Reworked index.org: better filenames

Removed few unused functions
This commit is contained in:
2020-01-27 17:42:09 +01:00
parent 3e4816929f
commit 950302e5d6
24 changed files with 4041 additions and 3618 deletions

View File

@@ -1,10 +1,12 @@
function [stewart] = computeJointsPose(stewart)
% computeJointsPose -
%
% Syntax: [stewart] = computeJointsPose(stewart, opts_param)
% Syntax: [stewart] = computeJointsPose(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
% - FO_A [3x1] - Position of {A} with respect to {F}
% - MO_B [3x1] - Position of {B} with respect to {M}
% - FO_M [3x1] - Position of {M} with respect to {F}

View File

@@ -1,30 +0,0 @@
function [P, R] = forwardKinematics(stewart, args)
% forwardKinematics - Computed the pose of {B} with respect to {A} from the length of each strut
%
% Syntax: [in_data] = forwardKinematics(stewart)
%
% Inputs:
% - stewart - A structure with the following fields
% - J [6x6] - The Jacobian Matrix
% - args - Can have the following fields:
% - L [6x1] - Length of each strut [m]
%
% Outputs:
% - P [3x1] - The estimated position of {B} with respect to {A}
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
arguments
stewart
args.L (6,1) double {mustBeNumeric} = zeros(6,1)
end
X = stewart.J\args.L;
P = X(1:3);
theta = norm(X(4:6));
s = X(4:6)/theta;
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];

View File

@@ -4,8 +4,6 @@ function [stewart] = generateGeneralConfiguration(stewart, args)
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
%
% Inputs:
% - stewart - A structure with the following fields
% - H [1x1] - Total height of the platform [m]
% - args - Can have the following fields:
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
@@ -22,10 +20,10 @@ function [stewart] = generateGeneralConfiguration(stewart, args)
arguments
stewart
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 70e-3;
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
end

View File

@@ -1,18 +0,0 @@
function [X, Y, Z] = getMaxPositions(stewart)
Leg = stewart.Leg;
J = stewart.Jd;
theta = linspace(0, 2*pi, 100);
phi = linspace(-pi/2 , pi/2, 100);
dmax = zeros(length(theta), length(phi));
for i = 1:length(theta)
for j = 1:length(phi)
L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]';
dmax(i, j) = Leg.stroke/max(abs(L));
end
end
X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))';
Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))';
Z = dmax.*sin(repmat(phi,length(theta),1));
end

View File

@@ -1,9 +0,0 @@
function [max_disp] = getMaxPureDisplacement(Leg, J)
max_disp = zeros(6, 1);
max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]'));
max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]'));
max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]'));
max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]'));
max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]'));
max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
end

View File

@@ -1,5 +0,0 @@
function [K] = getStiffnessMatrix(k, J)
% k - leg stiffness
% J - Jacobian matrix
K = k*(J'*J);
end

View File

@@ -1,67 +0,0 @@
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:1]]
function [sys] = identifyPlant(opts_param)
% identifyPlant:1 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:2]]
%% Default values for opts
opts = struct();
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
% identifyPlant:2 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:3]]
options = linearizeOptions;
options.SampleTime = 0;
% identifyPlant:3 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:4]]
mdl = 'stewart';
% identifyPlant:4 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:5]]
%% Inputs
io(1) = linio([mdl, '/F'], 1, 'input'); % Cartesian forces
io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces
io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces
io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion
%% Outputs
io(5) = linio([mdl, '/Dm'], 1, 'output'); % Relative Motion
io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg
io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg
io(8) = linio([mdl, '/Xm'], 1, 'output'); % Absolute motion of platform
% identifyPlant:5 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:6]]
G = linearize(mdl, io, 0);
% identifyPlant:6 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:7]]
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ...
'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'};
G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ...
'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ...
'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'};
% identifyPlant:7 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:8]]
sys.G_cart = G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'});
sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_legs = minreal(G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_tran = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));
sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
% sys.G_all = minreal(G);
% identifyPlant:8 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:9]]
end
% identifyPlant:9 ends here

View File

@@ -1,171 +0,0 @@
function [stewart] = initializeHexapod(opts_param)
opts = struct(...
'height', 90, ... % Height of the platform [mm]
'density', 10, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
'name', 'stewart' ... % Name of the file
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
stewart = struct();
stewart.H = opts.height; % [mm]
BP = struct();
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
BP.H = 10; % Thickness of the Bottom Plate [mm]
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
BP.alpha = 30; % Angle Offset [deg]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [RGB]
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
stewart.BP = BP;
TP = struct();
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
TP.H = 10; % [mm]
TP.Rleg = 80; % Radius where the legs articulations are positionned [mm]
TP.alpha = 10; % Angle [deg]
TP.dalpha = 0; % Angle Offset from 0 position [deg]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [RGB]
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
stewart.TP = TP;
Leg = struct();
Leg.stroke = opts.stroke; % [m]
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
Leg.density = 0.01*opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
stewart.Leg = Leg;
SP = struct();
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
SP.H = 15; % [mm]
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
0 0;
SP.R 0;
SP.R SP.H];
SP.density = opts.density; % [kg/m^3]
SP.color = [0.7 0.7 0.7]; % [RGB]
stewart.SP = SP;
stewart = initializeParameters(stewart);
save('./mat/stewart.mat', 'stewart')
function [stewart] = initializeParameters(stewart)
stewart.Aa = zeros(6, 3); % [mm]
stewart.Ab = zeros(6, 3); % [mm]
stewart.Bb = zeros(6, 3); % [mm]
for i = 1:3
stewart.Aa(2*i-1,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Aa(2*i,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.Rleg*sin( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
stewart.BP.H+stewart.SP.H];
stewart.Ab(2*i-1,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
stewart.Ab(2*i,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
end
stewart.Bb = stewart.Ab - stewart.H*[0,0,1];
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Leg.lenght = leg_length(1)/1.5;
stewart.Leg.shape.bot = ...
[0 0; ...
stewart.Leg.Rbot 0; ...
stewart.Leg.Rbot stewart.Leg.lenght; ...
stewart.Leg.Rtop stewart.Leg.lenght; ...
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
J = zeros(6);
for i = 1:6
J(i, 1:3) = leg_vectors(i, :);
J(i, 4:6) = cross(0.001*(stewart.Ab(i, :)- stewart.H*[0,0,1]), leg_vectors(i, :));
end
stewart.J = J;
stewart.Jinv = inv(J);
stewart.K = stewart.Leg.k_ax*stewart.J'*stewart.J;
end
end

View File

@@ -1,59 +0,0 @@
function [stewart] = initializeSimscapeData(stewart, opts_param)
opts = struct(...
'Jd_pos', [0, 0, 30], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
'Jf_pos', [0, 0, 30] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
legs = stewart.Ab - stewart.Aa;
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
stewart.Rm = struct('R', eye(3));
for i = 1:6
sx = cross(leg_vectors(i,:), [1 0 0]);
sx = sx/norm(sx);
sy = -cross(sx, leg_vectors(i,:));
sy = sy/norm(sy);
sz = leg_vectors(i,:);
sz = sz/norm(sz);
stewart.Rm(i).R = [sx', sy', sz'];
end
Jd = zeros(6);
for i = 1:6
Jd(i, 1:3) = leg_vectors(i, :);
Jd(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jd_pos), leg_vectors(i, :));
end
stewart.Jd = Jd;
stewart.Jd_inv = inv(Jd);
Jf = zeros(6);
for i = 1:6
Jf(i, 1:3) = leg_vectors(i, :);
Jf(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jf_pos), leg_vectors(i, :));
end
stewart.Jf = Jf;
stewart.Jf_inv = inv(Jf);
end

View File

@@ -1,94 +0,0 @@
function [stewart] = initializeStewartPlatform(stewart, opts_param)
opts = struct(...
'thickness', 10, ... % Thickness of the base and platform [mm]
'density', 1000, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
BP = struct();
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
BP.H = opts.thickness; % Thickness of the Bottom Plate [mm]
BP.density = opts.density; % Density of the material [kg/m3]
BP.color = [0.7 0.7 0.7]; % Color [RGB]
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
stewart.BP = BP;
TP = struct();
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
TP.H = 10; % [mm]
TP.density = opts.density; % Density of the material [kg/m3]
TP.color = [0.7 0.7 0.7]; % Color [RGB]
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
stewart.TP = TP;
Leg = struct();
Leg.stroke = opts.stroke; % [m]
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
legs = stewart.Ab - stewart.Aa;
Leg.lenght = norm(legs(1,:))/1.5;
Leg.shape.bot = ...
[0 0; ...
Leg.Rbot 0; ...
Leg.Rbot Leg.lenght; ...
Leg.Rtop Leg.lenght; ...
Leg.Rtop 0.2*Leg.lenght; ...
0 0.2*Leg.lenght];
stewart.Leg = Leg;
SP = struct();
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
SP.H = stewart.Aa(1, 3) - BP.H; % [mm]
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
0 0;
SP.R 0;
SP.R SP.H];
SP.density = opts.density; % [kg/m^3]
SP.color = [0.7 0.7 0.7]; % [RGB]
stewart.SP = SP;

View File

@@ -16,7 +16,7 @@ function [stewart] = initializeStrutDynamics(stewart, args)
arguments
stewart
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e1*ones(6,1)
end
stewart.Ki = args.Ki;