Add functions and documentation to initialize stewart platforms

This commit is contained in:
Thomas Dehaeze 2019-12-20 18:13:45 +01:00
parent 4d47a51d9f
commit 502f73069d
7 changed files with 967 additions and 755 deletions

File diff suppressed because it is too large Load Diff

View File

@ -46,29 +46,38 @@ From $\bm{a}_{i}$ and $\bm{b}_{i}$, we can determine the *length and orientation
- $l_{i}$ is the length of the strut
- ${}^{A}\hat{\bm{s}}_{i}$ is the unit vector align with the strut
The position of the Spherical joints can be done using various methods:
The position of the Spherical joints can be computed using various methods:
- Cubic configuration
- Geometrical
- Definition them by hand
- Circular configuration
- Arbitrary position
- These methods should be easily scriptable and corresponds to specific functions that returns ${}^{F}\bm{a}_{i}$ and ${}^{M}\bm{b}_{i}$.
The input of these functions are the parameters corresponding to the wanted geometry.
We need also to know the height of the platform.
For Simscape, we need:
- The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
- The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$
- The position and orientation of each spherical joint fixed to the fixed base: ${}^{F}\bm{a}_{i}$ and ${}^{F}\bm{R}_{a_{i}}$
- The position and orientation of each spherical joint fixed to the moving platform: ${}^{M}\bm{b}_{i}$ and ${}^{M}\bm{R}_{b_{i}}$
- The rest length of each strut: $l_{i}$
- The stiffness and damping of each actuator: $k_{i}$ and $c_{i}$
- The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
- The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$
* Procedure
The procedure is the following:
1. Choose $H$
2. Choose ${}^{F}\bm{O}_{A}$ and ${}^{M}\bm{O}_{B}$
3. Choose $\bm{a}_{i}$ and $\bm{b}_{i}$, probably by specifying ${}^{F}\bm{a}_{i}$ and ${}^{M}\bm{b}_{i}$
4. Choose $k_{i}$ and $c_{i}$
The procedure to define the Stewart platform is the following:
1. Define the initial position of frames {A}, {B}, {F} and {M}.
We do that using the =initializeFramesPositions= function.
We have to specify the total height of the Stewart platform $H$ and the position ${}^{M}O_{B}$ of {B} with respect to {M}.
2. Compute the positions of joints ${}^{F}a_{i}$ and ${}^{M}b_{i}$.
We can do that using various methods depending on the wanted architecture:
- =generateCubicConfiguration= permits to generate a cubic configuration
3. Compute the position and orientation of the joints with respect to the fixed base and the moving platform.
This is done with the =computeJointsPose= function.
4. Define the dynamical properties of the Stewart platform.
The output are the stiffness and damping of each strut $k_{i}$ and $c_{i}$.
This can be done we simply choosing directly the stiffness and damping of each strut.
The stiffness and damping of each actuator can also be determine from the wanted stiffness of the Stewart platform for instance.
5. Define the mass and inertia of each element of the Stewart platform.
By following this procedure, we obtain a Matlab structure =stewart= that contains all the information for the Simscape model and for further analysis.
* Matlab Code
** Matlab Init :noexport:ignore:
@ -85,21 +94,294 @@ The procedure is the following:
open('stewart_platform.slx')
#+end_src
** Define the Height of the Platform
** Test the functions
#+begin_src matlab
stewart = initializeFramesPositions(struct('H', 90e-3, 'MO_B', 50e-3));
stewart = generateCubicConfiguration(stewart, struct('Hc', 60e-3, 'FOc', 50e-3, 'FHa', 15e-3, 'MHb', 15e-3));
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart, struct('Ki', 1e6*ones(6,1), 'Ci', 1e2*ones(6,1)));
#+end_src
* =initializeFramesPositions=: Initialize the positions of frames {A}, {B}, {F} and {M}
:PROPERTIES:
:header-args:matlab+: :tangle src/initializeFramesPositions.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:initializeFramesPositions>>
This Matlab function is accessible [[file:src/initializeFramesPositions.m][here]].
** Function description
#+begin_src matlab
function [stewart] = initializeFramesPositions(opts_param)
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
%
% Syntax: [stewart] = initializeFramesPositions(H, MO_B)
%
% Inputs:
% - opts_param - Structure with the following fields:
% - H [1x1] - Total Height of the Stewart Platform [m]
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
%
% Outputs:
% - stewart - A structure with the following fields:
% - H [1x1] - Total Height of the Stewart Platform [m]
% - FO_M [3x1] - Position of {M} with respect to {F} [m]
% - MO_B [3x1] - Position of {B} with respect to {M} [m]
% - FO_A [3x1] - Position of {A} with respect to {F} [m]
#+end_src
** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct( ...
'H', 90e-3, ... % [m]
'MO_B', 50e-3 ... % [m]
);
#+end_src
Populate opts with input parameters
#+begin_src matlab
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
#+end_src
** Initialize the Stewart structure
#+begin_src matlab
stewart = struct();
#+end_src
** Compute the position of each frame
#+begin_src matlab
stewart.H = opts.H; % Total Height of the Stewart Platform [m]
stewart.FO_M = [0; 0; stewart.H]; % Position of {M} with respect to {F} [m]
stewart.MO_B = [0; 0; opts.MO_B]; % Position of {B} with respect to {M} [m]
stewart.FO_A = stewart.MO_B + stewart.FO_M; % Position of {A} with respect to {F} [m]
#+end_src
* =generateCubicConfiguration=: Generate a Cubic Configuration
:PROPERTIES:
:header-args:matlab+: :tangle src/generateCubicConfiguration.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:generateCubicConfiguration>>
This Matlab function is accessible [[file:src/generateCubicConfiguration.m][here]].
** Function description
#+begin_src matlab
function [stewart] = generateCubicConfiguration(stewart, opts_param)
% generateCubicConfiguration - Generate a Cubic Configuration
%
% Syntax: [stewart] = generateCubicConfiguration(stewart, opts_param)
%
% Inputs:
% - stewart - A structure with the following fields
% - H [1x1] - Total height of the platform [m]
% - opts_param - Structure with the following fields:
% - Hc [1x1] - Height of the "useful" part of the cube [m]
% - FOc [1x1] - Height of the center of the cute with respect to {F} [m]
% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
#+end_src
** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct( ...
'Hc', 60e-3, ... % [m]
'FOc', 50e-3, ... % [m]
'FHa', 15e-3, ... % [m]
'MHb', 15e-3 ... % [m]
);
#+end_src
Populate opts with input parameters
#+begin_src matlab
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
#+end_src
** Position of the Cube
We define the useful points of the cube with respect to the Cube's center.
${}^{C}C$ are the 6 vertices of the cubes expressed in a frame {C} which is located at the center of the cube and aligned with {F} and {M}.
#+begin_src matlab
sx = [ 2; -1; -1];
sy = [ 0; 1; -1];
sz = [ 1; 1; 1];
R = [sx, sy, sz]./vecnorm([sx, sy, sz]);
L = opts.Hc*sqrt(3);
Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*opts.Hc];
CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg
#+end_src
** Compute the pose
We can compute the vector of each leg ${}^{C}\hat{\bm{s}}_{i}$ (unit vector from ${}^{C}C_{f}$ to ${}^{C}C_{m}$).
#+begin_src matlab
CSi = (CCm - CCf)./vecnorm(CCm - CCf);
#+end_src
We now which to compute the position of the joints $a_{i}$ and $b_{i}$.
#+begin_src matlab
stewart.Fa = CCf + [0; 0; opts.FOc] + ((opts.FHa-(opts.FOc-opts.Hc/2))./CSi(3,:)).*CSi;
stewart.Mb = CCf + [0; 0; opts.FOc-stewart.H] + ((stewart.H-opts.MHb-(opts.FOc-opts.Hc/2))./CSi(3,:)).*CSi;
#+end_src
* =computeJointsPose=: Compute the Pose of the Joints
:PROPERTIES:
:header-args:matlab+: :tangle src/computeJointsPose.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:computeJointsPose>>
This Matlab function is accessible [[file:src/computeJointsPose.m][here]].
** Function description
#+begin_src matlab
function [stewart] = computeJointsPose(stewart)
% computeJointsPose -
%
% Syntax: [stewart] = computeJointsPose(stewart, opts_param)
%
% Inputs:
% - stewart - A structure with the following fields
% - FO_A [3x1] - Position of {A} with respect to {F}
% - MO_B [3x1] - Position of {B} with respect to {M}
% - FO_M [3x1] - Position of {M} with respect to {F}
%
% Outputs:
% - stewart - A structure with the following added fields
% - Aa [3x6] - The i'th column is the position of ai with respect to {A}
% - Ab [3x6] - The i'th column is the position of bi with respect to {A}
% - Ba [3x6] - The i'th column is the position of ai with respect to {B}
% - Bb [3x6] - The i'th column is the position of bi with respect to {B}
% - l [6x1] - The i'th element is the initial length of strut i
% - As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
% - Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
% - FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
% - MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
#+end_src
** Compute the position of the Joints
#+begin_src matlab
stewart.Aa = stewart.Fa - repmat(stewart.FO_A, [1, 6]);
stewart.Bb = stewart.Mb - repmat(stewart.MO_B, [1, 6]);
stewart.Ab = stewart.Bb - repmat(-stewart.MO_B-stewart.FO_M+stewart.FO_A, [1, 6]);
stewart.Ba = stewart.Aa - repmat( stewart.MO_B+stewart.FO_M-stewart.FO_A, [1, 6]);
#+end_src
** Compute the strut length and orientation
#+begin_src matlab
stewart.As = (stewart.Ab - stewart.Aa)./vecnorm(stewart.Ab - stewart.Aa); % As_i is the i'th vector of As
stewart.l = vecnorm(stewart.Ab - stewart.Aa)';
#+end_src
#+begin_src matlab
stewart.Bs = (stewart.Bb - stewart.Ba)./vecnorm(stewart.Bb - stewart.Ba);
#+end_src
** Compute the orientation of the Joints
#+begin_src matlab
stewart.FRa = zeros(3,3,6);
stewart.MRb = zeros(3,3,6);
for i = 1:6
stewart.FRa(:,:,i) = [cross([0;1;0], stewart.As(:,i)) , cross(stewart.As(:,i), cross([0;1;0], stewart.As(:,i))) , stewart.As(:,i)];
stewart.FRa(:,:,i) = stewart.FRa(:,:,i)./vecnorm(stewart.FRa(:,:,i));
stewart.MRb(:,:,i) = [cross([0;1;0], stewart.Bs(:,i)) , cross(stewart.Bs(:,i), cross([0;1;0], stewart.Bs(:,i))) , stewart.Bs(:,i)];
stewart.MRb(:,:,i) = stewart.MRb(:,:,i)./vecnorm(stewart.MRb(:,:,i));
end
#+end_src
* =initializeStrutDynamics=: Add Stiffness and Damping properties of each strut
:PROPERTIES:
:header-args:matlab+: :tangle src/initializeStrutDynamics.m
:header-args:matlab+: :comments none :mkdirp yes :eval no
:END:
<<sec:initializeStrutDynamics>>
This Matlab function is accessible [[file:src/initializeStrutDynamics.m][here]].
** Function description
#+begin_src matlab
function [stewart] = initializeStrutDynamics(stewart, opts_param)
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
%
% Syntax: [stewart] = initializeStrutDynamics(opts_param)
%
% Inputs:
% - opts_param - Structure with the following fields:
% - Ki [6x1] - Stiffness of each strut [N/m]
% - Ci [6x1] - Damping of each strut [N/(m/s)]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - Ki [6x1] - Stiffness of each strut [N/m]
% - Ci [6x1] - Damping of each strut [N/(m/s)]
#+end_src
** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct( ...
'Ki', 1e6*ones(6,1), ... % [N/m]
'Ci', 1e2*ones(6,1) ... % [N/(m/s)]
);
#+end_src
Populate opts with input parameters
#+begin_src matlab
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
#+end_src
** Add Stiffness and Damping properties of each strut
#+begin_src matlab
stewart.Ki = opts.Ki;
stewart.Ci = opts.Ci;
#+end_src
* OLD :noexport:
** Define the Height of the Platform :noexport:
#+begin_src matlab
%% 1. Height of the platform. Location of {F} and {M}
H = 90e-3; % [m]
FO_M = [0; 0; H];
#+end_src
** Define the location of {A} and {B}
** Define the location of {A} and {B} :noexport:
#+begin_src matlab
%% 2. Location of {A} and {B}
FO_A = [0; 0; 100e-3] + FO_M;% [m,m,m]
MO_B = [0; 0; 100e-3];% [m,m,m]
#+end_src
** Define the position of $a_{i}$ and $b_{i}$
** Define the position of $a_{i}$ and $b_{i}$ :noexport:
#+begin_src matlab
%% 3. Position of ai and bi
Fa = zeros(3, 6); % Fa_i is the i'th vector of Fa
@ -130,15 +412,14 @@ The procedure is the following:
end
#+end_src
** Define the dynamical properties of each strut
** Define the dynamical properties of each strut :noexport:
#+begin_src matlab
%% 4. Stiffness and Damping of each strut
Ki = 1e6*ones(6,1);
Ci = 1e2*ones(6,1);
#+end_src
** Old Introduction :ignore:
** Old Introduction :noexport:
First, geometrical parameters are defined:
- ${}^A\bm{a}_i$ - Position of the joints fixed to the fixed base w.r.t $\{A\}$
- ${}^A\bm{b}_i$ - Position of the joints fixed to the mobile platform w.r.t $\{A\}$
@ -170,8 +451,7 @@ Other Parameters are defined for the Simscape simulation:
- Location of the point for the differential measurements
- Location of the Jacobian point for velocity/displacement computation
** Cubic Configuration
** Cubic Configuration :noexport:
To define the cubic configuration, we need to define 4 parameters:
- The size of the cube
- The location of the cube
@ -182,7 +462,7 @@ To do so, we specify the following parameters:
- $H_{C}$ the height of the useful part of the cube
- ${}^{F}O_{C}$ the position of the center of the cube with respect to $\{F\}$
- ${}^{F}H_{A}$: the height of the plane joining the points $a_{i}$ with respect to the frame $\{F\}$
- ${}^{M}H_{B}$: the height of the plane joining the points $b_{i}$ with respect to the frame $\{B\}$
- ${}^{M}H_{B}$: the height of the plane joining the points $b_{i}$ with respect to the frame $\{M\}$
We define the parameters
#+begin_src matlab
@ -225,7 +505,90 @@ We now which to compute the position of the joints $a_{i}$ and $b_{i}$.
Mb = CCf + [0; 0; FOc-H] + ((H-MHb-(FOc-Hc/2))./CSi(3,:)).*CSi; % TODO
#+end_src
* initializeCubicConfiguration
** initializeGeneralConfiguration :noexport:
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
:HEADER-ARGS:matlab+: :eval no
:HEADER-ARGS:matlab+: :tangle src/initializeGeneralConfiguration.m
:END:
*** Function description
The =initializeGeneralConfiguration= function takes one structure that contains configurations for the hexapod and returns one structure representing the Hexapod.
#+begin_src matlab
function [stewart] = initializeGeneralConfiguration(opts_param)
#+end_src
*** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct(...
'H_tot', 90, ... % Height of the platform [mm]
'H_joint', 15, ... % Height of the joints [mm]
'H_plate', 10, ... % Thickness of the fixed and mobile platforms [mm]
'R_bot', 100, ... % Radius where the legs articulations are positionned [mm]
'R_top', 80, ... % Radius where the legs articulations are positionned [mm]
'a_bot', 10, ... % Angle Offset [deg]
'a_top', 40, ... % Angle Offset [deg]
'da_top', 0 ... % Angle Offset from 0 position [deg]
);
#+end_src
Populate opts with input parameters
#+begin_src matlab
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
#+end_src
*** Geometry Description
#+name: fig:stewart_bottom_plate
#+caption: Schematic of the bottom plates with all the parameters
[[file:./figs/stewart_bottom_plate.png]]
*** Compute Aa and Ab
We compute $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
#+begin_src matlab
Aa = zeros(6, 3); % [mm]
Ab = zeros(6, 3); % [mm]
Bb = zeros(6, 3); % [mm]
#+end_src
#+begin_src matlab
for i = 1:3
Aa(2*i-1,:) = [opts.R_bot*cos( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Aa(2*i,:) = [opts.R_bot*cos( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Ab(2*i-1,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
Ab(2*i,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
end
Bb = Ab - opts.H_tot*[0,0,1];
#+end_src
*** Returns Stewart Structure
#+begin_src matlab :results none
stewart = struct();
stewart.Aa = Aa;
stewart.Ab = Ab;
stewart.Bb = Bb;
stewart.H_tot = opts.H_tot;
end
#+end_src
** initializeCubicConfiguration :noexport:
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
@ -234,12 +597,12 @@ We now which to compute the position of the joints $a_{i}$ and $b_{i}$.
:END:
<<sec:initializeCubicConfiguration>>
** Function description
*** Function description
#+begin_src matlab
function [stewart] = initializeCubicConfiguration(opts_param)
#+end_src
** Optional Parameters
*** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct(...
@ -259,7 +622,7 @@ Populate opts with input parameters
end
#+end_src
** Cube Creation
*** Cube Creation
#+begin_src matlab :results none
points = [0, 0, 0; ...
0, 0, 1; ...
@ -294,7 +657,7 @@ We use to rotation matrix to rotate the cube
end
#+end_src
** Vectors of each leg
*** Vectors of each leg
#+begin_src matlab :results none
leg_indices = [3, 4; ...
2, 4; ...
@ -315,7 +678,7 @@ Vectors are:
end
#+end_src
** Verification of Height of the Stewart Platform
*** Verification of Height of the Stewart Platform
If the Stewart platform is not contained in the cube, throw an error.
#+begin_src matlab :results none
@ -328,7 +691,7 @@ If the Stewart platform is not contained in the cube, throw an error.
end
#+end_src
** Determinate the location of the joints
*** Determinate the location of the joints
We now determine the location of the joints on the fixed platform w.r.t the fixed frame $\{A\}$.
$\{A\}$ is fixed to the bottom of the base.
#+begin_src matlab :results none
@ -360,7 +723,7 @@ And the location of the joints on the mobile platform with respect to $\{B\}$.
Ab = Ab - h*[0, 0, 1];
#+end_src
** Returns Stewart Structure
*** Returns Stewart Structure
#+begin_src matlab :results none
stewart = struct();
stewart.Aa = Aa;
@ -370,90 +733,7 @@ And the location of the joints on the mobile platform with respect to $\{B\}$.
end
#+end_src
* initializeGeneralConfiguration
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
:HEADER-ARGS:matlab+: :eval no
:HEADER-ARGS:matlab+: :tangle src/initializeGeneralConfiguration.m
:END:
** Function description
The =initializeGeneralConfiguration= function takes one structure that contains configurations for the hexapod and returns one structure representing the Hexapod.
#+begin_src matlab
function [stewart] = initializeGeneralConfiguration(opts_param)
#+end_src
** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct(...
'H_tot', 90, ... % Height of the platform [mm]
'H_joint', 15, ... % Height of the joints [mm]
'H_plate', 10, ... % Thickness of the fixed and mobile platforms [mm]
'R_bot', 100, ... % Radius where the legs articulations are positionned [mm]
'R_top', 80, ... % Radius where the legs articulations are positionned [mm]
'a_bot', 10, ... % Angle Offset [deg]
'a_top', 40, ... % Angle Offset [deg]
'da_top', 0 ... % Angle Offset from 0 position [deg]
);
#+end_src
Populate opts with input parameters
#+begin_src matlab
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
#+end_src
** Geometry Description
#+name: fig:stewart_bottom_plate
#+caption: Schematic of the bottom plates with all the parameters
[[file:./figs/stewart_bottom_plate.png]]
** Compute Aa and Ab
We compute $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
#+begin_src matlab
Aa = zeros(6, 3); % [mm]
Ab = zeros(6, 3); % [mm]
Bb = zeros(6, 3); % [mm]
#+end_src
#+begin_src matlab
for i = 1:3
Aa(2*i-1,:) = [opts.R_bot*cos( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) - opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Aa(2*i,:) = [opts.R_bot*cos( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.R_bot*sin( pi/180*(120*(i-1) + opts.a_bot) ), ...
opts.H_plate+opts.H_joint];
Ab(2*i-1,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top - opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
Ab(2*i,:) = [opts.R_top*cos( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.R_top*sin( pi/180*(120*(i-1) + opts.da_top + opts.a_top) ), ...
opts.H_tot - opts.H_plate - opts.H_joint];
end
Bb = Ab - opts.H_tot*[0,0,1];
#+end_src
** Returns Stewart Structure
#+begin_src matlab :results none
stewart = struct();
stewart.Aa = Aa;
stewart.Ab = Ab;
stewart.Bb = Bb;
stewart.H_tot = opts.H_tot;
end
#+end_src
* computeGeometricalProperties
** computeGeometricalProperties :noexport:
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
@ -461,12 +741,12 @@ end
:HEADER-ARGS:matlab+: :tangle src/computeGeometricalProperties.m
:END:
** Function description
*** Function description
#+begin_src matlab
function [stewart] = computeGeometricalProperties(stewart, opts_param)
#+end_src
** Optional Parameters
*** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct(...
@ -484,7 +764,7 @@ Populate opts with input parameters
end
#+end_src
** Rotation matrices
*** Rotation matrices
We initialize $l_i$ and $\hat{s}_i$
#+begin_src matlab
leg_length = zeros(6, 1); % [mm]
@ -525,7 +805,7 @@ The rotation matrix transforms the $z$ axis to the axis of the leg. The other ax
end
#+end_src
** Jacobian matrices
*** Jacobian matrices
Compute Jacobian Matrix
#+begin_src matlab
Jd = zeros(6);
@ -555,7 +835,7 @@ Compute Jacobian Matrix
end
#+end_src
* initializeMechanicalElements
** initializeMechanicalElements :noexport:
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
@ -563,12 +843,12 @@ Compute Jacobian Matrix
:HEADER-ARGS:matlab+: :tangle src/initializeMechanicalElements.m
:END:
** Function description
*** Function description
#+begin_src matlab
function [stewart] = initializeMechanicalElements(stewart, opts_param)
#+end_src
** Optional Parameters
*** Optional Parameters
Default values for opts.
#+begin_src matlab
opts = struct(...
@ -589,7 +869,7 @@ Populate opts with input parameters
end
#+end_src
** Bottom Plate
*** Bottom Plate
#+name: fig:stewart_bottom_plate
#+caption: Schematic of the bottom plates with all the parameters
[[file:./figs/stewart_bottom_plate.png]]
@ -630,7 +910,7 @@ The structure is added to the stewart structure
stewart.BP = BP;
#+end_src
** Top Plate
*** Top Plate
The top plate structure is initialized.
#+begin_src matlab
TP = struct();
@ -667,7 +947,7 @@ The structure is added to the stewart structure
stewart.TP = TP;
#+end_src
** Legs
*** Legs
#+name: fig:stewart_legs
#+caption: Schematic for the legs of the Stewart platform
[[file:./figs/stewart_legs.png]]
@ -731,7 +1011,7 @@ The structure is added to the stewart structure
stewart.Leg = Leg;
#+end_src
** Ball Joints
*** Ball Joints
#+name: fig:stewart_ball_joints
#+caption: Schematic of the support for the ball joints
[[file:./figs/stewart_ball_joints.png]]
@ -781,7 +1061,7 @@ The structure is added to the Hexapod structure
stewart.SP = SP;
#+end_src
* initializeSample
** initializeSample :noexport:
:PROPERTIES:
:HEADER-ARGS:matlab+: :exports code
:HEADER-ARGS:matlab+: :comments no
@ -789,12 +1069,12 @@ The structure is added to the Hexapod structure
:HEADER-ARGS:matlab+: :tangle src/initializeSample.m
:END:
** Function description
*** Function description
#+begin_src matlab
function [] = initializeSample(opts_param)
#+end_src
** Optional Parameters
*** Optional Parameters
Default values for opts.
#+begin_src matlab
sample = struct( ...
@ -816,7 +1096,7 @@ Populate opts with input parameters
end
#+end_src
** Save the Sample structure
*** Save the Sample structure
#+begin_src matlab
save('./mat/sample.mat', 'sample');
#+end_src

45
src/computeJointsPose.m Normal file
View File

@ -0,0 +1,45 @@
function [stewart] = computeJointsPose(stewart)
% computeJointsPose -
%
% Syntax: [stewart] = computeJointsPose(stewart, opts_param)
%
% Inputs:
% - stewart - A structure with the following fields
% - FO_A [3x1] - Position of {A} with respect to {F}
% - MO_B [3x1] - Position of {B} with respect to {M}
% - FO_M [3x1] - Position of {M} with respect to {F}
%
% Outputs:
% - stewart - A structure with the following added fields
% - Aa [3x6] - The i'th column is the position of ai with respect to {A}
% - Ab [3x6] - The i'th column is the position of bi with respect to {A}
% - Ba [3x6] - The i'th column is the position of ai with respect to {B}
% - Bb [3x6] - The i'th column is the position of bi with respect to {B}
% - l [6x1] - The i'th element is the initial length of strut i
% - As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
% - Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
% - FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
% - MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
stewart.Aa = stewart.Fa - repmat(stewart.FO_A, [1, 6]);
stewart.Bb = stewart.Mb - repmat(stewart.MO_B, [1, 6]);
stewart.Ab = stewart.Bb - repmat(-stewart.MO_B-stewart.FO_M+stewart.FO_A, [1, 6]);
stewart.Ba = stewart.Aa - repmat( stewart.MO_B+stewart.FO_M-stewart.FO_A, [1, 6]);
stewart.As = (stewart.Ab - stewart.Aa)./vecnorm(stewart.Ab - stewart.Aa); % As_i is the i'th vector of As
stewart.l = vecnorm(stewart.Ab - stewart.Aa)';
stewart.Bs = (stewart.Bb - stewart.Ba)./vecnorm(stewart.Bb - stewart.Ba);
stewart.FRa = zeros(3,3,6);
stewart.MRb = zeros(3,3,6);
for i = 1:6
stewart.FRa(:,:,i) = [cross([0;1;0], stewart.As(:,i)) , cross(stewart.As(:,i), cross([0;1;0], stewart.As(:,i))) , stewart.As(:,i)];
stewart.FRa(:,:,i) = stewart.FRa(:,:,i)./vecnorm(stewart.FRa(:,:,i));
stewart.MRb(:,:,i) = [cross([0;1;0], stewart.Bs(:,i)) , cross(stewart.Bs(:,i), cross([0;1;0], stewart.Bs(:,i))) , stewart.Bs(:,i)];
stewart.MRb(:,:,i) = stewart.MRb(:,:,i)./vecnorm(stewart.MRb(:,:,i));
end

View File

@ -0,0 +1,48 @@
function [stewart] = generateCubicConfiguration(stewart, opts_param)
% generateCubicConfiguration -
%
% Syntax: [stewart] = generateCubicConfiguration(stewart, opts_param)
%
% Inputs:
% - stewart - the Stewart struct should have a parameter "H" corresponding to the total height of the platform
% - opts_param - Structure with the following parameters
% - Hc [1x1] - Height of the "useful" part of the cube [m]
% - FOc [1x1] - Height of the center of the cute with respect to {F} [m]
% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
%
% Outputs:
% - stewart - updated Stewart structure with the added parameters:
% - Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
% - Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
opts = struct( ...
'Hc', 60e-3, ... % [m]
'FOc', 50e-3, ... % [m]
'FHa', 15e-3, ... % [m]
'MHb', 15e-3 ... % [m]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
sx = [ 2; -1; -1];
sy = [ 0; 1; -1];
sz = [ 1; 1; 1];
R = [sx, sy, sz]./vecnorm([sx, sy, sz]);
L = opts.Hc*sqrt(3);
Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*opts.Hc];
CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg
CSi = (CCm - CCf)./vecnorm(CCm - CCf);
stewart.Fa = CCf + [0; 0; opts.FOc] + ((opts.FHa-(opts.FOc-opts.Hc/2))./CSi(3,:)).*CSi;
stewart.Mb = CCf + [0; 0; opts.FOc-stewart.H] + ((stewart.H-opts.MHb-(opts.FOc-opts.Hc/2))./CSi(3,:)).*CSi;

View File

@ -0,0 +1,37 @@
function [stewart] = initializeFramesPositions(opts_param)
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
%
% Syntax: [stewart] = initializeFramesPositions(H, MO_B)
%
% Inputs:
% - opts_param - Structure with the following fields:
% - H [1x1] - Total Height of the Stewart Platform [m]
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
%
% Outputs:
% - stewart - A structure with the following fields:
% - H [1x1] - Total Height of the Stewart Platform [m]
% - FO_M [3x1] - Position of {M} with respect to {F} [m]
% - MO_B [3x1] - Position of {B} with respect to {M} [m]
% - FO_A [3x1] - Position of {A} with respect to {F} [m]
opts = struct( ...
'H', 90e-3, ... % [m]
'MO_B', 50e-3 ... % [m]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
stewart = struct();
stewart.H = opts.H; % Total Height of the Stewart Platform [m]
stewart.FO_M = [0; 0; stewart.H]; % Position of {M} with respect to {F} [m]
stewart.MO_B = [0; 0; opts.MO_B]; % Position of {B} with respect to {M} [m]
stewart.FO_A = stewart.MO_B + stewart.FO_M; % Position of {A} with respect to {F} [m]

View File

@ -0,0 +1,28 @@
function [stewart] = initializeStrutDynamics(stewart, opts_param)
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
%
% Syntax: [stewart] = initializeStrutDynamics(opts_param)
%
% Inputs:
% - opts_param - Structure with the following fields:
% - Ki [6x1] - Stiffness of each strut [N/m]
% - Ci [6x1] - Damping of each strut [N/(m/s)]
%
% Outputs:
% - stewart - updated Stewart structure with the added fields:
% - Ki [6x1] - Stiffness of each strut [N/m]
% - Ci [6x1] - Damping of each strut [N/(m/s)]
opts = struct( ...
'Ki', 1e6*ones(6,1), ... % [N/m]
'Ci', 1e2*ones(6,1) ... % [N/(m/s)]
);
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
stewart.Ki = opts.Ki;
stewart.Ci = opts.Ci;

BIN
stewart_strut.slx Normal file

Binary file not shown.