Add css and js. Add lots of org mode files.

This commit is contained in:
2019-03-22 12:03:59 +01:00
parent ca64e189b8
commit 2914d01e8f
54 changed files with 4756 additions and 676 deletions

View File

@@ -1,51 +1,67 @@
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:1]]
function [sys] = identifyPlant(opts_param)
% identifyPlant:1 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:2]]
%% Default values for opts
opts = struct();
opts = struct();
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_identification';
%% Input/Output definition
io(1) = linio([mdl, '/F'], 1, 'input'); % Cartesian forces
io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces
io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces
io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion
io(5) = linio([mdl, '/Dm'], 1, 'output'); % Relative Motion
io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg
io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg
io(8) = linio([mdl, '/Xm'], 1, 'output'); % Absolute motion of platform
%% Run the linearization
G = linearize(mdl, io, 0);
%% Input/Output names
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ...
'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'};
G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ...
'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ...
'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'};
%% Cut into sub transfer functions
sys.G_cart = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}));
sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_legs = G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
sys.G_tran = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));
sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
sys.G_all = minreal(G);
end
% identifyPlant:2 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:3]]
options = linearizeOptions;
options.SampleTime = 0;
% identifyPlant:3 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:4]]
mdl = 'stewart';
% identifyPlant:4 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:5]]
%% Inputs
io(1) = linio([mdl, '/F'], 1, 'input'); % Cartesian forces
io(2) = linio([mdl, '/Fl'], 1, 'input'); % Leg forces
io(3) = linio([mdl, '/Fd'], 1, 'input'); % Direct forces
io(4) = linio([mdl, '/Dw'], 1, 'input'); % Base motion
%% Outputs
io(5) = linio([mdl, '/Dm'], 1, 'output'); % Relative Motion
io(6) = linio([mdl, '/Dlm'], 1, 'output'); % Displacement of each leg
io(7) = linio([mdl, '/Flm'], 1, 'output'); % Force sensor in each leg
io(8) = linio([mdl, '/Xm'], 1, 'output'); % Absolute motion of platform
% identifyPlant:5 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:6]]
G = linearize(mdl, io, 0);
% identifyPlant:6 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:7]]
G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6', ...
'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz', ...
'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'};
G.OutputName = {'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm', ...
'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m', ...
'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m', ...
'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'};
% identifyPlant:7 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:8]]
sys.G_cart = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}));
sys.G_forc = minreal(G({'F1m', 'F2m', 'F3m', 'F4m', 'F5m', 'F6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_legs = minreal(G({'D1m', 'D2m', 'D3m', 'D4m', 'D5m', 'D6m'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}));
sys.G_tran = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'}));
sys.G_comp = minreal(G({'Dxm', 'Dym', 'Dzm', 'Rxm', 'Rym', 'Rzm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
sys.G_iner = minreal(G({'Dxtm', 'Dytm', 'Dztm', 'Rxtm', 'Rytm', 'Rztm'}, {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'}));
% sys.G_all = minreal(G);
% identifyPlant:8 ends here
% [[file:~/MEGA/These/Matlab/Simscape/stewart-simscape/identification.org::*identifyPlant][identifyPlant:9]]
end
% identifyPlant:9 ends here

View File

@@ -1,86 +1,228 @@
% Function description and arguments
% The =initializeHexapod= function takes one structure that contains configurations for the hexapod and returns one structure representing the hexapod.
function [stewart] = initializeHexapod(opts_param)
% Default values for opts.
opts = struct(...
'height', 90, ... % Height of the platform [mm]
'density', 8000, ... % Density of the material used for the hexapod [kg/m3]
'k_ax', 1e8, ... % Stiffness of each actuator [N/m]
'c_ax', 100, ... % Damping of each actuator [N/(m/s)]
'c_ax', 1000, ... % Damping of each actuator [N/(m/s)]
'stroke', 50e-6, ... % Maximum stroke of each actuator [m]
'name', 'stewart' ... % Name of the file
);
% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
% Initialization of the stewart structure
% We initialize the Stewart structure
stewart = struct();
% And we defined its total height.
stewart.H = opts.height; % [mm]
% Bottom Plate
% #+name: fig:stewart_bottom_plate
% #+caption: Schematic of the bottom plates with all the parameters
% [[file:./figs/stewart_bottom_plate.png]]
% The bottom plate structure is initialized.
BP = struct();
% We defined its internal radius (if there is a hole in the bottom plate) and its outer radius.
BP.Rint = 0; % Internal Radius [mm]
BP.Rext = 150; % External Radius [mm]
% We define its thickness.
BP.H = 10; % Thickness of the Bottom Plate [mm]
% At which radius legs will be fixed and with that angle offset.
BP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
BP.alpha = 10; % Angle Offset [deg]
% We defined the density of the material of the bottom plate.
BP.density = opts.density; % Density of the material [kg/m3]
% And its color.
BP.color = [0.7 0.7 0.7]; % Color [RGB]
% Then the profile of the bottom plate is computed and will be used by Simscape
BP.shape = [BP.Rint BP.H; BP.Rint 0; BP.Rext 0; BP.Rext BP.H]; % [mm]
% The structure is added to the stewart structure
stewart.BP = BP;
% Top Plate
% The top plate structure is initialized.
TP = struct();
% We defined the internal and external radius of the top plate.
TP.Rint = 0; % [mm]
TP.Rext = 100; % [mm]
% The thickness of the top plate.
TP.H = 10; % [mm]
% At which radius and angle are fixed the legs.
TP.Rleg = 100; % Radius where the legs articulations are positionned [mm]
TP.alpha = 20; % Angle [deg]
TP.dalpha = 0; % Angle Offset from 0 position [deg]
% The density of its material.
TP.density = opts.density; % Density of the material [kg/m3]
% Its color.
TP.color = [0.7 0.7 0.7]; % Color [RGB]
% Then the shape of the top plate is computed
TP.shape = [TP.Rint TP.H; TP.Rint 0; TP.Rext 0; TP.Rext TP.H];
% The structure is added to the stewart structure
stewart.TP = TP;
% Legs
% #+name: fig:stewart_legs
% #+caption: Schematic for the legs of the Stewart platform
% [[file:./figs/stewart_legs.png]]
% The leg structure is initialized.
Leg = struct();
% The maximum Stroke of each leg is defined.
Leg.stroke = opts.stroke; % [m]
% The stiffness and damping of each leg are defined
Leg.k_ax = opts.k_ax; % Stiffness of each leg [N/m]
Leg.c_ax = opts.c_ax; % Damping of each leg [N/(m/s)]
% The radius of the legs are defined
Leg.Rtop = 10; % Radius of the cylinder of the top part of the leg[mm]
Leg.Rbot = 12; % Radius of the cylinder of the bottom part of the leg [mm]
% The density of its material.
Leg.density = opts.density; % Density of the material used for the legs [kg/m3]
% Its color.
Leg.color = [0.5 0.5 0.5]; % Color of the top part of the leg [RGB]
% The radius of spheres representing the ball joints are defined.
Leg.R = 1.3*Leg.Rbot; % Size of the sphere at the extremity of the leg [mm]
% The structure is added to the stewart structure
stewart.Leg = Leg;
% Ball Joints
% #+name: fig:stewart_ball_joints
% #+caption: Schematic of the support for the ball joints
% [[file:./figs/stewart_ball_joints.png]]
% =SP= is the structure representing the support for the ball joints at the extremity of each leg.
% The =SP= structure is initialized.
SP = struct();
% We can define its rotational stiffness and damping. For now, we use perfect joints.
SP.k = 0; % [N*m/deg]
SP.c = 0; % [N*m/deg]
% Its height is defined
SP.H = 15; % [mm]
% Its radius is based on the radius on the sphere at the end of the legs.
SP.R = Leg.R; % [mm]
SP.section = [0 SP.H-SP.R;
@@ -88,18 +230,40 @@ SP.section = [0 SP.H-SP.R;
SP.R 0;
SP.R SP.H];
% The density of its material is defined.
SP.density = opts.density; % [kg/m^3]
% Its color is defined.
SP.color = [0.7 0.7 0.7]; % [RGB]
% The structure is added to the Hexapod structure
stewart.SP = SP;
% More parameters are initialized
stewart = initializeParameters(stewart);
% Save the Stewart Structure
save('./mat/stewart.mat', 'stewart')
% initializeParameters Function
function [stewart] = initializeParameters(stewart)
% We first compute $[a_1, a_2, a_3, a_4, a_5, a_6]^T$ and $[b_1, b_2, b_3, b_4, b_5, b_6]^T$.
stewart.Aa = zeros(6, 3); % [mm]
stewart.Ab = zeros(6, 3); % [mm]
stewart.Bb = zeros(6, 3); % [mm]
@@ -119,12 +283,27 @@ for i = 1:3
stewart.TP.Rleg*sin( pi/180*(120*(i-1) + stewart.TP.dalpha + stewart.TP.alpha) ), ...
stewart.H - stewart.TP.H - stewart.SP.H];
end
stewart.Bb = stewart.Ab - stewart.H*[0,0,1];
% Now, we compute the leg vectors $\hat{s}_i$ and leg position $l_i$:
% \[ b_i - a_i = l_i \hat{s}_i \]
% We initialize $l_i$ and $\hat{s}_i$
leg_length = zeros(6, 1); % [mm]
leg_vectors = zeros(6, 3);
% We compute $b_i - a_i$, and then:
% \begin{align*}
% l_i &= \left|b_i - a_i\right| \\
% \hat{s}_i &= \frac{b_i - a_i}{l_i}
% \end{align*}
legs = stewart.Ab - stewart.Aa;
for i = 1:6
@@ -132,6 +311,10 @@ for i = 1:6
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
% Then the shape of the bottom leg is estimated
stewart.Leg.lenght = leg_length(1)/1.5;
stewart.Leg.shape.bot = ...
[0 0; ...
@@ -141,6 +324,11 @@ stewart.Leg.shape.bot = ...
stewart.Leg.Rtop 0.2*stewart.Leg.lenght; ...
0 0.2*stewart.Leg.lenght];
% We compute rotation matrices to have the orientation of the legs.
% The rotation matrix transforms the $z$ axis to the axis of the leg. The other axis are not important here.
stewart.Rm = struct('R', eye(3));
for i = 1:6
@@ -156,14 +344,19 @@ for i = 1:6
stewart.Rm(i).R = [sx', sy', sz'];
end
% Compute Jacobian Matrix
J = zeros(6);
for i = 1:6
J(i, 1:3) = leg_vectors(i, :);
J(i, 4:6) = cross(0.001*stewart.Bb(i, :), leg_vectors(i, :));
J(i, 4:6) = cross(0.001*(stewart.Ab(i, :)- stewart.H*[0,0,1]), leg_vectors(i, :));
end
stewart.J = J;
stewart.Jinv = inv(J);
stewart.K = stewart.Leg.k_ax*stewart.J'*stewart.J;

View File

@@ -2,9 +2,9 @@ function [] = initializeSample(opts_param)
%% Default values for opts
sample = struct( ...
'radius', 100, ... % radius of the cylinder [mm]
'height', 300, ... % height of the cylinder [mm]
'mass', 50, ... % mass of the cylinder [kg]
'measheight', 150, ... % measurement point z-offset [mm]
'height', 100, ... % height of the cylinder [mm]
'mass', 10, ... % mass of the cylinder [kg]
'measheight', 50, ... % measurement point z-offset [mm]
'offset', [0, 0, 0], ... % offset position of the sample [mm]
'color', [0.9 0.1 0.1] ...
);