Update compute error script
This commit is contained in:
parent
89dfd6417c
commit
6fee1dcf75
@ -1714,120 +1714,6 @@ The obtained position error is shown in Figure [[fig:hybrid_control_Ex]].
|
||||
|
||||
* Position Error computation
|
||||
<<sec:compute_pose_error>>
|
||||
Let's denote:
|
||||
- $\{W\}$ the initial fixed frame (base in which the measurement is done)
|
||||
- $\{R\}$ the reference frame corresponding to the wanted pose of the sample
|
||||
- $\{M\}$ the frame corresponding to the measured pose of the sample
|
||||
|
||||
We have then computed:
|
||||
- ${}^W\bm{T}_R$ which corresponds to the wanted pose of the sample with respect to the granite
|
||||
- ${}^W\bm{T}_M$ which corresponds to the measured pose of the sample with respect to the granite
|
||||
|
||||
Reference Position with respect to fixed frame {W}: ${}^WT_R$
|
||||
#+begin_src matlab
|
||||
Dx = 0;
|
||||
Dy = 0;
|
||||
Dz = 0.1;
|
||||
Rx = pi;
|
||||
Ry = 0;
|
||||
Rz = 0;
|
||||
|
||||
WTr = zeros(4,4);
|
||||
|
||||
R = [cos(Rz) -sin(Rz) 0;
|
||||
sin(Rz) cos(Rz) 0;
|
||||
0 0 1] * ...
|
||||
[cos(Ry) 0 sin(Ry);
|
||||
0 1 0;
|
||||
-sin(Ry) 0 cos(Ry)] * ...
|
||||
[1 0 0;
|
||||
0 cos(Rx) -sin(Rx);
|
||||
0 sin(Rx) cos(Rx)];
|
||||
|
||||
|
||||
WTr(1:3, 1:3) = R;
|
||||
WTr(1:4, 4) = [Dx ; Dy ; Dz; 1];
|
||||
#+end_src
|
||||
|
||||
Measured Position with respect to fixed frame {W}: ${}^WT_M$
|
||||
#+begin_src matlab
|
||||
Dx = 0;
|
||||
Dy = 0;
|
||||
Dz = 0;
|
||||
Rx = pi;
|
||||
Ry = 0;
|
||||
Rz = 0;
|
||||
|
||||
WTm = zeros(4,4);
|
||||
|
||||
R = [cos(Rz) -sin(Rz) 0;
|
||||
sin(Rz) cos(Rz) 0;
|
||||
0 0 1] * ...
|
||||
[cos(Ry) 0 sin(Ry);
|
||||
0 1 0;
|
||||
-sin(Ry) 0 cos(Ry)] * ...
|
||||
[1 0 0;
|
||||
0 cos(Rx) -sin(Rx);
|
||||
0 sin(Rx) cos(Rx)];
|
||||
|
||||
|
||||
WTm(1:3, 1:3) = R;
|
||||
WTm(1:4, 4) = [Dx ; Dy ; Dz; 1];
|
||||
#+end_src
|
||||
|
||||
We would like to compute ${}^M\bm{T}_R$ which corresponds to the wanted pose of the sample expressed in a frame attached to the top platform of the nano-hexapod (frame $\{M\}$).
|
||||
|
||||
We have:
|
||||
\begin{align}
|
||||
{}^M\bm{T}_R &= {}^M\bm{T}_W \cdot {}^W\bm{T}_R \\
|
||||
&= {}^W{\bm{T}_M}^{-1} \cdot {}^W\bm{T}_R
|
||||
\end{align}
|
||||
|
||||
#+begin_src matlab
|
||||
% Error with respect to the top platform
|
||||
MTr = [WTm(1:3,1:3)', -WTm(1:3,1:3)'*WTm(1:3,4) ; 0 0 0 1]*WTr;
|
||||
|
||||
T = MTr;
|
||||
Edx = T(1, 4);
|
||||
Edy = T(2, 4);
|
||||
Edz = T(3, 4);
|
||||
|
||||
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
|
||||
Ery = atan2( T(1, 3), sqrt(T(1, 1)^2 + T(1, 2)^2));
|
||||
Erx = atan2(-T(2, 3)/cos(Ery), T(3, 3)/cos(Ery));
|
||||
Erz = atan2(-T(1, 2)/cos(Ery), T(1, 1)/cos(Ery));
|
||||
|
||||
[Edx, Edy, Edz, Erx, Ery, Erz]
|
||||
#+end_src
|
||||
|
||||
* Tests
|
||||
#+begin_src matlab
|
||||
Dxr = 0.1;
|
||||
Dyr = 0.1;
|
||||
Dzr = 0;
|
||||
Rxr = 0;
|
||||
Ryr = 0;
|
||||
Rzr = 0.1;
|
||||
|
||||
Dxm = 0.1;
|
||||
Dym = 0.1;
|
||||
Dzm = 0.1;
|
||||
Rxm = 0.1;
|
||||
Rym = 0.1;
|
||||
Rzm = 0.1;
|
||||
|
||||
[Edx, Edy, Edz, Erx, Ery, Erz] = computePosErrorTest(Dxr, Dyr, Dzr, Rxr, Ryr, Rzr, Dxm, Dym, Dzm, Rxm, Rym, Rzm)
|
||||
#+end_src
|
||||
|
||||
* Function Name
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle ../src/computePosErrorTest.m
|
||||
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
||||
:END:
|
||||
|
||||
#+begin_src matlab
|
||||
function [Edx, Edy, Edz, Erx, Ery, Erz] = computePosErrorTest(Dxr, Dyr, Dzr, Rxr, Ryr, Rzr, Dxm, Dym, Dzm, Rxm, Rym, Rzm)
|
||||
#+end_src
|
||||
|
||||
Let's note:
|
||||
- $\{W\}$ the fixed measurement frame (corresponding to the metrology frame / the frame where the wanted displacement are expressed).
|
||||
@ -1838,6 +1724,26 @@ Let's note:
|
||||
$O_R$ is the origin of this frame where the we want to position the point $O_M$ of the element.
|
||||
- $\{V\}$ is a frame which its axes are aligned with $\{W\}$ and its origin $O_V$ is coincident with the $O_M$
|
||||
|
||||
Reference Position with respect to fixed frame {W}: ${}^WT_R$
|
||||
#+begin_src matlab
|
||||
Dxr = 0;
|
||||
Dyr = 0;
|
||||
Dzr = 0.1;
|
||||
Rxr = pi;
|
||||
Ryr = 0;
|
||||
Rzr = 0;
|
||||
#+end_src
|
||||
|
||||
Measured Position with respect to fixed frame {W}: ${}^WT_M$
|
||||
#+begin_src matlab
|
||||
Dxm = 0;
|
||||
Dym = 0;
|
||||
Dzm = 0;
|
||||
Rxm = pi;
|
||||
Rym = 0;
|
||||
Rzm = 0;
|
||||
#+end_src
|
||||
|
||||
We measure the position and orientation (pose) of the element represented by the frame $\{M\}$ with respect to frame $\{W\}$.
|
||||
Thus we can compute the Homogeneous transformation matrix ${}^WT_M$.
|
||||
#+begin_src matlab
|
||||
@ -1906,5 +1812,4 @@ Now we want to express ${}^VT_R$:
|
||||
Ery = atan2( T(1, 3), sqrt(T(1, 1)^2 + T(1, 2)^2));
|
||||
Erx = atan2(-T(2, 3)/cos(Ery), T(3, 3)/cos(Ery));
|
||||
Erz = atan2(-T(1, 2)/cos(Ery), T(1, 1)/cos(Ery));
|
||||
end
|
||||
#+end_src
|
||||
|
@ -1,50 +0,0 @@
|
||||
function [Edx, Edy, Edz, Erx, Ery, Erz] = computePosErrorTest(Dxr, Dyr, Dzr, Rxr, Ryr, Rzr, Dxm, Dym, Dzm, Rxm, Rym, Rzm)
|
||||
|
||||
%% Measured Pose
|
||||
WTm = zeros(4,4);
|
||||
|
||||
WTm(1:3, 1:3) = [cos(Rzm) -sin(Rzm) 0;
|
||||
sin(Rzm) cos(Rzm) 0;
|
||||
0 0 1] * ...
|
||||
[cos(Rym) 0 sin(Rym);
|
||||
0 1 0;
|
||||
-sin(Rym) 0 cos(Rym)] * ...
|
||||
[1 0 0;
|
||||
0 cos(Rxm) -sin(Rxm);
|
||||
0 sin(Rxm) cos(Rxm)];
|
||||
WTm(1:4, 4) = [Dxm ; Dym ; Dzm; 1];
|
||||
|
||||
%% Reference Pose
|
||||
WTr = zeros(4,4);
|
||||
|
||||
WTr(1:3, 1:3) = [cos(Rzr) -sin(Rzr) 0;
|
||||
sin(Rzr) cos(Rzr) 0;
|
||||
0 0 1] * ...
|
||||
[cos(Ryr) 0 sin(Ryr);
|
||||
0 1 0;
|
||||
-sin(Ryr) 0 cos(Ryr)] * ...
|
||||
[1 0 0;
|
||||
0 cos(Rxr) -sin(Rxr);
|
||||
0 sin(Rxr) cos(Rxr)];
|
||||
WTr(1:4, 4) = [Dxr ; Dyr ; Dzr; 1];
|
||||
|
||||
WTv = eye(4);
|
||||
WTv(1:3, 4) = WTm(1:3, 4);
|
||||
|
||||
%% Wanted pose expressed in a frame corresponding to the actual measured pose
|
||||
MTr = [WTm(1:3,1:3)', -WTm(1:3,1:3)'*WTm(1:3,4) ; 0 0 0 1]*WTr;
|
||||
|
||||
%% Wanted pose expressed in a frame coincident with the actual position but with no rotation
|
||||
VTr = [WTv(1:3,1:3)', -WTv(1:3,1:3)'*WTv(1:3,4) ; 0 0 0 1] * WTr;
|
||||
|
||||
%% Extract Translations and Rotations from the Homogeneous Matrix
|
||||
T = MTr;
|
||||
Edx = T(1, 4);
|
||||
Edy = T(2, 4);
|
||||
Edz = T(3, 4);
|
||||
|
||||
% The angles obtained are u-v-w Euler angles (rotations in the moving frame)
|
||||
Ery = atan2( T(1, 3), sqrt(T(1, 1)^2 + T(1, 2)^2));
|
||||
Erx = atan2(-T(2, 3)/cos(Ery), T(3, 3)/cos(Ery));
|
||||
Erz = atan2(-T(1, 2)/cos(Ery), T(1, 1)/cos(Ery));
|
||||
end
|
Loading…
Reference in New Issue
Block a user