Update active damping analysis

This commit is contained in:
2020-02-11 18:04:45 +01:00
parent 7ff04f690f
commit 9659e5a507
51 changed files with 540 additions and 513 deletions

View File

@@ -4,7 +4,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-02-11 mar. 15:50 -->
<!-- 2020-02-11 mar. 18:04 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Stewart Platform - Decentralized Active Damping</title>
@@ -271,25 +271,25 @@ for the JavaScript code in this tag.
<li><a href="#orgd59c804">1. Inertial Control</a>
<ul>
<li><a href="#org5f749c8">1.1. Identification of the Dynamics</a></li>
<li><a href="#org41a6913">1.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#orgbcd94dc">1.3. Obtained Damping</a></li>
<li><a href="#orgb81ed64">1.4. Conclusion</a></li>
<li><a href="#orgec430e2">1.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orgaa11f3d">1.3. Obtained Damping</a></li>
<li><a href="#orgcd93557">1.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org74c7eb4">2. Integral Force Feedback</a>
<ul>
<li><a href="#org04cb1dc">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org7f576ce">2.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#orgb927f01">2.3. Obtained Damping</a></li>
<li><a href="#orgf5f2135">2.4. Conclusion</a></li>
<li><a href="#orga217cbb">2.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org5ab90ff">2.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#org8dd8d32">2.3. Obtained Damping</a></li>
<li><a href="#org14503d2">2.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org08917d6">3. Direct Velocity Feedback</a>
<ul>
<li><a href="#orgbfe0af6">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org62438da">3.2. Effect of the Flexible Joint stiffness on the Dynamics</a></li>
<li><a href="#orgb4fcddf">3.3. Obtained Damping</a></li>
<li><a href="#org31a4bb6">3.4. Conclusion</a></li>
<li><a href="#org025d6da">3.1. Identification of the Dynamics with perfect Joints</a></li>
<li><a href="#org6dd3dfd">3.2. Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</a></li>
<li><a href="#orge3fb12b">3.3. Obtained Damping</a></li>
<li><a href="#org049f0ec">3.4. Conclusion</a></li>
</ul>
</li>
</ul>
@@ -322,11 +322,12 @@ stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'accelerometer'</span>, <span class="org-string">'freq'</span>, 5e3);
</pre>
</div>
@@ -362,20 +363,31 @@ The transfer function from actuator forces to force sensors is shown in Figure <
</div>
</div>
<div id="outline-container-org41a6913" class="outline-3">
<h3 id="org41a6913"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div id="outline-container-orgec430e2" class="outline-3">
<h3 id="orgec430e2"><span class="section-number-3">1.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-1-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
</pre>
</div>
<p>
We now use the amplified actuators and re-identify the dynamics
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Vm1'</span>, <span class="org-string">'Vm2'</span>, <span class="org-string">'Vm3'</span>, <span class="org-string">'Vm4'</span>, <span class="org-string">'Vm5'</span>, <span class="org-string">'Vm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#org683c779">2</a>.
</p>
@@ -388,8 +400,8 @@ The new dynamics from force actuator to force sensor is shown in Figure <a href=
</div>
</div>
<div id="outline-container-orgbcd94dc" class="outline-3">
<h3 id="orgbcd94dc"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div id="outline-container-orgaa11f3d" class="outline-3">
<h3 id="orgaa11f3d"><span class="section-number-3">1.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-1-3">
<p>
The control is a performed in a decentralized manner.
@@ -403,7 +415,7 @@ The \(6 \times 6\) control is a diagonal matrix with pure proportional action on
</p>
<p>
The root locus is shown in figure <a href="#org9af9e33">3</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org4e6b73b">4</a>.
The root locus is shown in figure <a href="#org9af9e33">3</a>.
</p>
<div id="org9af9e33" class="figure">
@@ -411,22 +423,15 @@ The root locus is shown in figure <a href="#org9af9e33">3</a> and the obtained p
</p>
<p><span class="figure-number">Figure 3: </span>Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/root_locus_inertial_rot_stiffness.png">png</a>, <a href="./figs/root_locus_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="org4e6b73b" class="figure">
<p><img src="figs/pole_damping_gain_inertial_rot_stiffness.png" alt="pole_damping_gain_inertial_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_inertial_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_inertial_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgb81ed64" class="outline-3">
<h3 id="orgb81ed64"><span class="section-number-3">1.4</span> Conclusion</h3>
<div id="outline-container-orgcd93557" class="outline-3">
<h3 id="orgcd93557"><span class="section-number-3">1.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-1-4">
<div class="important">
<p>
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
We do not have guaranteed stability with Inertial control. This is because of the flexibility inside the internal sensor.
</p>
</div>
@@ -442,8 +447,8 @@ Joint stiffness does increase the resonance frequencies of the system but does n
</p>
</div>
<div id="outline-container-org04cb1dc" class="outline-3">
<h3 id="org04cb1dc"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-orga217cbb" class="outline-3">
<h3 id="orga217cbb"><span class="section-number-3">2.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first initialize the Stewart platform without joint stiffness.
@@ -454,12 +459,12 @@ stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeAmplifiedStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
</pre>
</div>
@@ -487,25 +492,25 @@ G.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">
</div>
<p>
The transfer function from actuator forces to force sensors is shown in Figure <a href="#org3fca9dd">5</a>.
The transfer function from actuator forces to force sensors is shown in Figure <a href="#org3fca9dd">4</a>.
</p>
<div id="org3fca9dd" class="figure">
<p><img src="figs/iff_plant_coupling.png" alt="iff_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 4: </span>Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (<a href="./figs/iff_plant_coupling.png">png</a>, <a href="./figs/iff_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org7f576ce" class="outline-3">
<h3 id="org7f576ce"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div id="outline-container-org5ab90ff" class="outline-3">
<h3 id="org5ab90ff"><span class="section-number-3">2.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-2-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
@@ -513,19 +518,30 @@ Gf.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string"
</div>
<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#org090868b">6</a>.
We now use the amplified actuators and re-identify the dynamics
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Fm1'</span>, <span class="org-string">'Fm2'</span>, <span class="org-string">'Fm3'</span>, <span class="org-string">'Fm4'</span>, <span class="org-string">'Fm5'</span>, <span class="org-string">'Fm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to force sensor is shown in Figure <a href="#org090868b">5</a>.
</p>
<div id="org090868b" class="figure">
<p><img src="figs/iff_plant_flexible_joint_decentralized.png" alt="iff_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 5: </span>Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (<a href="./figs/iff_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/iff_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgb927f01" class="outline-3">
<h3 id="orgb927f01"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div id="outline-container-org8dd8d32" class="outline-3">
<h3 id="org8dd8d32"><span class="section-number-3">2.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The control is a performed in a decentralized manner.
@@ -539,26 +555,26 @@ The \(6 \times 6\) control is a diagonal matrix with pure integration action on
</p>
<p>
The root locus is shown in figure <a href="#orge21bbea">7</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org94d6943">8</a>.
The root locus is shown in figure <a href="#orge21bbea">6</a> and the obtained pole damping function of the control gain is shown in figure <a href="#org94d6943">7</a>.
</p>
<div id="orge21bbea" class="figure">
<p><img src="figs/root_locus_iff_rot_stiffness.png" alt="root_locus_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 6: </span>Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/root_locus_iff_rot_stiffness.png">png</a>, <a href="./figs/root_locus_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="org94d6943" class="figure">
<p><img src="figs/pole_damping_gain_iff_rot_stiffness.png" alt="pole_damping_gain_iff_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 7: </span>Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (<a href="./figs/pole_damping_gain_iff_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_iff_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgf5f2135" class="outline-3">
<h3 id="orgf5f2135"><span class="section-number-3">2.4</span> Conclusion</h3>
<div id="outline-container-org14503d2" class="outline-3">
<h3 id="org14503d2"><span class="section-number-3">2.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-4">
<div class="important">
<p>
@@ -579,8 +595,8 @@ Thus, if Integral Force Feedback is to be used in a Stewart platform with flexib
</p>
</div>
<div id="outline-container-orgbfe0af6" class="outline-3">
<h3 id="orgbfe0af6"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div id="outline-container-org025d6da" class="outline-3">
<h3 id="org025d6da"><span class="section-number-3">3.1</span> Identification of the Dynamics with perfect Joints</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first initialize the Stewart platform without joint stiffness.
@@ -591,11 +607,12 @@ stewart = initializeFramesPositions(stewart, <span class="org-string">'H'</span>
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, <span class="org-string">'disable'</span>, <span class="org-constant">true</span>);
stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal_p'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical_p'</span>);
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, <span class="org-string">'type'</span>, <span class="org-string">'none'</span>);
</pre>
</div>
@@ -623,26 +640,26 @@ G.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">
</div>
<p>
The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgcc86228">9</a>.
The transfer function from actuator forces to relative motion sensors is shown in Figure <a href="#orgcc86228">8</a>.
</p>
<div id="orgcc86228" class="figure">
<p><img src="figs/dvf_plant_coupling.png" alt="dvf_plant_coupling.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 8: </span>Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (<a href="./figs/dvf_plant_coupling.png">png</a>, <a href="./figs/dvf_plant_coupling.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org62438da" class="outline-3">
<h3 id="org62438da"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness on the Dynamics</h3>
<div id="outline-container-org6dd3dfd" class="outline-3">
<h3 id="org6dd3dfd"><span class="section-number-3">3.2</span> Effect of the Flexible Joint stiffness and Actuator amplification on the Dynamics</h3>
<div class="outline-text-3" id="text-3-2">
<p>
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart);
<pre class="src src-matlab">stewart = initializeJointDynamics(stewart, <span class="org-string">'type_F'</span>, <span class="org-string">'universal'</span>, <span class="org-string">'type_M'</span>, <span class="org-string">'spherical'</span>);
Gf = linearize(mdl, io, options);
Gf.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
@@ -650,19 +667,30 @@ Gf.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string"
</div>
<p>
The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#org5a86447">10</a>.
We now use the amplified actuators and re-identify the dynamics
</p>
<div class="org-src-container">
<pre class="src src-matlab">stewart = initializeAmplifiedStrutDynamics(stewart);
Ga = linearize(mdl, io, options);
Ga.InputName = {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
Ga.OutputName = {<span class="org-string">'Dm1'</span>, <span class="org-string">'Dm2'</span>, <span class="org-string">'Dm3'</span>, <span class="org-string">'Dm4'</span>, <span class="org-string">'Dm5'</span>, <span class="org-string">'Dm6'</span>};
</pre>
</div>
<p>
The new dynamics from force actuator to relative motion sensor is shown in Figure <a href="#org5a86447">9</a>.
</p>
<div id="org5a86447" class="figure">
<p><img src="figs/dvf_plant_flexible_joint_decentralized.png" alt="dvf_plant_flexible_joint_decentralized.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (<a href="./figs/dvf_plant_flexible_joint_decentralized.png">png</a>, <a href="./figs/dvf_plant_flexible_joint_decentralized.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgb4fcddf" class="outline-3">
<h3 id="orgb4fcddf"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div id="outline-container-orge3fb12b" class="outline-3">
<h3 id="orge3fb12b"><span class="section-number-3">3.3</span> Obtained Damping</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The control is a performed in a decentralized manner.
@@ -676,26 +704,19 @@ The \(6 \times 6\) control is a diagonal matrix with pure derivative action on t
</p>
<p>
The root locus is shown in figure <a href="#org277d60d">11</a> and the obtained pole damping function of the control gain is shown in figure <a href="#orgd673396">12</a>.
The root locus is shown in figure <a href="#org277d60d">10</a>.
</p>
<div id="org277d60d" class="figure">
<p><img src="figs/root_locus_dvf_rot_stiffness.png" alt="root_locus_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>
<div id="orgd673396" class="figure">
<p><img src="figs/pole_damping_gain_dvf_rot_stiffness.png" alt="pole_damping_gain_dvf_rot_stiffness.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/pole_damping_gain_dvf_rot_stiffness.png">png</a>, <a href="./figs/pole_damping_gain_dvf_rot_stiffness.pdf">pdf</a>)</p>
<p><span class="figure-number">Figure 10: </span>Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (<a href="./figs/root_locus_dvf_rot_stiffness.png">png</a>, <a href="./figs/root_locus_dvf_rot_stiffness.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org31a4bb6" class="outline-3">
<h3 id="org31a4bb6"><span class="section-number-3">3.4</span> Conclusion</h3>
<div id="outline-container-org049f0ec" class="outline-3">
<h3 id="org049f0ec"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
@@ -709,7 +730,7 @@ Joint stiffness does increase the resonance frequencies of the system but does n
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-02-11 mar. 15:50</p>
<p class="date">Created: 2020-02-11 mar. 18:04</p>
</div>
</body>
</html>