Reworked index.org: better filenames
Removed few unused functions
This commit is contained in:
@@ -1,10 +1,12 @@
|
||||
function [stewart] = computeJointsPose(stewart)
|
||||
% computeJointsPose -
|
||||
%
|
||||
% Syntax: [stewart] = computeJointsPose(stewart, opts_param)
|
||||
% Syntax: [stewart] = computeJointsPose(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
||||
% - Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
||||
% - FO_A [3x1] - Position of {A} with respect to {F}
|
||||
% - MO_B [3x1] - Position of {B} with respect to {M}
|
||||
% - FO_M [3x1] - Position of {M} with respect to {F}
|
||||
|
@@ -1,30 +0,0 @@
|
||||
function [P, R] = forwardKinematics(stewart, args)
|
||||
% forwardKinematics - Computed the pose of {B} with respect to {A} from the length of each strut
|
||||
%
|
||||
% Syntax: [in_data] = forwardKinematics(stewart)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - J [6x6] - The Jacobian Matrix
|
||||
% - args - Can have the following fields:
|
||||
% - L [6x1] - Length of each strut [m]
|
||||
%
|
||||
% Outputs:
|
||||
% - P [3x1] - The estimated position of {B} with respect to {A}
|
||||
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
|
||||
|
||||
arguments
|
||||
stewart
|
||||
args.L (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
|
||||
X = stewart.J\args.L;
|
||||
|
||||
P = X(1:3);
|
||||
|
||||
theta = norm(X(4:6));
|
||||
s = X(4:6)/theta;
|
||||
|
||||
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
|
||||
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
|
||||
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
|
@@ -4,8 +4,6 @@ function [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
%
|
||||
% Inputs:
|
||||
% - stewart - A structure with the following fields
|
||||
% - H [1x1] - Total height of the platform [m]
|
||||
% - args - Can have the following fields:
|
||||
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
|
||||
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
|
||||
@@ -22,10 +20,10 @@ function [stewart] = generateGeneralConfiguration(stewart, args)
|
||||
arguments
|
||||
stewart
|
||||
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
||||
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
|
||||
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
|
||||
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 70e-3;
|
||||
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
||||
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
|
||||
end
|
||||
|
||||
|
@@ -1,18 +0,0 @@
|
||||
function [X, Y, Z] = getMaxPositions(stewart)
|
||||
Leg = stewart.Leg;
|
||||
J = stewart.Jd;
|
||||
theta = linspace(0, 2*pi, 100);
|
||||
phi = linspace(-pi/2 , pi/2, 100);
|
||||
dmax = zeros(length(theta), length(phi));
|
||||
|
||||
for i = 1:length(theta)
|
||||
for j = 1:length(phi)
|
||||
L = J*[cos(phi(j))*cos(theta(i)) cos(phi(j))*sin(theta(i)) sin(phi(j)) 0 0 0]';
|
||||
dmax(i, j) = Leg.stroke/max(abs(L));
|
||||
end
|
||||
end
|
||||
|
||||
X = dmax.*cos(repmat(phi,length(theta),1)).*cos(repmat(theta,length(phi),1))';
|
||||
Y = dmax.*cos(repmat(phi,length(theta),1)).*sin(repmat(theta,length(phi),1))';
|
||||
Z = dmax.*sin(repmat(phi,length(theta),1));
|
||||
end
|
@@ -1,9 +0,0 @@
|
||||
function [max_disp] = getMaxPureDisplacement(Leg, J)
|
||||
max_disp = zeros(6, 1);
|
||||
max_disp(1) = Leg.stroke/max(abs(J*[1 0 0 0 0 0]'));
|
||||
max_disp(2) = Leg.stroke/max(abs(J*[0 1 0 0 0 0]'));
|
||||
max_disp(3) = Leg.stroke/max(abs(J*[0 0 1 0 0 0]'));
|
||||
max_disp(4) = Leg.stroke/max(abs(J*[0 0 0 1 0 0]'));
|
||||
max_disp(5) = Leg.stroke/max(abs(J*[0 0 0 0 1 0]'));
|
||||
max_disp(6) = Leg.stroke/max(abs(J*[0 0 0 0 0 1]'));
|
||||
end
|
@@ -1,5 +0,0 @@
|
||||
function [K] = getStiffnessMatrix(k, J)
|
||||
% k - leg stiffness
|
||||
% J - Jacobian matrix
|
||||
K = k*(J'*J);
|
||||
end
|
@@ -1,67 +0,0 @@
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:1]]
|
||||
function [sys] = identifyPlant(opts_param)
|
||||
% identifyPlant:1 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:2]]
|
||||
%% Default values for opts
|
||||
opts = struct();
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
% identifyPlant:2 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:3]]
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
% identifyPlant:3 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:4]]
|
||||
mdl = 'stewart';
|
||||
% identifyPlant:4 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:5]]
|
||||
%% Inputs
|
||||
io(1) = linio([mdl, '/F'], 1, 'input'); % Cartesian forces
|
||||
io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces
|
||||
io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces
|
||||
io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion
|
||||
|
||||
%% Outputs
|
||||
io(5) = linio([mdl, '/Dm'], 1, 'output'); % Relative Motion
|
||||
io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg
|
||||
io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg
|
||||
io(8) = linio([mdl, '/Xm'], 1, 'output'); % Absolute motion of platform
|
||||
% identifyPlant:5 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:6]]
|
||||
G = linearize(mdl, io, 0);
|
||||
% identifyPlant:6 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:7]]
|
||||
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ...
|
||||
'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
|
||||
'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ...
|
||||
'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'};
|
||||
G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
|
||||
'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ...
|
||||
'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ...
|
||||
'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'};
|
||||
% identifyPlant:7 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:8]]
|
||||
sys.G_cart = G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'});
|
||||
sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
|
||||
sys.G_legs = minreal(G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
|
||||
sys.G_tran = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));
|
||||
sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
|
||||
sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
|
||||
% sys.G_all = minreal(G);
|
||||
% identifyPlant:8 ends here
|
||||
|
||||
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:9]]
|
||||
end
|
||||
% identifyPlant:9 ends here
|
@@ -1,171 +0,0 @@
|
||||
function [stewart] = initializeHexapod(opts_param)
|
||||
|
||||
opts = struct(...
|
||||
'height', 90, ... % Height of the platform [mm]
|
||||
'density', 10, ... % Density of the material used for the hexapod [kg/m3]
|
||||
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
|
||||
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
|
||||
'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
|
||||
'name', 'stewart' ... % Name of the file
|
||||
);
|
||||
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
|
||||
stewart = struct();
|
||||
|
||||
stewart.H = opts.height; % [mm]
|
||||
|
||||
BP = struct();
|
||||
|
||||
BP.Rint = 0; % Internal Radius [mm]
|
||||
BP.Rext = 150; % External Radius [mm]
|
||||
|
||||
BP.H = 10; % Thickness of the Bottom Plate [mm]
|
||||
|
||||
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
|
||||
BP.alpha = 30; % Angle Offset [deg]
|
||||
|
||||
BP.density = opts.density; % Density of the material [kg/m3]
|
||||
|
||||
BP.color = [0.7 0.7 0.7]; % Color [RGB]
|
||||
|
||||
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
|
||||
|
||||
stewart.BP = BP;
|
||||
|
||||
TP = struct();
|
||||
|
||||
TP.Rint = 0; % [mm]
|
||||
TP.Rext = 100; % [mm]
|
||||
|
||||
TP.H = 10; % [mm]
|
||||
|
||||
TP.Rleg = 80; % Radius where the legs articulations are positionned [mm]
|
||||
TP.alpha = 10; % Angle [deg]
|
||||
TP.dalpha = 0; % Angle Offset from 0 position [deg]
|
||||
|
||||
TP.density = opts.density; % Density of the material [kg/m3]
|
||||
|
||||
TP.color = [0.7 0.7 0.7]; % Color [RGB]
|
||||
|
||||
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
|
||||
|
||||
stewart.TP = TP;
|
||||
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = opts.stroke; % [m]
|
||||
|
||||
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
|
||||
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
|
||||
|
||||
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
|
||||
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
|
||||
|
||||
Leg.density = 0.01*opts.density; % Density of the material used for the legs [kg/m3]
|
||||
|
||||
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
|
||||
|
||||
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
|
||||
|
||||
stewart.Leg = Leg;
|
||||
|
||||
SP = struct();
|
||||
|
||||
SP.k = 0; % [N*m/deg]
|
||||
SP.c = 0; % [N*m/deg]
|
||||
|
||||
SP.H = 15; % [mm]
|
||||
|
||||
SP.R = Leg.R; % [mm]
|
||||
|
||||
SP.section = [0 SP.H-SP.R;
|
||||
0 0;
|
||||
SP.R 0;
|
||||
SP.R SP.H];
|
||||
|
||||
SP.density = opts.density; % [kg/m^3]
|
||||
|
||||
SP.color = [0.7 0.7 0.7]; % [RGB]
|
||||
|
||||
stewart.SP = SP;
|
||||
|
||||
stewart = initializeParameters(stewart);
|
||||
|
||||
save('./mat/stewart.mat', 'stewart')
|
||||
|
||||
function [stewart] = initializeParameters(stewart)
|
||||
|
||||
stewart.Aa = zeros(6, 3); % [mm]
|
||||
stewart.Ab = zeros(6, 3); % [mm]
|
||||
stewart.Bb = zeros(6, 3); % [mm]
|
||||
|
||||
for i = 1:3
|
||||
stewart.Aa(2*i-1,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
|
||||
stewart.BP.Rleg*sin( pi/180*(120*(i-1) - stewart.BP.alpha) ), ...
|
||||
stewart.BP.H+stewart.SP.H];
|
||||
stewart.Aa(2*i,:) = [stewart.BP.Rleg*cos( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
|
||||
stewart.BP.Rleg*sin( pi/180*(120*(i-1) + stewart.BP.alpha) ), ...
|
||||
stewart.BP.H+stewart.SP.H];
|
||||
|
||||
stewart.Ab(2*i-1,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
|
||||
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha - stewart.TP.alpha) ), ...
|
||||
stewart.H - stewart.TP.H - stewart.SP.H];
|
||||
stewart.Ab(2*i,:) = [stewart.TP.Rleg*cos( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
|
||||
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
|
||||
stewart.H - stewart.TP.H - stewart.SP.H];
|
||||
end
|
||||
stewart.Bb = stewart.Ab - stewart.H*[0,0,1];
|
||||
|
||||
leg_length = zeros(6, 1); % [mm]
|
||||
leg_vectors = zeros(6, 3);
|
||||
|
||||
legs = stewart.Ab - stewart.Aa;
|
||||
|
||||
for i = 1:6
|
||||
leg_length(i) = norm(legs(i,:));
|
||||
leg_vectors(i,:) = legs(i,:) / leg_length(i);
|
||||
end
|
||||
|
||||
stewart.Leg.lenght = leg_length(1)/1.5;
|
||||
stewart.Leg.shape.bot = ...
|
||||
[0 0; ...
|
||||
stewart.Leg.Rbot 0; ...
|
||||
stewart.Leg.Rbot stewart.Leg.lenght; ...
|
||||
stewart.Leg.Rtop stewart.Leg.lenght; ...
|
||||
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
|
||||
0 0.2*stewart.Leg.lenght];
|
||||
|
||||
stewart.Rm = struct('R', eye(3));
|
||||
|
||||
for i = 1:6
|
||||
sx = cross(leg_vectors(i,:), [1 0 0]);
|
||||
sx = sx/norm(sx);
|
||||
|
||||
sy = -cross(sx, leg_vectors(i,:));
|
||||
sy = sy/norm(sy);
|
||||
|
||||
sz = leg_vectors(i,:);
|
||||
sz = sz/norm(sz);
|
||||
|
||||
stewart.Rm(i).R = [sx', sy', sz'];
|
||||
end
|
||||
|
||||
J = zeros(6);
|
||||
|
||||
for i = 1:6
|
||||
J(i, 1:3) = leg_vectors(i, :);
|
||||
J(i, 4:6) = cross(0.001*(stewart.Ab(i, :)- stewart.H*[0,0,1]), leg_vectors(i, :));
|
||||
end
|
||||
|
||||
stewart.J = J;
|
||||
stewart.Jinv = inv(J);
|
||||
|
||||
stewart.K = stewart.Leg.k_ax*stewart.J'*stewart.J;
|
||||
|
||||
end
|
||||
end
|
@@ -1,59 +0,0 @@
|
||||
function [stewart] = initializeSimscapeData(stewart, opts_param)
|
||||
|
||||
opts = struct(...
|
||||
'Jd_pos', [0, 0, 30], ... % Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]
|
||||
'Jf_pos', [0, 0, 30] ... % Position of the Jacobian for force location from the top of the mobile platform [mm]
|
||||
);
|
||||
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
|
||||
leg_length = zeros(6, 1); % [mm]
|
||||
leg_vectors = zeros(6, 3);
|
||||
|
||||
legs = stewart.Ab - stewart.Aa;
|
||||
|
||||
for i = 1:6
|
||||
leg_length(i) = norm(legs(i,:));
|
||||
leg_vectors(i,:) = legs(i,:) / leg_length(i);
|
||||
end
|
||||
|
||||
stewart.Rm = struct('R', eye(3));
|
||||
|
||||
for i = 1:6
|
||||
sx = cross(leg_vectors(i,:), [1 0 0]);
|
||||
sx = sx/norm(sx);
|
||||
|
||||
sy = -cross(sx, leg_vectors(i,:));
|
||||
sy = sy/norm(sy);
|
||||
|
||||
sz = leg_vectors(i,:);
|
||||
sz = sz/norm(sz);
|
||||
|
||||
stewart.Rm(i).R = [sx', sy', sz'];
|
||||
end
|
||||
|
||||
Jd = zeros(6);
|
||||
|
||||
for i = 1:6
|
||||
Jd(i, 1:3) = leg_vectors(i, :);
|
||||
Jd(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jd_pos), leg_vectors(i, :));
|
||||
end
|
||||
|
||||
stewart.Jd = Jd;
|
||||
stewart.Jd_inv = inv(Jd);
|
||||
|
||||
Jf = zeros(6);
|
||||
|
||||
for i = 1:6
|
||||
Jf(i, 1:3) = leg_vectors(i, :);
|
||||
Jf(i, 4:6) = cross(0.001*(stewart.Bb(i, :) - opts.Jf_pos), leg_vectors(i, :));
|
||||
end
|
||||
|
||||
stewart.Jf = Jf;
|
||||
stewart.Jf_inv = inv(Jf);
|
||||
|
||||
end
|
@@ -1,94 +0,0 @@
|
||||
function [stewart] = initializeStewartPlatform(stewart, opts_param)
|
||||
|
||||
opts = struct(...
|
||||
'thickness', 10, ... % Thickness of the base and platform [mm]
|
||||
'density', 1000, ... % Density of the material used for the hexapod [kg/m3]
|
||||
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
|
||||
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
|
||||
'stroke', 50e-6 ... % Maximum stroke of each actuator [m]
|
||||
);
|
||||
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
|
||||
BP = struct();
|
||||
|
||||
BP.Rint = 0; % Internal Radius [mm]
|
||||
BP.Rext = 150; % External Radius [mm]
|
||||
|
||||
BP.H = opts.thickness; % Thickness of the Bottom Plate [mm]
|
||||
|
||||
BP.density = opts.density; % Density of the material [kg/m3]
|
||||
|
||||
BP.color = [0.7 0.7 0.7]; % Color [RGB]
|
||||
|
||||
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
|
||||
|
||||
stewart.BP = BP;
|
||||
|
||||
TP = struct();
|
||||
|
||||
TP.Rint = 0; % [mm]
|
||||
TP.Rext = 100; % [mm]
|
||||
|
||||
TP.H = 10; % [mm]
|
||||
|
||||
TP.density = opts.density; % Density of the material [kg/m3]
|
||||
|
||||
TP.color = [0.7 0.7 0.7]; % Color [RGB]
|
||||
|
||||
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
|
||||
|
||||
stewart.TP = TP;
|
||||
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = opts.stroke; % [m]
|
||||
|
||||
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
|
||||
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
|
||||
|
||||
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
|
||||
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
|
||||
|
||||
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
|
||||
|
||||
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
|
||||
|
||||
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
|
||||
|
||||
legs = stewart.Ab - stewart.Aa;
|
||||
Leg.lenght = norm(legs(1,:))/1.5;
|
||||
|
||||
Leg.shape.bot = ...
|
||||
[0 0; ...
|
||||
Leg.Rbot 0; ...
|
||||
Leg.Rbot Leg.lenght; ...
|
||||
Leg.Rtop Leg.lenght; ...
|
||||
Leg.Rtop 0.2*Leg.lenght; ...
|
||||
0 0.2*Leg.lenght];
|
||||
|
||||
stewart.Leg = Leg;
|
||||
|
||||
SP = struct();
|
||||
|
||||
SP.k = 0; % [N*m/deg]
|
||||
SP.c = 0; % [N*m/deg]
|
||||
|
||||
SP.H = stewart.Aa(1, 3) - BP.H; % [mm]
|
||||
|
||||
SP.R = Leg.R; % [mm]
|
||||
|
||||
SP.section = [0 SP.H-SP.R;
|
||||
0 0;
|
||||
SP.R 0;
|
||||
SP.R SP.H];
|
||||
|
||||
SP.density = opts.density; % [kg/m^3]
|
||||
|
||||
SP.color = [0.7 0.7 0.7]; % [RGB]
|
||||
|
||||
stewart.SP = SP;
|
@@ -16,7 +16,7 @@ function [stewart] = initializeStrutDynamics(stewart, args)
|
||||
arguments
|
||||
stewart
|
||||
args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
|
||||
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
|
||||
args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e1*ones(6,1)
|
||||
end
|
||||
|
||||
stewart.Ki = args.Ki;
|
||||
|
Reference in New Issue
Block a user