Update the dynamic study
This commit is contained in:
@@ -40,6 +40,8 @@
|
||||
|
||||
* Compare external forces and forces applied by the actuators
|
||||
** Introduction :ignore:
|
||||
In this section, we wish to compare the effect of forces/torques applied by the actuators with the effect of external forces/torques on the displacement of the mobile platform.
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@@ -58,6 +60,7 @@
|
||||
#+end_src
|
||||
|
||||
** Comparison with fixed support
|
||||
Let's generate a Stewart platform.
|
||||
#+begin_src matlab
|
||||
stewart = initializeStewartPlatform();
|
||||
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
|
||||
@@ -72,12 +75,14 @@
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
#+end_src
|
||||
|
||||
We don't put any flexibility below the Stewart platform such that *its base is fixed to an inertial frame*.
|
||||
We also don't put any payload on top of the Stewart platform.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\bm{\tau}$ to $\mathcal{\bm{X}}$:
|
||||
The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
@@ -97,12 +102,13 @@ Estimation of the transfer function from $\bm{\tau}$ to $\mathcal{\bm{X}}$:
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame $\{B\}$ fixed to the mobile platform:
|
||||
#+begin_src matlab
|
||||
Gc = minreal(G*inv(stewart.kinematics.J'));
|
||||
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$:
|
||||
We also extract the transfer function from external forces $\bm{\mathcal{F}}_{\text{ext}}$ on the frame $\{B\}$ fixed to the mobile platform to the relative displacement $\mathcal{\bm{X}}$ of $\{B\}$ with respect to frame $\{A\}$:
|
||||
#+begin_src matlab
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
@@ -115,6 +121,8 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
The comparison of the two transfer functions is shown in Figure [[fig:comparison_Fext_F_fixed_base]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
@@ -126,7 +134,7 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
plot(freqs, abs(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
@@ -137,26 +145,28 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend({'$\mathcal{X}_{x}/\mathcal{F}_{x}$', '$\mathcal{X}_{x}/\mathcal{F}_{x,ext}$'});
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/comparison_Fext_F_fixed_base.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:comparison_Fext_F_fixed_base
|
||||
#+caption: Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ ([[./figs/comparison_Fext_F_fixed_base.png][png]], [[./figs/comparison_Fext_F_fixed_base.pdf][pdf]])
|
||||
[[file:figs/comparison_Fext_F_fixed_base.png]]
|
||||
|
||||
** Comparison with a flexible support
|
||||
We redo the identification for when the Stewart platform is on a flexible support.
|
||||
We now add a flexible support under the Stewart platform.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'flexible');
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\bm{\tau}$ to $\mathcal{\bm{X}}$:
|
||||
And we perform again the identification.
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'stewart_platform_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||||
@@ -166,15 +176,10 @@ Estimation of the transfer function from $\bm{\tau}$ to $\mathcal{\bm{X}}$:
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
Gc = minreal(G*inv(stewart.kinematics.J'));
|
||||
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
#+end_src
|
||||
|
||||
Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$:
|
||||
#+begin_src matlab
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
|
||||
@@ -186,6 +191,8 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
The comparison between the obtained transfer functions is shown in Figure [[fig:comparison_Fext_F_flexible_base]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
@@ -197,7 +204,7 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
plot(freqs, abs(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
@@ -208,10 +215,20 @@ Estimation of the transfer function from $\bm{\mathcal{F}}_{\text{ext}}$ to $\ma
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend({'$\mathcal{X}_{x}/\mathcal{F}_{x}$', '$\mathcal{X}_{x}/\mathcal{F}_{x,ext}$'});
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/comparison_Fext_F_flexible_base.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:comparison_Fext_F_flexible_base
|
||||
#+caption: Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ ([[./figs/comparison_Fext_F_flexible_base.png][png]], [[./figs/comparison_Fext_F_flexible_base.pdf][pdf]])
|
||||
[[file:figs/comparison_Fext_F_flexible_base.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
The transfer function from forces/torques applied by the actuators on the payload $\bm{\mathcal{F}} = \bm{J}^T \bm{\tau}$ to the pose of the mobile platform $\bm{\mathcal{X}}$ is the same as the transfer function from external forces/torques to $\bm{\mathcal{X}}$ as long as the Stewart platform's base is fixed.
|
||||
@@ -219,6 +236,8 @@ The transfer function from forces/torques applied by the actuators on the payloa
|
||||
|
||||
* Comparison of the static transfer function and the Compliance matrix
|
||||
** Introduction :ignore:
|
||||
In this section, we see how the Compliance matrix of the Stewart platform is linked to the static relation between $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@@ -252,6 +271,7 @@ Initialization of the Stewart platform.
|
||||
stewart = initializeInertialSensor(stewart, 'type', 'none');
|
||||
#+end_src
|
||||
|
||||
No flexibility below the Stewart platform and no payload.
|
||||
#+begin_src matlab
|
||||
ground = initializeGround('type', 'none');
|
||||
payload = initializePayload('type', 'none');
|
||||
|
Reference in New Issue
Block a user