Move accelerometer/geophone explaination

This commit is contained in:
2020-02-13 15:48:03 +01:00
parent 024dc922ce
commit c947ed116f
4 changed files with 298 additions and 446 deletions

View File

@@ -301,106 +301,3 @@ This Matlab function is accessible [[file:../src/initializeGround.m][here]].
ground.C = args.C;
#+end_src
** Z-Axis Geophone
*** Working Principle
From the schematic of the Z-axis geophone shown in Figure [[fig:z_axis_geophone]], we can write the transfer function from the support velocity $\dot{w}$ to the relative velocity of the inertial mass $\dot{d}$:
\[ \frac{\dot{d}}{\dot{w}} = \frac{-\frac{s^2}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
with:
- $\omega_0 = \sqrt{\frac{k}{m}}$
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
#+name: fig:z_axis_geophone
#+caption: Schematic of a Z-Axis geophone
[[file:figs/inertial_sensor.png]]
We see that at frequencies above $\omega_0$:
\[ \frac{\dot{d}}{\dot{w}} \approx -1 \]
And thus, the measurement of the relative velocity of the mass with respect to its support gives the absolute velocity of the support.
We generally want to have the smallest resonant frequency $\omega_0$ to measure low frequency absolute velocity, however there is a trade-off between $\omega_0$ and the mass of the inertial mass.
*** Initialization function
:PROPERTIES:
:header-args:matlab+: :tangle ../src/initializeZAxisGeophone.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:initializeZAxisGeophone>>
This Matlab function is accessible [[file:../src/initializeZAxisGeophone.m][here]].
#+begin_src matlab
function [geophone] = initializeZAxisGeophone(args)
arguments
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 1 % [Hz]
end
%%
geophone.m = args.mass;
%% The Stiffness is set to have the damping resonance frequency
geophone.k = geophone.m * (2*pi*args.freq)^2;
%% We set the damping value to have critical damping
geophone.c = 2*sqrt(geophone.m * geophone.k);
%% Save
save('./mat/geophone_z_axis.mat', 'geophone');
end
#+end_src
** Z-Axis Accelerometer
*** Working Principle
From the schematic of the Z-axis accelerometer shown in Figure [[fig:z_axis_accelerometer]], we can write the transfer function from the support acceleration $\ddot{w}$ to the relative position of the inertial mass $d$:
\[ \frac{d}{\ddot{w}} = \frac{-\frac{1}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
with:
- $\omega_0 = \sqrt{\frac{k}{m}}$
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
#+name: fig:z_axis_accelerometer
#+caption: Schematic of a Z-Axis geophone
[[file:figs/inertial_sensor.png]]
We see that at frequencies below $\omega_0$:
\[ \frac{d}{\ddot{w}} \approx -\frac{1}{{\omega_0}^2} \]
And thus, the measurement of the relative displacement of the mass with respect to its support gives the absolute acceleration of the support.
Note that there is trade-off between:
- the highest measurable acceleration $\omega_0$
- the sensitivity of the accelerometer which is equal to $-\frac{1}{{\omega_0}^2}$
*** Initialization function
:PROPERTIES:
:header-args:matlab+: :tangle ../src/initializeZAxisAccelerometer.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:initializeZAxisAccelerometer>>
This Matlab function is accessible [[file:../src/initializeZAxisAccelerometer.m][here]].
#+begin_src matlab
function [accelerometer] = initializeZAxisAccelerometer(args)
arguments
args.mass (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % [kg]
args.freq (1,1) double {mustBeNumeric, mustBePositive} = 5e3 % [Hz]
end
%%
accelerometer.m = args.mass;
%% The Stiffness is set to have the damping resonance frequency
accelerometer.k = accelerometer.m * (2*pi*args.freq)^2;
%% We set the damping value to have critical damping
accelerometer.c = 2*sqrt(accelerometer.m * accelerometer.k);
%% Gain correction of the accelerometer to have a unity gain until the resonance
accelerometer.gain = -accelerometer.k/accelerometer.m;
%% Save
save('./mat/accelerometer_z_axis.mat', 'accelerometer');
end
#+end_src

View File

@@ -1344,6 +1344,50 @@ Rotational Damping
This Matlab function is accessible [[file:../src/initializeInertialSensor.m][here]].
*** Geophone - Working Principle
:PROPERTIES:
:UNNUMBERED: t
:END:
From the schematic of the Z-axis geophone shown in Figure [[fig:z_axis_geophone]], we can write the transfer function from the support velocity $\dot{w}$ to the relative velocity of the inertial mass $\dot{d}$:
\[ \frac{\dot{d}}{\dot{w}} = \frac{-\frac{s^2}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
with:
- $\omega_0 = \sqrt{\frac{k}{m}}$
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
#+name: fig:z_axis_geophone
#+caption: Schematic of a Z-Axis geophone
[[file:figs/inertial_sensor.png]]
We see that at frequencies above $\omega_0$:
\[ \frac{\dot{d}}{\dot{w}} \approx -1 \]
And thus, the measurement of the relative velocity of the mass with respect to its support gives the absolute velocity of the support.
We generally want to have the smallest resonant frequency $\omega_0$ to measure low frequency absolute velocity, however there is a trade-off between $\omega_0$ and the mass of the inertial mass.
*** Accelerometer - Working Principle
:PROPERTIES:
:UNNUMBERED: t
:END:
From the schematic of the Z-axis accelerometer shown in Figure [[fig:z_axis_accelerometer]], we can write the transfer function from the support acceleration $\ddot{w}$ to the relative position of the inertial mass $d$:
\[ \frac{d}{\ddot{w}} = \frac{-\frac{1}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
with:
- $\omega_0 = \sqrt{\frac{k}{m}}$
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
#+name: fig:z_axis_accelerometer
#+caption: Schematic of a Z-Axis geophone
[[file:figs/inertial_sensor.png]]
We see that at frequencies below $\omega_0$:
\[ \frac{d}{\ddot{w}} \approx -\frac{1}{{\omega_0}^2} \]
And thus, the measurement of the relative displacement of the mass with respect to its support gives the absolute acceleration of the support.
Note that there is trade-off between:
- the highest measurable acceleration $\omega_0$
- the sensitivity of the accelerometer which is equal to $-\frac{1}{{\omega_0}^2}$
*** Function description
:PROPERTIES:
:UNNUMBERED: t
@@ -1744,6 +1788,8 @@ Plot the legs connecting the joints of the fixed base to the joints of the mobil
axis equal;
axis off;
title('Side')
close(f);
end
#+end_src