">1. Needed Actuator Stroke</a>
<li><a href="#org63c8faa">1. Needed Actuator Stroke</a>
<ul>
<li><a href="#org119868f">1.1. Stewart architecture definition</a></li>
<li><a href="#org8ece9f1">1.2. Wanted translations and rotations</a></li>
<li><a href="#org8cd9dfc">1.3. Needed stroke for "pure" rotations or translations</a></li>
<li><a href="#org9acbff2">1.4. Needed stroke for combined translations and rotations</a></li>
<li><a href="#orged5be9e">1.1. Stewart architecture definition</a></li>
<li><a href="#org73e5cf8">1.2. Wanted translations and rotations</a></li>
<li><a href="#org9825ccf">1.3. Needed stroke for &ldquo;pure&rdquo; rotations or translations</a></li>
<li><a href="#org0440602">1.4. Needed stroke for combined translations and rotations</a></li>
</ul>
</li>
<li><a href="#org0aef174">2. Maximum Stroke</a></li>
<li><a href="#orgff4f3e2">3. Functions</a>
<li><a href="#org092f7f8">2. Maximum Stroke</a></li>
<li><a href="#org720ba56">3. Functions</a>
<ul>
<li><a href="#orgca8f528">3.1. getMaxPositions</a></li>
<li><a href="#org0ac04ca">3.2. getMaxPureDisplacement</a></li>
<li><a href="#org8125766">3.1. getMaxPositions</a></li>
<li><a href="#org91e4101">3.2. getMaxPureDisplacement</a></li>
<li><a href="#orgf75fefe">3.3. <code>computeJacobian</code>: Compute the Jacobian Matrix</a>
<ul>
<li><a href="#orgae47616">3.3.1. Function description</a></li>
<li><a href="#org78705da">3.3.2. Compute Jacobian Matrix</a></li>
<li><a href="#orgb7dc1d7">3.3.3. Compute Stiffness Matrix</a></li>
<li><a href="#org7aa6c04">3.3.4. Compute Compliance Matrix</a></li>
</ul>
</li>
<li><a href="#org9c46957">3.4. <code>inverseKinematics</code>: Compute Inverse Kinematics</a>
<ul>
<li><a href="#org9da7af0">3.4.1. Function description</a></li>
<li><a href="#orge2cc540">3.4.2. Optional Parameters</a></li>
<li><a href="#orga1a0cc7">3.4.3. Theory</a></li>
<li><a href="#org9b86eb9">3.4.4. Compute</a></li>
</ul>
</li>
<li><a href="#org7e6d65c">3.5. <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</a>
<ul>
<li><a href="#org65e0ce7">3.5.1. Function description</a></li>
<li><a href="#orgf6a32e1">3.5.2. Optional Parameters</a></li>
<li><a href="#orgce0b559">3.5.3. Computation</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org4a99119" class="outline-2">
<h2 id="org4a99119"><span class="section-number-2">1</span> Needed Actuator Stroke</h2>
<div id="outline-container-org63c8faa" class="outline-2">
<h2 id="org63c8faa"><span class="section-number-2">1</span> Needed Actuator Stroke</h2>
<div class="outline-text-2" id="text-1">
<p>
The goal is to determine the needed stroke of the actuators to obtain wanted translations and rotations.
</p>
</div>
<div id="outline-container-org119868f" class="outline-3">
<h3 id="org119868f"><span class="section-number-3">1.1</span> Stewart architecture definition</h3>
<div id="outline-container-orged5be9e" class="outline-3">
<h3 id="orged5be9e"><span class="section-number-3">1.1</span> Stewart architecture definition</h3>
<div class="outline-text-3" id="text-1-1">
<p>
We use a cubic architecture.
</p>
<div class="org-src-container">
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">90</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">60</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
<span class="org-rainbow-delimiters-depth-1">)</span>;
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">100</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
<span class="org-rainbow-delimiters-depth-1">)</span>;
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
<span class="org-string">'stroke'</span>, <span class="org-highlight-numbers-number">50e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span> <span class="org-underline">...</span> <span class="org-comment">% Maximum stroke of each actuator [m]</span>
<span class="org-rainbow-delimiters-depth-1">)</span>;
stewart = initializeMechanicalElements<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
<pre class="src src-matlab">opts = struct(...
<span class="org-string">'H_tot'</span>, 90, ...<span class="org-comment"> % Total height of the Hexapod [mm]</span>
<span class="org-string">'L'</span>, 200<span class="org-type">/</span>sqrt(3), ...<span class="org-comment"> % Size of the Cube [mm]</span>
<span class="org-string">'H'</span>, 60, ...<span class="org-comment"> % Height between base joints and platform joints [mm]</span>
<span class="org-string">'H0'</span>, 200<span class="org-type">/</span>2<span class="org-type">-</span>60<span class="org-type">/</span>2 ...<span class="org-comment"> % Height between the corner of the cube and the plane containing the base joints [mm]</span>
);
stewart = initializeCubicConfiguration(opts);
opts = struct(...
<span class="org-string">'Jd_pos'</span>, [0, 0, 100], ...<span class="org-comment"> % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
<span class="org-string">'Jf_pos'</span>, [0, 0, <span class="org-type">-</span>50] ...<span class="org-comment"> % Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
);
stewart = computeGeometricalProperties(stewart, opts);
opts = struct(...
<span class="org-string">'stroke'</span>, 50e<span class="org-type">-</span>6 ...<span class="org-comment"> % Maximum stroke of each actuator [m]</span>
);
stewart = initializeMechanicalElements(stewart, opts);
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/stewart.mat', 'stewart'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
save(<span class="org-string">'./mat/stewart.mat'</span>, <span class="org-string">'stewart'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-org8ece9f1" class="outline-3">
<h3 id="org8ece9f1"><span class="section-number-3">1.2</span> Wanted translations and rotations</h3>
<div id="outline-container-org73e5cf8" class="outline-3">
<h3 id="org73e5cf8"><span class="section-number-3">1.2</span> Wanted translations and rotations</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We define wanted translations and rotations
</p>
<div class="org-src-container">
<pre class="src src-matlab">Tx_max = <span class="org-highlight-numbers-number">15e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span>; <span class="org-comment">% Translation [m]</span>
Ty_max = <span class="org-highlight-numbers-number">15e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span>; <span class="org-comment">% Translation [m]</span>
Tz_max = <span class="org-highlight-numbers-number">15e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span>; <span class="org-comment">% Translation [m]</span>
Rx_max = <span class="org-highlight-numbers-number">30e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span>; <span class="org-comment">% Rotation [rad]</span>
Ry_max = <span class="org-highlight-numbers-number">30e</span><span class="org-type">-</span><span class="org-highlight-numbers-number">6</span>; <span class="org-comment">% Rotation [rad]</span>
<pre class="src src-matlab">Tx_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Ty_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Tz_max = 15e<span class="org-type">-</span>6; <span class="org-comment">% Translation [m]</span>
Rx_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
Ry_max = 30e<span class="org-type">-</span>6; <span class="org-comment">% Rotation [rad]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org8cd9dfc" class="outline-3">
<h3 id="org8cd9dfc"><span class="section-number-3">1.3</span> Needed stroke for "pure" rotations or translations</h3>
<div id="outline-container-org9825ccf" class="outline-3">
<h3 id="org9825ccf"><span class="section-number-3">1.3</span> Needed stroke for &ldquo;pure&rdquo; rotations or translations</h3>
<div class="outline-text-3" id="text-1-3">
<p>
First, we estimate the needed actuator stroke for "pure" rotations and translation.
First, we estimate the needed actuator stroke for &ldquo;pure&rdquo; rotations and translation.
</p>
<div class="org-src-container">
<pre class="src src-matlab">LTx = stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span>Tx_max <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
LTy = stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> Ty_max <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
LTz = stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> Tz_max <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
LRx = stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> Rx_max <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
LRy = stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> Ry_max <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
<pre class="src src-matlab">LTx = stewart.Jd<span class="org-type">*</span>[Tx_max 0 0 0 0 0]<span class="org-type">'</span>;
LTy = stewart.Jd<span class="org-type">*</span>[0 Ty_max 0 0 0 0]<span class="org-type">'</span>;
LTz = stewart.Jd<span class="org-type">*</span>[0 0 Tz_max 0 0 0]<span class="org-type">'</span>;
LRx = stewart.Jd<span class="org-type">*</span>[0 0 0 Rx_max 0 0]<span class="org-type">'</span>;
LRy = stewart.Jd<span class="org-type">*</span>[0 0 0 0 Ry_max 0]<span class="org-type">'</span>;
</pre>
</div>
@ -353,26 +402,26 @@ From -1.2e-05[m] to 1.1e-05[m]: Total stroke = 22.9[um]
</div>
</div>
<div id="outline-container-org9acbff2" class="outline-3">
<h3 id="org9acbff2"><span class="section-number-3">1.4</span> Needed stroke for combined translations and rotations</h3>
<div id="outline-container-org0440602" class="outline-3">
<h3 id="org0440602"><span class="section-number-3">1.4</span> Needed stroke for combined translations and rotations</h3>
<div class="outline-text-3" id="text-1-4">
<p>
Now, we combine translations and rotations, and we try to find the worst case (that we suppose to happen at the border).
</p>
<div class="org-src-container">
<pre class="src src-matlab">Lmax = <span class="org-highlight-numbers-number">0</span>;
Lmin = <span class="org-highlight-numbers-number">0</span>;
pos = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>;
<span class="org-keyword">for</span> <span class="org-variable-name">Tx</span> = <span class="org-constant"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-constant">-Tx_max</span>,Tx_max<span class="org-rainbow-delimiters-depth-1">]</span>
<span class="org-keyword">for</span> <span class="org-variable-name">Ty</span> = <span class="org-constant"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-constant">-Ty_max</span>,Ty_max<span class="org-rainbow-delimiters-depth-1">]</span>
<span class="org-keyword">for</span> <span class="org-variable-name">Tz</span> = <span class="org-constant"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-constant">-Tz_max</span>,Tz_max<span class="org-rainbow-delimiters-depth-1">]</span>
<span class="org-keyword">for</span> <span class="org-variable-name">Rx</span> = <span class="org-constant"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-constant">-Rx_max</span>,Rx_max<span class="org-rainbow-delimiters-depth-1">]</span>
<span class="org-keyword">for</span> <span class="org-variable-name">Ry</span> = <span class="org-constant"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-constant">-Ry_max</span>,Ry_max<span class="org-rainbow-delimiters-depth-1">]</span>
lmax = max<span class="org-rainbow-delimiters-depth-1">(</span>stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-2">[</span>Tx Ty Tz Rx Ry <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>'<span class="org-rainbow-delimiters-depth-1">)</span>;
lmin = min<span class="org-rainbow-delimiters-depth-1">(</span>stewart.Jd<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-2">[</span>Tx Ty Tz Rx Ry <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>'<span class="org-rainbow-delimiters-depth-1">)</span>;
<pre class="src src-matlab">Lmax = 0;
Lmin = 0;
pos = [0, 0, 0, 0, 0];
<span class="org-keyword">for</span> <span class="org-variable-name">Tx</span> = <span class="org-constant">[-Tx_max</span>,Tx_max]
<span class="org-keyword">for</span> <span class="org-variable-name">Ty</span> = <span class="org-constant">[-Ty_max</span>,Ty_max]
<span class="org-keyword">for</span> <span class="org-variable-name">Tz</span> = <span class="org-constant">[-Tz_max</span>,Tz_max]
<span class="org-keyword">for</span> <span class="org-variable-name">Rx</span> = <span class="org-constant">[-Rx_max</span>,Rx_max]
<span class="org-keyword">for</span> <span class="org-variable-name">Ry</span> = <span class="org-constant">[-Ry_max</span>,Ry_max]
lmax = max(stewart.Jd<span class="org-type">*</span>[Tx Ty Tz Rx Ry 0]<span class="org-type">'</span>);
lmin = min(stewart.Jd<span class="org-type">*</span>[Tx Ty Tz Rx Ry 0]<span class="org-type">'</span>);
<span class="org-keyword">if</span> lmax <span class="org-type">&gt;</span> Lmax
Lmax = lmax;
pos = <span class="org-rainbow-delimiters-depth-1">[</span>Tx Ty Tz Rx Ry<span class="org-rainbow-delimiters-depth-1">]</span>;
pos = [Tx Ty Tz Rx Ry];
<span class="org-keyword">end</span>
<span class="org-keyword">if</span> lmin <span class="org-type">&lt;</span> Lmin
Lmin = lmin;
@ -386,7 +435,7 @@ pos = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-high
</div>
<p>
We obtain a needed stroke shown below (almost two times the needed stroke for "pure" rotations and translations).
We obtain a needed stroke shown below (almost two times the needed stroke for &ldquo;pure&rdquo; rotations and translations).
</p>
<pre class="example">
From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]
@ -395,80 +444,341 @@ From -3.1e-05[m] to 3.1e-05[m]: Total stroke = 61.5[um]
</div>
</div>
<div id="outline-container-org0aef174" class="outline-2">
<h2 id="org0aef174"><span class="section-number-2">2</span> Maximum Stroke</h2>
<div id="outline-container-org092f7f8" class="outline-2">
<h2 id="org092f7f8"><span class="section-number-2">2</span> Maximum Stroke</h2>
<div class="outline-text-2" id="text-2">
<p>
From a specified actuator stroke, we try to estimate the available maneuverability of the Stewart platform.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-rainbow-delimiters-depth-1">[</span>X, Y, Z<span class="org-rainbow-delimiters-depth-1">]</span> = getMaxPositions<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">stewart</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<pre class="src src-matlab">[X, Y, Z] = getMaxPositions(<span class="org-variable-name">stewart</span>);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
plot3<span class="org-rainbow-delimiters-depth-1">(</span>X, Y, Z, <span class="org-string">'k-'</span><span class="org-rainbow-delimiters-depth-1">)</span>
plot3(X, Y, Z, <span class="org-string">'k-'</span>)
</pre>
</div>
</div>
</div>
<div id="outline-container-orgff4f3e2" class="outline-2">
<h2 id="orgff4f3e2"><span class="section-number-2">3</span> Functions</h2>
<div id="outline-container-org720ba56" class="outline-2">
<h2 id="org720ba56"><span class="section-number-2">3</span> Functions</h2>
<div class="outline-text-2" id="text-3">
</div>
<div id="outline-container-orgca8f528" class="outline-3">
<h3 id="orgca8f528"><span class="section-number-3">3.1</span> getMaxPositions</h3>
<div id="outline-container-org8125766" class="outline-3">
<h3 id="org8125766"><span class="section-number-3">3.1</span> getMaxPositions</h3>
<div class="outline-text-3" id="text-3-1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">X, Y, Z</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">getMaxPositions</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">stewart</span><span class="org-rainbow-delimiters-depth-1">)</span>
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[X, Y, Z]</span> = <span class="org-function-name">getMaxPositions</span>(<span class="org-variable-name">stewart</span>)
Leg = stewart.Leg;
J = stewart.Jd;
theta = linspace<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">2</span><span class="org-type">*</span><span class="org-constant">pi</span>, <span class="org-highlight-numbers-number">100</span><span class="org-rainbow-delimiters-depth-1">)</span>;
phi = linspace<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">-</span><span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> , <span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">100</span><span class="org-rainbow-delimiters-depth-1">)</span>;
dmax = zeros<span class="org-rainbow-delimiters-depth-1">(</span>length<span class="org-rainbow-delimiters-depth-2">(</span>theta<span class="org-rainbow-delimiters-depth-2">)</span>, length<span class="org-rainbow-delimiters-depth-2">(</span>phi<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
theta = linspace(0, 2<span class="org-type">*</span><span class="org-constant">pi</span>, 100);
phi = linspace(<span class="org-type">-</span><span class="org-constant">pi</span><span class="org-type">/</span>2 , <span class="org-constant">pi</span><span class="org-type">/</span>2, 100);
dmax = zeros(length(theta), length(phi));
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">theta</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
<span class="org-keyword">for</span> <span class="org-variable-name">j</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">phi</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
L = J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span>cos<span class="org-rainbow-delimiters-depth-2">(</span>phi<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">j</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>cos<span class="org-rainbow-delimiters-depth-2">(</span>theta<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> cos<span class="org-rainbow-delimiters-depth-2">(</span>phi<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">j</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">*</span>sin<span class="org-rainbow-delimiters-depth-2">(</span>theta<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> sin<span class="org-rainbow-delimiters-depth-2">(</span>phi<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">j</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-1">]</span>';
dmax<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-constant">j</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>L<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(theta)</span>
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(phi)</span>
L = J<span class="org-type">*</span>[cos(phi(<span class="org-constant">j</span>))<span class="org-type">*</span>cos(theta(<span class="org-constant">i</span>)) cos(phi(<span class="org-constant">j</span>))<span class="org-type">*</span>sin(theta(<span class="org-constant">i</span>)) sin(phi(<span class="org-constant">j</span>)) 0 0 0]<span class="org-type">'</span>;
dmax(<span class="org-constant">i</span>, <span class="org-constant">j</span>) = Leg.stroke<span class="org-type">/</span>max(abs(L));
<span class="org-keyword">end</span>
<span class="org-keyword">end</span>
X = dmax<span class="org-type">.*</span>cos<span class="org-rainbow-delimiters-depth-1">(</span>repmat<span class="org-rainbow-delimiters-depth-2">(</span>phi,length<span class="org-rainbow-delimiters-depth-3">(</span>theta<span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">.*</span>cos<span class="org-rainbow-delimiters-depth-1">(</span>repmat<span class="org-rainbow-delimiters-depth-2">(</span>theta,length<span class="org-rainbow-delimiters-depth-3">(</span>phi<span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>';
Y = dmax<span class="org-type">.*</span>cos<span class="org-rainbow-delimiters-depth-1">(</span>repmat<span class="org-rainbow-delimiters-depth-2">(</span>phi,length<span class="org-rainbow-delimiters-depth-3">(</span>theta<span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">.*</span>sin<span class="org-rainbow-delimiters-depth-1">(</span>repmat<span class="org-rainbow-delimiters-depth-2">(</span>theta,length<span class="org-rainbow-delimiters-depth-3">(</span>phi<span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>';
Z = dmax<span class="org-type">.*</span>sin<span class="org-rainbow-delimiters-depth-1">(</span>repmat<span class="org-rainbow-delimiters-depth-2">(</span>phi,length<span class="org-rainbow-delimiters-depth-3">(</span>theta<span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
X = dmax<span class="org-type">.*</span>cos(repmat(phi,length(theta),1))<span class="org-type">.*</span>cos(repmat(theta,length(phi),1))<span class="org-type">'</span>;
Y = dmax<span class="org-type">.*</span>cos(repmat(phi,length(theta),1))<span class="org-type">.*</span>sin(repmat(theta,length(phi),1))<span class="org-type">'</span>;
Z = dmax<span class="org-type">.*</span>sin(repmat(phi,length(theta),1));
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org0ac04ca" class="outline-3">
<h3 id="org0ac04ca"><span class="section-number-3">3.2</span> getMaxPureDisplacement</h3>
<div id="outline-container-org91e4101" class="outline-3">
<h3 id="org91e4101"><span class="section-number-3">3.2</span> getMaxPureDisplacement</h3>
<div class="outline-text-3" id="text-3-2">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">max_disp</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">getMaxPureDisplacement</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">Leg</span>, <span class="org-variable-name">J</span><span class="org-rainbow-delimiters-depth-1">)</span>
max_disp = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">5</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
max_disp<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span><span class="org-rainbow-delimiters-depth-1">)</span> = Leg.stroke<span class="org-type">/</span>max<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>J<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-3">[</span><span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-3">]</span>'<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[max_disp]</span> = <span class="org-function-name">getMaxPureDisplacement</span>(<span class="org-variable-name">Leg</span>, <span class="org-variable-name">J</span>)
max_disp = zeros(6, 1);
max_disp<span class="org-type">(1) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[1 0 0 0 0 0]<span class="org-type">'</span>));
max_disp<span class="org-type">(2) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 1 0 0 0 0]<span class="org-type">'</span>));
max_disp<span class="org-type">(3) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 1 0 0 0]<span class="org-type">'</span>));
max_disp<span class="org-type">(4) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 1 0 0]<span class="org-type">'</span>));
max_disp<span class="org-type">(5) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 0 1 0]<span class="org-type">'</span>));
max_disp<span class="org-type">(6) </span>= Leg.stroke<span class="org-type">/</span>max(abs(J<span class="org-type">*</span>[0 0 0 0 0 1]<span class="org-type">'</span>));
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orgf75fefe" class="outline-3">
<h3 id="orgf75fefe"><span class="section-number-3">3.3</span> <code>computeJacobian</code>: Compute the Jacobian Matrix</h3>
<div class="outline-text-3" id="text-3-3">
<p>
<a id="org02bdbb2"></a>
</p>
<p>
This Matlab function is accessible <a href="src/computeJacobian.m">here</a>.
</p>
</div>
<div id="outline-container-orgae47616" class="outline-4">
<h4 id="orgae47616"><span class="section-number-4">3.3.1</span> Function description</h4>
<div class="outline-text-4" id="text-3-3-1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[stewart]</span> = <span class="org-function-name">computeJacobian</span>(<span class="org-variable-name">stewart</span>)
<span class="org-comment">% computeJacobian -</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = computeJacobian(stewart)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - With at least the following fields:</span>
<span class="org-comment">% - As [3x6] - The 6 unit vectors for each strut expressed in {A}</span>
<span class="org-comment">% - Ab [3x6] - The 6 position of the joints bi expressed in {A}</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - stewart - With the 3 added field:</span>
<span class="org-comment">% - J [6x6] - The Jacobian Matrix</span>
<span class="org-comment">% - K [6x6] - The Stiffness Matrix</span>
<span class="org-comment">% - C [6x6] - The Compliance Matrix</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org78705da" class="outline-4">
<h4 id="org78705da"><span class="section-number-4">3.3.2</span> Compute Jacobian Matrix</h4>
<div class="outline-text-4" id="text-3-3-2">
<div class="org-src-container">
<pre class="src src-matlab">stewart.J = [stewart.As<span class="org-type">'</span> , cross(stewart.Ab, stewart.As)<span class="org-type">'</span>];
</pre>
</div>
</div>
</div>
<div id="outline-container-orgb7dc1d7" class="outline-4">
<h4 id="orgb7dc1d7"><span class="section-number-4">3.3.3</span> Compute Stiffness Matrix</h4>
<div class="outline-text-4" id="text-3-3-3">
<div class="org-src-container">
<pre class="src src-matlab">stewart.K = stewart.J<span class="org-type">'*</span>diag(stewart.Ki)<span class="org-type">*</span>stewart.J;
</pre>
</div>
</div>
</div>
<div id="outline-container-org7aa6c04" class="outline-4">
<h4 id="org7aa6c04"><span class="section-number-4">3.3.4</span> Compute Compliance Matrix</h4>
<div class="outline-text-4" id="text-3-3-4">
<div class="org-src-container">
<pre class="src src-matlab">stewart.C = inv(stewart.K);
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-org9c46957" class="outline-3">
<h3 id="org9c46957"><span class="section-number-3">3.4</span> <code>inverseKinematics</code>: Compute Inverse Kinematics</h3>
<div class="outline-text-3" id="text-3-4">
<p>
<a id="orgab617cc"></a>
</p>
<p>
This Matlab function is accessible <a href="src/inverseKinematics.m">here</a>.
</p>
</div>
<div id="outline-container-org9da7af0" class="outline-4">
<h4 id="org9da7af0"><span class="section-number-4">3.4.1</span> Function description</h4>
<div class="outline-text-4" id="text-3-4-1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[Li, dLi]</span> = <span class="org-function-name">inverseKinematics</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [stewart] = inverseKinematics(stewart)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - Aa [3x6] - The positions ai expressed in {A}</span>
<span class="org-comment">% - Bb [3x6] - The positions bi expressed in {B}</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - AP [3x1] - The wanted position of {B} with respect to {A}</span>
<span class="org-comment">% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}</span>
<span class="org-comment">% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orge2cc540" class="outline-4">
<h4 id="orge2cc540"><span class="section-number-4">3.4.2</span> Optional Parameters</h4>
<div class="outline-text-4" id="text-3-4-2">
<div class="org-src-container">
<pre class="src src-matlab">arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orga1a0cc7" class="outline-4">
<h4 id="orga1a0cc7"><span class="section-number-4">3.4.3</span> Theory</h4>
<div class="outline-text-4" id="text-3-4-3">
<p>
For inverse kinematic analysis, it is assumed that the position \({}^A\bm{P}\) and orientation of the moving platform \({}^A\bm{R}_B\) are given and the problem is to obtain the joint variables, namely, \(\bm{L} = [l_1, l_2, \dots, l_6]^T\).
</p>
<p>
From the geometry of the manipulator, the loop closure for each limb, \(i = 1, 2, \dots, 6\) can be written as
</p>
\begin{align*}
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
\end{align*}
<p>
To obtain the length of each actuator and eliminate \(\hat{\bm{s}}_i\), it is sufficient to dot multiply each side by itself:
</p>
\begin{equation}
l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
\end{equation}
<p>
Hence, for \(i = 1, 2, \dots, 6\), each limb length can be uniquely determined by:
</p>
\begin{equation}
l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
\end{equation}
<p>
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
Otherwise, when the limbs&rsquo; lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
</p>
</div>
</div>
<div id="outline-container-org9b86eb9" class="outline-4">
<h4 id="org9b86eb9"><span class="section-number-4">3.4.4</span> Compute</h4>
<div class="outline-text-4" id="text-3-4-4">
<div class="org-src-container">
<pre class="src src-matlab">Li = sqrt(args.AP<span class="org-type">'*</span>args.AP <span class="org-type">+</span> diag(stewart.Bb<span class="org-type">'*</span>stewart.Bb) <span class="org-type">+</span> diag(stewart.Aa<span class="org-type">'*</span>stewart.Aa) <span class="org-type">-</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>stewart.Aa)<span class="org-type">'</span> <span class="org-type">+</span> (2<span class="org-type">*</span>args.AP<span class="org-type">'*</span>(args.ARB<span class="org-type">*</span>stewart.Bb))<span class="org-type">'</span> <span class="org-type">-</span> diag(2<span class="org-type">*</span>(args.ARB<span class="org-type">*</span>stewart.Bb)<span class="org-type">'*</span>stewart.Aa));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">dLi = Li<span class="org-type">-</span>stewart.l;
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-org7e6d65c" class="outline-3">
<h3 id="org7e6d65c"><span class="section-number-3">3.5</span> <code>forwardKinematicsApprox</code>: Compute the Approximate Forward Kinematics</h3>
<div class="outline-text-3" id="text-3-5">
<p>
<a id="orgee3cdbf"></a>
</p>
<p>
This Matlab function is accessible <a href="src/forwardKinematicsApprox.m">here</a>.
</p>
</div>
<div id="outline-container-org65e0ce7" class="outline-4">
<h4 id="org65e0ce7"><span class="section-number-4">3.5.1</span> Function description</h4>
<div class="outline-text-4" id="text-3-5-1">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name">[P, R]</span> = <span class="org-function-name">forwardKinematicsApprox</span>(<span class="org-variable-name">stewart</span>, <span class="org-variable-name">args</span>)
<span class="org-comment">% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using</span>
<span class="org-comment">% the Jacobian Matrix</span>
<span class="org-comment">%</span>
<span class="org-comment">% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)</span>
<span class="org-comment">%</span>
<span class="org-comment">% Inputs:</span>
<span class="org-comment">% - stewart - A structure with the following fields</span>
<span class="org-comment">% - J [6x6] - The Jacobian Matrix</span>
<span class="org-comment">% - args - Can have the following fields:</span>
<span class="org-comment">% - dL [6x1] - Displacement of each strut [m]</span>
<span class="org-comment">%</span>
<span class="org-comment">% Outputs:</span>
<span class="org-comment">% - P [3x1] - The estimated position of {B} with respect to {A}</span>
<span class="org-comment">% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orgf6a32e1" class="outline-4">
<h4 id="orgf6a32e1"><span class="section-number-4">3.5.2</span> Optional Parameters</h4>
<div class="outline-text-4" id="text-3-5-2">
<div class="org-src-container">
<pre class="src src-matlab">arguments
stewart
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
<span class="org-keyword">end</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-orgce0b559" class="outline-4">
<h4 id="orgce0b559"><span class="section-number-4">3.5.3</span> Computation</h4>
<div class="outline-text-4" id="text-3-5-3">
<p>
From a small displacement of each strut \(d\bm{\mathcal{L}}\), we can compute the
position and orientation of {B} with respect to {A} using the following formula:
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">X = stewart.J<span class="org-type">\</span>args.dL;
</pre>
</div>
<p>
The position vector corresponds to the first 3 elements.
</p>
<div class="org-src-container">
<pre class="src src-matlab">P = X(1<span class="org-type">:</span>3);
</pre>
</div>
<p>
The next 3 elements are the orientation of {B} with respect to {A} expressed
using the screw axis.
</p>
<div class="org-src-container">
<pre class="src src-matlab">theta = norm(X(4<span class="org-type">:</span>6));
s = X(4<span class="org-type">:</span>6)<span class="org-type">/</span>theta;
</pre>
</div>
<p>
We then compute the corresponding rotation matrix.
</p>
<div class="org-src-container">
<pre class="src src-matlab">R = [s(1)<span class="org-type">^</span>2<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> cos(theta) , s(1)<span class="org-type">*</span>s(2)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">-</span> s(3)<span class="org-type">*</span>sin(theta), s(1)<span class="org-type">*</span>s(3)<span class="org-type">*</span>(1<span class="org-type">-</span>cos(theta)) <span class="org-type">+</span> s(2)<span class="org-type">*</span>sin(theta);
s<span class="org-type">(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);</span>
s<span class="org-type">(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];</span>
</pre>
</div>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Thomas Dehaeze</p>
<p class="date">Created: 2019-08-26 lun. 11:55</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-01-28 mar. 17:38</p>
</div>
</body>
</html>

View File

@ -182,3 +182,177 @@ From a specified actuator stroke, we try to estimate the available maneuverabili
max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
end
#+end_src
** =computeJacobian=: Compute the Jacobian Matrix
:PROPERTIES:
:header-args:matlab+: :tangle src/computeJacobian.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:computeJacobian>>
This Matlab function is accessible [[file:src/computeJacobian.m][here]].
*** Function description
#+begin_src matlab
function [stewart] = computeJacobian(stewart)
% computeJacobian -
%
% Syntax: [stewart] = computeJacobian(stewart)
%
% Inputs:
% - stewart - With at least the following fields:
% - As [3x6] - The 6 unit vectors for each strut expressed in {A}
% - Ab [3x6] - The 6 position of the joints bi expressed in {A}
%
% Outputs:
% - stewart - With the 3 added field:
% - J [6x6] - The Jacobian Matrix
% - K [6x6] - The Stiffness Matrix
% - C [6x6] - The Compliance Matrix
#+end_src
*** Compute Jacobian Matrix
#+begin_src matlab
stewart.J = [stewart.As' , cross(stewart.Ab, stewart.As)'];
#+end_src
*** Compute Stiffness Matrix
#+begin_src matlab
stewart.K = stewart.J'*diag(stewart.Ki)*stewart.J;
#+end_src
*** Compute Compliance Matrix
#+begin_src matlab
stewart.C = inv(stewart.K);
#+end_src
** =inverseKinematics=: Compute Inverse Kinematics
:PROPERTIES:
:header-args:matlab+: :tangle src/inverseKinematics.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:inverseKinematics>>
This Matlab function is accessible [[file:src/inverseKinematics.m][here]].
*** Function description
#+begin_src matlab
function [Li, dLi] = inverseKinematics(stewart, args)
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
%
% Syntax: [stewart] = inverseKinematics(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - Aa [3x6] - The positions ai expressed in {A}
% - Bb [3x6] - The positions bi expressed in {B}
% - args - Can have the following fields:
% - AP [3x1] - The wanted position of {B} with respect to {A}
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
%
% Outputs:
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
#+end_src
*** Optional Parameters
#+begin_src matlab
arguments
stewart
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
args.ARB (3,3) double {mustBeNumeric} = eye(3)
end
#+end_src
*** Theory
For inverse kinematic analysis, it is assumed that the position ${}^A\bm{P}$ and orientation of the moving platform ${}^A\bm{R}_B$ are given and the problem is to obtain the joint variables, namely, $\bm{L} = [l_1, l_2, \dots, l_6]^T$.
From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as
\begin{align*}
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
\end{align*}
To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:
\begin{equation}
l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
\end{equation}
Hence, for $i = 1, 2, \dots, 6$, each limb length can be uniquely determined by:
\begin{equation}
l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
\end{equation}
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
Otherwise, when the limbs' lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
*** Compute
#+begin_src matlab
Li = sqrt(args.AP'*args.AP + diag(stewart.Bb'*stewart.Bb) + diag(stewart.Aa'*stewart.Aa) - (2*args.AP'*stewart.Aa)' + (2*args.AP'*(args.ARB*stewart.Bb))' - diag(2*(args.ARB*stewart.Bb)'*stewart.Aa));
#+end_src
#+begin_src matlab
dLi = Li-stewart.l;
#+end_src
** =forwardKinematicsApprox=: Compute the Approximate Forward Kinematics
:PROPERTIES:
:header-args:matlab+: :tangle src/forwardKinematicsApprox.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:forwardKinematicsApprox>>
This Matlab function is accessible [[file:src/forwardKinematicsApprox.m][here]].
*** Function description
#+begin_src matlab
function [P, R] = forwardKinematicsApprox(stewart, args)
% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
% the Jacobian Matrix
%
% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
%
% Inputs:
% - stewart - A structure with the following fields
% - J [6x6] - The Jacobian Matrix
% - args - Can have the following fields:
% - dL [6x1] - Displacement of each strut [m]
%
% Outputs:
% - P [3x1] - The estimated position of {B} with respect to {A}
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
#+end_src
*** Optional Parameters
#+begin_src matlab
arguments
stewart
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
end
#+end_src
*** Computation
From a small displacement of each strut $d\bm{\mathcal{L}}$, we can compute the
position and orientation of {B} with respect to {A} using the following formula:
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
#+begin_src matlab
X = stewart.J\args.dL;
#+end_src
The position vector corresponds to the first 3 elements.
#+begin_src matlab
P = X(1:3);
#+end_src
The next 3 elements are the orientation of {B} with respect to {A} expressed
using the screw axis.
#+begin_src matlab
theta = norm(X(4:6));
s = X(4:6)/theta;
#+end_src
We then compute the corresponding rotation matrix.
#+begin_src matlab
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
#+end_src