Add mask to specify stewart object. Add script to identify transfer functions
This commit is contained in:
parent
17c9de54fb
commit
6fe96032fd
1
.gitignore
vendored
1
.gitignore
vendored
@ -26,3 +26,4 @@ octave-workspace
|
||||
|
||||
# Custom
|
||||
stewart_displacement_grt_rtw/
|
||||
Figures/
|
||||
|
77
identification_control.m
Normal file
77
identification_control.m
Normal file
@ -0,0 +1,77 @@
|
||||
%% Script Description
|
||||
% Script used to identify the transfer functions of the
|
||||
% Stewart platform (from actuator to displacement)
|
||||
|
||||
%%
|
||||
clear;
|
||||
close all;
|
||||
clc
|
||||
|
||||
%% Define options for bode plots
|
||||
bode_opts = bodeoptions;
|
||||
|
||||
bode_opts.Title.FontSize = 12;
|
||||
bode_opts.XLabel.FontSize = 12;
|
||||
bode_opts.YLabel.FontSize = 12;
|
||||
bode_opts.FreqUnits = 'Hz';
|
||||
bode_opts.MagUnits = 'abs';
|
||||
bode_opts.MagScale = 'log';
|
||||
bode_opts.PhaseWrapping = 'on';
|
||||
bode_opts.PhaseVisible = 'on';
|
||||
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_simscape';
|
||||
|
||||
%% Centralized control (Cartesian coordinates)
|
||||
% Input/Output definition
|
||||
io(1) = linio([mdl, '/F_cart'],1,'input');
|
||||
io(2) = linio([mdl, '/Stewart_Platform'],1,'output');
|
||||
|
||||
% Run the linearization
|
||||
G_cart = linearize(mdl,io, 0);
|
||||
|
||||
% Input/Output names
|
||||
G_cart.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||||
G_cart.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
||||
|
||||
% Bode Plot of the linearized function
|
||||
freqs = logspace(2, 4, 1000);
|
||||
|
||||
bodeFig({G_cart(1, 1), G_cart(2, 2), G_cart(3, 3)}, freqs, struct('phase', true))
|
||||
legend({'$F_x \rightarrow D_x$', '$F_y \rightarrow D_y$', '$F_z \rightarrow D_z$'})
|
||||
exportFig('hexapod_cart_trans', 'normal-normal')
|
||||
|
||||
bodeFig({G_cart(4, 4), G_cart(5, 5), G_cart(6, 6)}, freqs, struct('phase', true))
|
||||
legend({'$M_x \rightarrow R_x$', '$M_y \rightarrow R_y$', '$M_z \rightarrow R_z$'})
|
||||
exportFig('hexapod_cart_rot', 'normal-normal')
|
||||
|
||||
bodeFig({G_cart(1, 1), G_cart(2, 1), G_cart(3, 1)}, freqs, struct('phase', true))
|
||||
legend({'$F_x \rightarrow D_x$', '$F_x \rightarrow D_y$', '$F_x \rightarrow D_z$'})
|
||||
exportFig('hexapod_cart_coupling', 'normal-normal')
|
||||
|
||||
%% Centralized control (Cartesian coordinates)
|
||||
% Input/Output definition
|
||||
io(1) = linio([mdl, '/F_legs'],1,'input');
|
||||
io(2) = linio([mdl, '/Stewart_Platform'],2,'output');
|
||||
|
||||
% Run the linearization
|
||||
G_legs = linearize(mdl,io, 0);
|
||||
|
||||
% Input/Output names
|
||||
G_legs.InputName = {'F1', 'F2', 'F3', 'M4', 'M5', 'M6'};
|
||||
G_legs.OutputName = {'D1', 'D2', 'D3', 'R4', 'R5', 'R6'};
|
||||
|
||||
% Bode Plot of the linearized function
|
||||
freqs = logspace(2, 4, 1000);
|
||||
|
||||
bodeFig({G_legs(1, 1)}, freqs, struct('phase', true))
|
||||
legend({'$F_i \rightarrow D_i$'})
|
||||
exportFig('hexapod_legs', 'normal-normal')
|
||||
|
||||
bodeFig({G_legs(1, 1), G_legs(2, 1)}, freqs, struct('phase', true))
|
||||
legend({'$F_i \rightarrow D_i$', '$F_i \rightarrow D_j$'})
|
||||
exportFig('hexapod_legs_coupling', 'normal-normal')
|
7
init_simulink.m
Normal file
7
init_simulink.m
Normal file
@ -0,0 +1,7 @@
|
||||
params_micro_hexapod;
|
||||
micro_hexapod = stewart;
|
||||
|
||||
params_nano_hexapod;
|
||||
nano_hexapod = stewart;
|
||||
|
||||
clear stewart;
|
@ -32,7 +32,7 @@ Leg = struct();
|
||||
|
||||
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]
|
||||
Leg.k.ax = 5e7; % Stiffness of each leg [N/m]
|
||||
Leg.ksi.ax = 10; % Maximum amplification at resonance []
|
||||
Leg.ksi.ax = 3; % Maximum amplification at resonance []
|
||||
Leg.rad.bottom = 25; % Radius of the cylinder of the bottom part [mm]
|
||||
Leg.rad.top = 17; % Radius of the cylinder of the top part [mm]
|
||||
Leg.density = 8000; % Density of the material [kg/m^3]
|
||||
|
@ -55,7 +55,7 @@ SP.density.top = 8000; % [kg/m^3]
|
||||
SP.color.bottom = [0.7 0.7 0.7]; % [rgb]
|
||||
SP.color.top = [0.7 0.7 0.7]; % [rgb]
|
||||
SP.k.ax = 0; % [N*m/deg]
|
||||
SP.ksi.ax = 10;
|
||||
SP.ksi.ax = 3;
|
||||
|
||||
SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
|
||||
SP.thickness.top = SP.height.top-Leg.sphere.top; % [mm]
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user