Update all html pages to include CSS and JS.
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2019-03-26 mar. 08:47 -->
|
||||
<!-- 2019-08-26 lun. 11:58 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Cubic configuration for the Stewart Platform</title>
|
||||
@@ -193,12 +193,12 @@
|
||||
.org-svg { width: 90%; }
|
||||
/*]]>*/-->
|
||||
</style>
|
||||
<link rel="stylesheet" type="text/css" href="css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="css/readtheorg.css"/>
|
||||
<script src="js/jquery.min.js"></script>
|
||||
<script src="js/bootstrap.min.js"></script>
|
||||
<script type="text/javascript" src="js/jquery.stickytableheaders.min.js"></script>
|
||||
<script type="text/javascript" src="js/readtheorg.js"></script>
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script type="text/javascript">
|
||||
/*
|
||||
@licstart The following is the entire license notice for the
|
||||
@@ -269,39 +269,43 @@ for the JavaScript code in this tag.
|
||||
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="content">
|
||||
<div id="org-div-home-and-up">
|
||||
<a accesskey="h" href="./index.html"> UP </a>
|
||||
|
|
||||
<a accesskey="H" href="./index.html"> HOME </a>
|
||||
</div><div id="content">
|
||||
<h1 class="title">Cubic configuration for the Stewart Platform</h1>
|
||||
<div id="table-of-contents">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org43e3f4a">1. Questions we wish to answer with this analysis</a></li>
|
||||
<li><a href="#org9890470">2. Configuration Analysis - Stiffness Matrix</a>
|
||||
<li><a href="#org1bafc26">1. Questions we wish to answer with this analysis</a></li>
|
||||
<li><a href="#orga5361fc">2. Configuration Analysis - Stiffness Matrix</a>
|
||||
<ul>
|
||||
<li><a href="#org5d80bd3">2.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||||
<li><a href="#orga5ac347">2.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
|
||||
<li><a href="#org47743ef">2.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||||
<li><a href="#orgd0daf23">2.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
|
||||
<li><a href="#org6729b53">2.5. Conclusion</a></li>
|
||||
<li><a href="#orge00f8a7">2.1. Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||||
<li><a href="#org575d55b">2.2. Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</a></li>
|
||||
<li><a href="#orgcda0ff4">2.3. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</a></li>
|
||||
<li><a href="#org06f7f99">2.4. Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</a></li>
|
||||
<li><a href="#org42ac83d">2.5. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0969b06">3. Cubic size analysis</a></li>
|
||||
<li><a href="#org0f56064">4. initializeCubicConfiguration</a>
|
||||
<li><a href="#orgb37e81b">3. Cubic size analysis</a></li>
|
||||
<li><a href="#org2b0a41e">4. initializeCubicConfiguration</a>
|
||||
<ul>
|
||||
<li><a href="#orge3f31b8">4.1. Function description</a></li>
|
||||
<li><a href="#org2580fde">4.2. Optional Parameters</a></li>
|
||||
<li><a href="#org230a253">4.3. Cube Creation</a></li>
|
||||
<li><a href="#orgd1a04ef">4.4. Vectors of each leg</a></li>
|
||||
<li><a href="#orgfec0778">4.5. Verification of Height of the Stewart Platform</a></li>
|
||||
<li><a href="#orgc3cd1d1">4.6. Determinate the location of the joints</a></li>
|
||||
<li><a href="#org9063896">4.7. Returns Stewart Structure</a></li>
|
||||
<li><a href="#orgfb743ea">4.1. Function description</a></li>
|
||||
<li><a href="#orgcc92353">4.2. Optional Parameters</a></li>
|
||||
<li><a href="#org384ec97">4.3. Cube Creation</a></li>
|
||||
<li><a href="#orgefa2328">4.4. Vectors of each leg</a></li>
|
||||
<li><a href="#orgf6960ff">4.5. Verification of Height of the Stewart Platform</a></li>
|
||||
<li><a href="#orgd7e65db">4.6. Determinate the location of the joints</a></li>
|
||||
<li><a href="#org38f602f">4.7. Returns Stewart Structure</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org5807740">5. Tests</a>
|
||||
<li><a href="#org243b392">5. Tests</a>
|
||||
<ul>
|
||||
<li><a href="#org8809c47">5.1. First attempt to parametrisation</a></li>
|
||||
<li><a href="#org71c64bc">5.2. Second attempt</a></li>
|
||||
<li><a href="#orgc132128">5.3. Generate the Stewart platform for a Cubic configuration</a></li>
|
||||
<li><a href="#org86fb4aa">5.1. First attempt to parametrisation</a></li>
|
||||
<li><a href="#orgcc2eaf4">5.2. Second attempt</a></li>
|
||||
<li><a href="#org7824b39">5.3. Generate the Stewart platform for a Cubic configuration</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
@@ -323,11 +327,11 @@ The specificity of the Cubic configuration is that each actuator is orthogonal w
|
||||
</p>
|
||||
|
||||
<p>
|
||||
To generate and study the Cubic configuration, <code>initializeCubicConfiguration</code> is used (description in section <a href="#org7e73a4b">4</a>).
|
||||
To generate and study the Cubic configuration, <code>initializeCubicConfiguration</code> is used (description in section <a href="#org7faef27">4</a>).
|
||||
</p>
|
||||
|
||||
<div id="outline-container-org43e3f4a" class="outline-2">
|
||||
<h2 id="org43e3f4a"><span class="section-number-2">1</span> Questions we wish to answer with this analysis</h2>
|
||||
<div id="outline-container-org1bafc26" class="outline-2">
|
||||
<h2 id="org1bafc26"><span class="section-number-2">1</span> Questions we wish to answer with this analysis</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
The goal is to study the benefits of using a cubic configuration:
|
||||
@@ -340,45 +344,45 @@ The goal is to study the benefits of using a cubic configuration:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9890470" class="outline-2">
|
||||
<h2 id="org9890470"><span class="section-number-2">2</span> Configuration Analysis - Stiffness Matrix</h2>
|
||||
<div id="outline-container-orga5361fc" class="outline-2">
|
||||
<h2 id="orga5361fc"><span class="section-number-2">2</span> Configuration Analysis - Stiffness Matrix</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
</div>
|
||||
<div id="outline-container-org5d80bd3" class="outline-3">
|
||||
<h3 id="org5d80bd3"><span class="section-number-3">2.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
|
||||
<div id="outline-container-orge00f8a7" class="outline-3">
|
||||
<h3 id="orge00f8a7"><span class="section-number-3">2.1</span> Cubic Stewart platform centered with the cube center - Jacobian estimated at the cube center</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
We create a cubic Stewart platform (figure <a href="#org813c22d">1</a>) in such a way that the center of the cube (black dot) is located at the center of the Stewart platform (blue dot).
|
||||
We create a cubic Stewart platform (figure <a href="#orgb095247">1</a>) in such a way that the center of the cube (black dot) is located at the center of the Stewart platform (blue dot).
|
||||
The Jacobian matrix is estimated at the location of the center of the cube.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org813c22d" class="figure">
|
||||
<div id="orgb095247" class="figure">
|
||||
<p><img src="./figs/3d-cubic-stewart-aligned.png" alt="3d-cubic-stewart-aligned.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Centered cubic configuration</p>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, <span style="color: #BFEBBF;">100</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, <span style="color: #BFEBBF;">200</span><span style="color: #7CB8BB;">/</span>sqrt<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, <span style="color: #BFEBBF;">60</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, <span style="color: #BFEBBF;">200</span><span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">60</span><span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = initializeCubicConfiguration<span style="color: #DCDCCC;">(</span>opts<span style="color: #DCDCCC;">)</span>;
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'Jd_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">50</span><span style="color: #BFEBBF;">]</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #CC9393;">'Jf_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">50</span><span style="color: #BFEBBF;">]</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stewart, opts<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">60</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">50</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
save<span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'./mat/stewart.mat', 'stewart'</span><span style="color: #DCDCCC;">)</span>;
|
||||
save<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'./mat/stewart.mat', 'stewart'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = stewart.Jd'<span style="color: #7CB8BB;">*</span>stewart.Jd;
|
||||
<pre class="src src-matlab">K = stewart.Jf'<span class="org-type">*</span>stewart.Jf;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -457,32 +461,32 @@ save<span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'./mat/s
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga5ac347" class="outline-3">
|
||||
<h3 id="orga5ac347"><span class="section-number-3">2.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
|
||||
<div id="outline-container-org575d55b" class="outline-3">
|
||||
<h3 id="org575d55b"><span class="section-number-3">2.2</span> Cubic Stewart platform centered with the cube center - Jacobian not estimated at the cube center</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<p>
|
||||
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#org813c22d">1</a>).
|
||||
We create a cubic Stewart platform with center of the cube located at the center of the Stewart platform (figure <a href="#orgb095247">1</a>).
|
||||
The Jacobian matrix is not estimated at the location of the center of the cube.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, <span style="color: #BFEBBF;">100</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, <span style="color: #BFEBBF;">200</span><span style="color: #7CB8BB;">/</span>sqrt<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, <span style="color: #BFEBBF;">60</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, <span style="color: #BFEBBF;">200</span><span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">60</span><span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = initializeCubicConfiguration<span style="color: #DCDCCC;">(</span>opts<span style="color: #DCDCCC;">)</span>;
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'Jd_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span><span style="color: #BFEBBF;">]</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #CC9393;">'Jf_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span><span style="color: #BFEBBF;">]</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stewart, opts<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">60</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">200</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = stewart.Jd'<span style="color: #7CB8BB;">*</span>stewart.Jd;
|
||||
<pre class="src src-matlab">K = stewart.Jf'<span class="org-type">*</span>stewart.Jf;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -561,16 +565,16 @@ stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stew
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org47743ef" class="outline-3">
|
||||
<h3 id="org47743ef"><span class="section-number-3">2.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
|
||||
<div id="outline-container-orgcda0ff4" class="outline-3">
|
||||
<h3 id="orgcda0ff4"><span class="section-number-3">2.3</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the cube center</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
Here, the "center" of the Stewart platform is not at the cube center (figure <a href="#org8a2bd4c">2</a>).
|
||||
Here, the "center" of the Stewart platform is not at the cube center (figure <a href="#org741ffe8">2</a>).
|
||||
The Jacobian is estimated at the cube center.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org8a2bd4c" class="figure">
|
||||
<div id="org741ffe8" class="figure">
|
||||
<p><img src="./figs/3d-cubic-stewart-misaligned.png" alt="3d-cubic-stewart-misaligned.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Not centered cubic configuration</p>
|
||||
@@ -584,23 +588,23 @@ The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, <span style="color: #BFEBBF;">100</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, <span style="color: #BFEBBF;">220</span><span style="color: #7CB8BB;">/</span>sqrt<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, <span style="color: #BFEBBF;">60</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, <span style="color: #BFEBBF;">75</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = initializeCubicConfiguration<span style="color: #DCDCCC;">(</span>opts<span style="color: #DCDCCC;">)</span>;
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'Jd_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">65</span><span style="color: #BFEBBF;">]</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #CC9393;">'Jf_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">65</span><span style="color: #BFEBBF;">]</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stewart, opts<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">220</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">60</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">75</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">65</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">65</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = stewart.Jd'<span style="color: #7CB8BB;">*</span>stewart.Jd;
|
||||
<pre class="src src-matlab">K = stewart.Jf'<span class="org-type">*</span>stewart.Jf;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -683,8 +687,8 @@ We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiff
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd0daf23" class="outline-3">
|
||||
<h3 id="orgd0daf23"><span class="section-number-3">2.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
|
||||
<div id="outline-container-org06f7f99" class="outline-3">
|
||||
<h3 id="org06f7f99"><span class="section-number-3">2.4</span> Cubic Stewart platform not centered with the cube center - Jacobian estimated at the Stewart platform center</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<p>
|
||||
Here, the "center" of the Stewart platform is not at the cube center.
|
||||
@@ -699,23 +703,23 @@ The center of the cube from the top platform is at \(z = 110 - 175 = -65\).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, <span style="color: #BFEBBF;">100</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, <span style="color: #BFEBBF;">220</span><span style="color: #7CB8BB;">/</span>sqrt<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, <span style="color: #BFEBBF;">60</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, <span style="color: #BFEBBF;">75</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = initializeCubicConfiguration<span style="color: #DCDCCC;">(</span>opts<span style="color: #DCDCCC;">)</span>;
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'Jd_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">60</span><span style="color: #BFEBBF;">]</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #CC9393;">'Jf_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">60</span><span style="color: #BFEBBF;">]</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stewart, opts<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">100</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">220</span><span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">60</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">75</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-type">-</span><span class="org-highlight-numbers-number">60</span><span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = stewart.Jd'<span style="color: #7CB8BB;">*</span>stewart.Jd;
|
||||
<pre class="src src-matlab">K = stewart.Jf'<span class="org-type">*</span>stewart.Jf;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -798,8 +802,8 @@ We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiff
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org6729b53" class="outline-3">
|
||||
<h3 id="org6729b53"><span class="section-number-3">2.5</span> Conclusion</h3>
|
||||
<div id="outline-container-org42ac83d" class="outline-3">
|
||||
<h3 id="org42ac83d"><span class="section-number-3">2.5</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-5">
|
||||
<div class="important">
|
||||
<ul class="org-ul">
|
||||
@@ -812,8 +816,8 @@ We obtain \(k_x = k_y = k_z\) and \(k_{\theta_x} = k_{\theta_y}\), but the Stiff
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org0969b06" class="outline-2">
|
||||
<h2 id="org0969b06"><span class="section-number-2">3</span> Cubic size analysis</h2>
|
||||
<div id="outline-container-orgb37e81b" class="outline-2">
|
||||
<h2 id="orgb37e81b"><span class="section-number-2">3</span> Cubic size analysis</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
We here study the effect of the size of the cube used for the Stewart configuration.
|
||||
@@ -828,32 +832,32 @@ We only vary the size of the cube.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">H_cubes = <span style="color: #BFEBBF;">250</span><span style="color: #7CB8BB;">:</span><span style="color: #BFEBBF;">20</span><span style="color: #7CB8BB;">:</span><span style="color: #BFEBBF;">350</span>;
|
||||
stewarts = <span style="color: #DCDCCC;">{</span>zeros<span style="color: #BFEBBF;">(</span>length<span style="color: #D0BF8F;">(</span>H_cubes<span style="color: #D0BF8F;">)</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">}</span>;
|
||||
<pre class="src src-matlab">H_cubes = <span class="org-highlight-numbers-number">250</span><span class="org-type">:</span><span class="org-highlight-numbers-number">20</span><span class="org-type">:</span><span class="org-highlight-numbers-number">350</span>;
|
||||
stewarts = <span class="org-rainbow-delimiters-depth-1">{</span>zeros<span class="org-rainbow-delimiters-depth-2">(</span>length<span class="org-rainbow-delimiters-depth-3">(</span>H_cubes<span class="org-rainbow-delimiters-depth-3">)</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">}</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:length</span><span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">H_cubes</span><span style="color: #DCDCCC;">)</span>
|
||||
H_cube = H_cubes<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span><span style="color: #DCDCCC;">)</span>;
|
||||
H_tot = <span style="color: #BFEBBF;">100</span>;
|
||||
H = <span style="color: #BFEBBF;">80</span>;
|
||||
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">H_cubes</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
|
||||
H_cube = H_cubes<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
H_tot = <span class="org-highlight-numbers-number">100</span>;
|
||||
H = <span class="org-highlight-numbers-number">80</span>;
|
||||
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, H_tot, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, H_cube<span style="color: #7CB8BB;">/</span>sqrt<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, H, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, H_cube<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">-</span>H<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = initializeCubicConfiguration<span style="color: #DCDCCC;">(</span>opts<span style="color: #DCDCCC;">)</span>;
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, H_tot, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, H_cube<span class="org-type">/</span>sqrt<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, H, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = initializeCubicConfiguration<span class="org-rainbow-delimiters-depth-1">(</span>opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'Jd_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, H_cube<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">-</span>opts.H0<span style="color: #7CB8BB;">-</span>opts.H_tot<span style="color: #BFEBBF;">]</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #CC9393;">'Jf_pos'</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, H_cube<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">-</span>opts.H0<span style="color: #7CB8BB;">-</span>opts.H_tot<span style="color: #BFEBBF;">]</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
stewart = computeGeometricalProperties<span style="color: #DCDCCC;">(</span>stewart, opts<span style="color: #DCDCCC;">)</span>;
|
||||
stewarts<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span><span style="color: #DCDCCC;">)</span> = <span style="color: #DCDCCC;">{</span>stewart<span style="color: #DCDCCC;">}</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'Jd_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot<span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for displacement estimation from the top of the mobile platform [mm]</span>
|
||||
<span class="org-string">'Jf_pos'</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, H_cube<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">-</span>opts.H0<span class="org-type">-</span>opts.H_tot<span class="org-rainbow-delimiters-depth-2">]</span> <span class="org-underline">...</span> <span class="org-comment">% Position of the Jacobian for force location from the top of the mobile platform [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewart = computeGeometricalProperties<span class="org-rainbow-delimiters-depth-1">(</span>stewart, opts<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
stewarts<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = <span class="org-rainbow-delimiters-depth-1">{</span>stewart<span class="org-rainbow-delimiters-depth-1">}</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -862,10 +866,10 @@ stewarts = <span style="color: #DCDCCC;">{</span>zeros<span style="color: #BFEBB
|
||||
The Stiffness matrix is computed for all generated Stewart platforms.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Ks = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">6</span>, length<span style="color: #BFEBBF;">(</span>H_cube<span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:length</span><span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">H_cubes</span><span style="color: #DCDCCC;">)</span>
|
||||
Ks<span style="color: #DCDCCC;">(</span><span style="color: #7CB8BB;">:</span>, <span style="color: #7CB8BB;">:</span>, <span style="color: #BFEBBF;">i</span><span style="color: #DCDCCC;">)</span> = stewarts<span style="color: #DCDCCC;">{</span><span style="color: #BFEBBF;">i</span><span style="color: #DCDCCC;">}</span>.Jd'<span style="color: #7CB8BB;">*</span>stewarts<span style="color: #DCDCCC;">{</span><span style="color: #BFEBBF;">i</span><span style="color: #DCDCCC;">}</span>.Jd;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Ks = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">6</span>, length<span class="org-rainbow-delimiters-depth-2">(</span>H_cube<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:length</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">H_cubes</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
|
||||
Ks<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-type">:</span>, <span class="org-type">:</span>, <span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">)</span> = stewarts<span class="org-rainbow-delimiters-depth-1">{</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">}</span>.Jd'<span class="org-type">*</span>stewarts<span class="org-rainbow-delimiters-depth-1">{</span><span class="org-constant">i</span><span class="org-rainbow-delimiters-depth-1">}</span>.Jd;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -877,18 +881,18 @@ The only elements of \(K\) that vary are \(k_{\theta_x} = k_{\theta_y}\) and \(k
|
||||
Finally, we plot \(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\)
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #7CB8BB;">figure</span>;
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
hold on;
|
||||
plot<span style="color: #DCDCCC;">(</span>H_cubes, squeeze<span style="color: #BFEBBF;">(</span>Ks<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">4</span>, <span style="color: #BFEBBF;">4</span>, <span style="color: #7CB8BB;">:</span><span style="color: #D0BF8F;">)</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'DisplayName', '</span>$k_<span style="color: #BFEBBF;">{</span><span style="color: #7CB8BB;">\</span>theta_x<span style="color: #BFEBBF;">}</span>$'<span style="color: #DCDCCC;">)</span>;
|
||||
plot<span style="color: #DCDCCC;">(</span>H_cubes, squeeze<span style="color: #BFEBBF;">(</span>Ks<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">6</span>, <span style="color: #7CB8BB;">:</span><span style="color: #D0BF8F;">)</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'DisplayName', '</span>$k_<span style="color: #BFEBBF;">{</span><span style="color: #7CB8BB;">\</span>theta_z<span style="color: #BFEBBF;">}</span>$'<span style="color: #DCDCCC;">)</span>;
|
||||
plot<span class="org-rainbow-delimiters-depth-1">(</span>H_cubes, squeeze<span class="org-rainbow-delimiters-depth-2">(</span>Ks<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">4</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', '</span>$k_<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-type">\</span>theta_x<span class="org-rainbow-delimiters-depth-2">}</span>$'<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
plot<span class="org-rainbow-delimiters-depth-1">(</span>H_cubes, squeeze<span class="org-rainbow-delimiters-depth-2">(</span>Ks<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">6</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'DisplayName', '</span>$k_<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-type">\</span>theta_z<span class="org-rainbow-delimiters-depth-2">}</span>$'<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
hold off;
|
||||
legend<span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'location', 'northwest'</span><span style="color: #DCDCCC;">)</span>;
|
||||
xlabel<span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'Cube Size </span><span style="color: #BFEBBF;">[</span><span style="color: #CC9393;">mm</span><span style="color: #BFEBBF;">]</span><span style="color: #CC9393;">'</span><span style="color: #DCDCCC;">)</span><span style="color: #CC9393;">; ylabel</span><span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'Rotational stiffnes </span><span style="color: #BFEBBF;">[</span><span style="color: #CC9393;">normalized</span><span style="color: #BFEBBF;">]</span><span style="color: #CC9393;">'</span><span style="color: #DCDCCC;">)</span>;
|
||||
legend<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'location', 'northwest'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Cube Size </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">mm</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; ylabel</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">'Rotational stiffnes </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">normalized</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orgad7fc21" class="figure">
|
||||
<div id="org5647f41" class="figure">
|
||||
<p><img src="figs/stiffness_cube_size.png" alt="stiffness_cube_size.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>\(k_{\theta_x} = k_{\theta_y}\) and \(k_{\theta_z}\) function of the size of the cube</p>
|
||||
@@ -909,37 +913,37 @@ In that case, the legs will the further separated. Size of the cube is then limi
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org0f56064" class="outline-2">
|
||||
<h2 id="org0f56064"><span class="section-number-2">4</span> initializeCubicConfiguration</h2>
|
||||
<div id="outline-container-org2b0a41e" class="outline-2">
|
||||
<h2 id="org2b0a41e"><span class="section-number-2">4</span> initializeCubicConfiguration</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
<a id="org7e73a4b"></a>
|
||||
<a id="org7faef27"></a>
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge3f31b8" class="outline-3">
|
||||
<h3 id="orge3f31b8"><span class="section-number-3">4.1</span> Function description</h3>
|
||||
<div id="outline-container-orgfb743ea" class="outline-3">
|
||||
<h3 id="orgfb743ea"><span class="section-number-3">4.1</span> Function description</h3>
|
||||
<div class="outline-text-3" id="text-4-1">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #F0DFAF; font-weight: bold;">function</span> <span style="color: #DCDCCC;">[</span><span style="color: #DFAF8F;">stewart</span><span style="color: #DCDCCC;">]</span> = <span style="color: #93E0E3;">initializeCubicConfiguration</span><span style="color: #DCDCCC;">(</span><span style="color: #DFAF8F;">opts_param</span><span style="color: #DCDCCC;">)</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">function</span> <span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">[</span></span><span class="org-variable-name">stewart</span><span class="org-variable-name"><span class="org-rainbow-delimiters-depth-1">]</span></span> = <span class="org-function-name">initializeCubicConfiguration</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">opts_param</span><span class="org-rainbow-delimiters-depth-1">)</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2580fde" class="outline-3">
|
||||
<h3 id="org2580fde"><span class="section-number-3">4.2</span> Optional Parameters</h3>
|
||||
<div id="outline-container-orgcc92353" class="outline-3">
|
||||
<h3 id="orgcc92353"><span class="section-number-3">4.2</span> Optional Parameters</h3>
|
||||
<div class="outline-text-3" id="text-4-2">
|
||||
<p>
|
||||
Default values for opts.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">opts = struct<span style="color: #DCDCCC;">(</span><span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #CC9393;">'H_tot'</span>, <span style="color: #BFEBBF;">90</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Total height of the Hexapod [mm]</span>
|
||||
<span style="color: #CC9393;">'L'</span>, <span style="color: #BFEBBF;">110</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Size of the Cube [mm]</span>
|
||||
<span style="color: #CC9393;">'H'</span>, <span style="color: #BFEBBF;">40</span>, <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between base joints and platform joints [mm]</span>
|
||||
<span style="color: #CC9393;">'H0'</span>, <span style="color: #BFEBBF;">75</span> <span style="text-decoration: underline;">...</span> <span style="color: #7F9F7F;">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">opts = struct<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-underline">...</span>
|
||||
<span class="org-string">'H_tot'</span>, <span class="org-highlight-numbers-number">90</span>, <span class="org-underline">...</span> <span class="org-comment">% Total height of the Hexapod [mm]</span>
|
||||
<span class="org-string">'L'</span>, <span class="org-highlight-numbers-number">110</span>, <span class="org-underline">...</span> <span class="org-comment">% Size of the Cube [mm]</span>
|
||||
<span class="org-string">'H'</span>, <span class="org-highlight-numbers-number">40</span>, <span class="org-underline">...</span> <span class="org-comment">% Height between base joints and platform joints [mm]</span>
|
||||
<span class="org-string">'H0'</span>, <span class="org-highlight-numbers-number">75</span> <span class="org-underline">...</span> <span class="org-comment">% Height between the corner of the cube and the plane containing the base joints [mm]</span>
|
||||
<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -947,29 +951,29 @@ Default values for opts.
|
||||
Populate opts with input parameters
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #F0DFAF; font-weight: bold;">if</span> exist<span style="color: #DCDCCC;">(</span><span style="color: #CC9393;">'opts_param','var'</span><span style="color: #DCDCCC;">)</span>
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">opt</span> = <span style="color: #BFEBBF;">fieldnames</span><span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">opts_param</span><span style="color: #DCDCCC;">)</span><span style="color: #BFEBBF;">'</span>
|
||||
opts.<span style="color: #DCDCCC;">(</span>opt<span style="color: #BFEBBF;">{</span><span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">}</span><span style="color: #DCDCCC;">)</span> = opts_param.<span style="color: #DCDCCC;">(</span>opt<span style="color: #BFEBBF;">{</span><span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">}</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab"><span class="org-keyword">if</span> exist<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'opts_param','var'</span><span class="org-rainbow-delimiters-depth-1">)</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">opt</span> = <span class="org-constant">fieldnames</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">opts_param</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-constant">'</span>
|
||||
opts.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span> = opts_param.<span class="org-rainbow-delimiters-depth-1">(</span>opt<span class="org-rainbow-delimiters-depth-2">{</span><span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">}</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org230a253" class="outline-3">
|
||||
<h3 id="org230a253"><span class="section-number-3">4.3</span> Cube Creation</h3>
|
||||
<div id="outline-container-org384ec97" class="outline-3">
|
||||
<h3 id="org384ec97"><span class="section-number-3">4.3</span> Cube Creation</h3>
|
||||
<div class="outline-text-3" id="text-4-3">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">points = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
points = opts.L<span style="color: #7CB8BB;">*</span>points;
|
||||
<pre class="src src-matlab">points = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
points = opts.L<span class="org-type">*</span>points;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -977,16 +981,16 @@ points = opts.L<span style="color: #7CB8BB;">*</span>points;
|
||||
We create the rotation matrix to rotate the cube
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">sx = cross<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span> <span style="color: #BFEBBF;">0</span> <span style="color: #BFEBBF;">0</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
sx = sx<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sx<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">sx = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
sx = sx<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sx<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
sy = <span style="color: #7CB8BB;">-</span>cross<span style="color: #DCDCCC;">(</span>sx, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
sy = sy<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sy<span style="color: #DCDCCC;">)</span>;
|
||||
sy = <span class="org-type">-</span>cross<span class="org-rainbow-delimiters-depth-1">(</span>sx, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
sy = sy<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sy<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
sz = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
sz = sz<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sz<span style="color: #DCDCCC;">)</span>;
|
||||
sz = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
sz = sz<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sz<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
R = <span style="color: #DCDCCC;">[</span>sx', sy', sz'<span style="color: #DCDCCC;">]</span>';
|
||||
R = <span class="org-rainbow-delimiters-depth-1">[</span>sx', sy', sz'<span class="org-rainbow-delimiters-depth-1">]</span>';
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -994,25 +998,25 @@ R = <span style="color: #DCDCCC;">[</span>sx', sy', sz'<span style="color: #DCDC
|
||||
We use to rotation matrix to rotate the cube
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">cube = zeros<span style="color: #DCDCCC;">(</span>size<span style="color: #BFEBBF;">(</span>points<span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:size</span><span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">points, </span><span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">)</span>
|
||||
cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = R <span style="color: #7CB8BB;">*</span> points<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>';
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">cube = zeros<span class="org-rainbow-delimiters-depth-1">(</span>size<span class="org-rainbow-delimiters-depth-2">(</span>points<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:size</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">points, </span><span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
|
||||
cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = R <span class="org-type">*</span> points<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>';
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd1a04ef" class="outline-3">
|
||||
<h3 id="orgd1a04ef"><span class="section-number-3">4.4</span> Vectors of each leg</h3>
|
||||
<div id="outline-container-orgefa2328" class="outline-3">
|
||||
<h3 id="orgefa2328"><span class="section-number-3">4.4</span> Vectors of each leg</h3>
|
||||
<div class="outline-text-3" id="text-4-4">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">leg_indices = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">3</span>, <span style="color: #BFEBBF;">4</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">4</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">6</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">5</span>, <span style="color: #BFEBBF;">6</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">5</span>, <span style="color: #BFEBBF;">7</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">3</span>, <span style="color: #BFEBBF;">7</span><span style="color: #DCDCCC;">]</span>;
|
||||
<pre class="src src-matlab">leg_indices = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">4</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">6</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">6</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">7</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1020,51 +1024,51 @@ We use to rotation matrix to rotate the cube
|
||||
Vectors are:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">legs = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
legs_start = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">legs = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
legs_start = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">-</span> cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgfec0778" class="outline-3">
|
||||
<h3 id="orgfec0778"><span class="section-number-3">4.5</span> Verification of Height of the Stewart Platform</h3>
|
||||
<div id="outline-container-orgf6960ff" class="outline-3">
|
||||
<h3 id="orgf6960ff"><span class="section-number-3">4.5</span> Verification of Height of the Stewart Platform</h3>
|
||||
<div class="outline-text-3" id="text-4-5">
|
||||
<p>
|
||||
If the Stewart platform is not contained in the cube, throw an error.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Hmax = cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">4</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">-</span> cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">if</span> opts.H0 <span style="color: #7CB8BB;"><</span> cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>
|
||||
error<span style="color: #DCDCCC;">(</span>sprintf<span style="color: #BFEBBF;">(</span>'H0 is not high enought. Minimum H0 = %.<span style="color: #BFEBBF;">1f</span>', cube(<span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">3</span>)));
|
||||
<span style="color: #F0DFAF; font-weight: bold;">else</span> <span style="color: #F0DFAF; font-weight: bold;">if</span> opts.H0 <span style="color: #7CB8BB;">+</span> opts.H <span style="color: #7CB8BB;">></span> cube<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">4</span>, <span style="color: #BFEBBF;">3</span><span style="color: #D0BF8F;">)</span>
|
||||
error<span style="color: #D0BF8F;">(</span>sprintf<span style="color: #93E0E3;">(</span>'H0<span style="color: #7CB8BB;">+</span>H is too high. Maximum H0<span style="color: #7CB8BB;">+</span>H = %.<span style="color: #BFEBBF;">1f</span>', cube(<span style="color: #BFEBBF;">4</span>, <span style="color: #BFEBBF;">3</span>)));
|
||||
error<span style="color: #9FC59F;">(</span><span style="color: #CC9393;">'H0+H is too high'</span><span style="color: #9FC59F;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Hmax = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">if</span> opts.H0 <span class="org-type"><</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>
|
||||
error<span class="org-rainbow-delimiters-depth-1">(</span>sprintf<span class="org-rainbow-delimiters-depth-2">(</span>'H0 is not high enought. Minimum H0 = %.<span class="org-highlight-numbers-number">1f</span>', cube(<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span>)));
|
||||
<span class="org-keyword">else</span> <span class="org-keyword">if</span> opts.H0 <span class="org-type">+</span> opts.H <span class="org-type">></span> cube<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span>
|
||||
error<span class="org-rainbow-delimiters-depth-3">(</span>sprintf<span class="org-rainbow-delimiters-depth-4">(</span>'H0<span class="org-type">+</span>H is too high. Maximum H0<span class="org-type">+</span>H = %.<span class="org-highlight-numbers-number">1f</span>', cube(<span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span>)));
|
||||
error<span class="org-rainbow-delimiters-depth-5">(</span><span class="org-string">'H0+H is too high'</span><span class="org-rainbow-delimiters-depth-5">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc3cd1d1" class="outline-3">
|
||||
<h3 id="orgc3cd1d1"><span class="section-number-3">4.6</span> Determinate the location of the joints</h3>
|
||||
<div id="outline-container-orgd7e65db" class="outline-3">
|
||||
<h3 id="orgd7e65db"><span class="section-number-3">4.6</span> Determinate the location of the joints</h3>
|
||||
<div class="outline-text-3" id="text-4-6">
|
||||
<p>
|
||||
We now determine the location of the joints on the fixed platform w.r.t the fixed frame \(\{A\}\).
|
||||
\(\{A\}\) is fixed to the bottom of the base.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Aa = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
t = <span style="color: #DCDCCC;">(</span>opts.H0<span style="color: #7CB8BB;">-</span>legs_start<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">/</span><span style="color: #DCDCCC;">(</span>legs<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
Aa<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">+</span> t<span style="color: #7CB8BB;">*</span>legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Aa = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
t = <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1072,11 +1076,11 @@ We now determine the location of the joints on the fixed platform w.r.t the fixe
|
||||
And the location of the joints on the mobile platform with respect to \(\{A\}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Ab = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
t = <span style="color: #DCDCCC;">(</span>opts.H0<span style="color: #7CB8BB;">+</span>opts.H<span style="color: #7CB8BB;">-</span>legs_start<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">/</span><span style="color: #DCDCCC;">(</span>legs<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
Ab<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">+</span> t<span style="color: #7CB8BB;">*</span>legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Ab = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
t = <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0<span class="org-type">+</span>opts.H<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1084,45 +1088,45 @@ And the location of the joints on the mobile platform with respect to \(\{A\}\).
|
||||
And the location of the joints on the mobile platform with respect to \(\{B\}\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Bb = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
Bb = Ab <span style="color: #7CB8BB;">-</span> <span style="color: #DCDCCC;">(</span>opts.H0 <span style="color: #7CB8BB;">+</span> opts.H_tot<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span> <span style="color: #7CB8BB;">+</span> opts.H<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">*</span><span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
<pre class="src src-matlab">Bb = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
Bb = Ab <span class="org-type">-</span> <span class="org-rainbow-delimiters-depth-1">(</span>opts.H0 <span class="org-type">+</span> opts.H_tot<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-type">+</span> opts.H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">h = opts.H0 <span style="color: #7CB8BB;">+</span> opts.H<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span> <span style="color: #7CB8BB;">-</span> opts.H_tot<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span>;
|
||||
Aa = Aa <span style="color: #7CB8BB;">-</span> h<span style="color: #7CB8BB;">*</span><span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
Ab = Ab <span style="color: #7CB8BB;">-</span> h<span style="color: #7CB8BB;">*</span><span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
<pre class="src src-matlab">h = opts.H0 <span class="org-type">+</span> opts.H<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span> <span class="org-type">-</span> opts.H_tot<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
|
||||
Aa = Aa <span class="org-type">-</span> h<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
Ab = Ab <span class="org-type">-</span> h<span class="org-type">*</span><span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org9063896" class="outline-3">
|
||||
<h3 id="org9063896"><span class="section-number-3">4.7</span> Returns Stewart Structure</h3>
|
||||
<div id="outline-container-org38f602f" class="outline-3">
|
||||
<h3 id="org38f602f"><span class="section-number-3">4.7</span> Returns Stewart Structure</h3>
|
||||
<div class="outline-text-3" id="text-4-7">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"> stewart = struct<span style="color: #DCDCCC;">()</span>;
|
||||
<pre class="src src-matlab"> stewart = struct<span class="org-rainbow-delimiters-depth-1">()</span>;
|
||||
stewart.Aa = Aa;
|
||||
stewart.Ab = Ab;
|
||||
stewart.Bb = Bb;
|
||||
stewart.H_tot = opts.H_tot;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org5807740" class="outline-2">
|
||||
<h2 id="org5807740"><span class="section-number-2">5</span> Tests</h2>
|
||||
<div id="outline-container-org243b392" class="outline-2">
|
||||
<h2 id="org243b392"><span class="section-number-2">5</span> Tests</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
</div>
|
||||
<div id="outline-container-org8809c47" class="outline-3">
|
||||
<h3 id="org8809c47"><span class="section-number-3">5.1</span> First attempt to parametrisation</h3>
|
||||
<div id="outline-container-org86fb4aa" class="outline-3">
|
||||
<h3 id="org86fb4aa"><span class="section-number-3">5.1</span> First attempt to parametrisation</h3>
|
||||
<div class="outline-text-3" id="text-5-1">
|
||||
|
||||
<div id="org520c5d6" class="figure">
|
||||
<div id="org10fe09c" class="figure">
|
||||
<p><img src="./figs/stewart_bottom_plate.png" alt="stewart_bottom_plate.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Schematic of the bottom plates with all the parameters</p>
|
||||
@@ -1157,8 +1161,8 @@ Lets express \(a_i\), \(b_i\) and \(a_j\):
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org71c64bc" class="outline-3">
|
||||
<h3 id="org71c64bc"><span class="section-number-3">5.2</span> Second attempt</h3>
|
||||
<div id="outline-container-orgcc2eaf4" class="outline-3">
|
||||
<h3 id="orgcc2eaf4"><span class="section-number-3">5.2</span> Second attempt</h3>
|
||||
<div class="outline-text-3" id="text-5-2">
|
||||
<p>
|
||||
We start with the point of a cube in space:
|
||||
@@ -1177,50 +1181,50 @@ Then we have the direction of all the vectors expressed in the frame of the hexa
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">points = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">1</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">0</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
<pre class="src src-matlab">points = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">1</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">0</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #7CB8BB;">figure</span>;
|
||||
plot3<span style="color: #DCDCCC;">(</span>points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'ko'</span><span style="color: #DCDCCC;">)</span>
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
plot3<span class="org-rainbow-delimiters-depth-1">(</span>points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ko'</span><span class="org-rainbow-delimiters-depth-1">)</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">sx = cross<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span>, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span> <span style="color: #BFEBBF;">0</span> <span style="color: #BFEBBF;">0</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
sx = sx<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sx<span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">sx = cross<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span> <span class="org-highlight-numbers-number">0</span> <span class="org-highlight-numbers-number">0</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
sx = sx<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sx<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
sy = <span style="color: #7CB8BB;">-</span>cross<span style="color: #DCDCCC;">(</span>sx, <span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
sy = sy<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sy<span style="color: #DCDCCC;">)</span>;
|
||||
sy = <span class="org-type">-</span>cross<span class="org-rainbow-delimiters-depth-1">(</span>sx, <span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
sy = sy<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sy<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
sz = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">]</span>;
|
||||
sz = sz<span style="color: #7CB8BB;">/</span>norm<span style="color: #DCDCCC;">(</span>sz<span style="color: #DCDCCC;">)</span>;
|
||||
sz = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-1">]</span>;
|
||||
sz = sz<span class="org-type">/</span>norm<span class="org-rainbow-delimiters-depth-1">(</span>sz<span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
R = <span style="color: #DCDCCC;">[</span>sx', sy', sz'<span style="color: #DCDCCC;">]</span>';
|
||||
R = <span class="org-rainbow-delimiters-depth-1">[</span>sx', sy', sz'<span class="org-rainbow-delimiters-depth-1">]</span>';
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">cube = zeros<span style="color: #DCDCCC;">(</span>size<span style="color: #BFEBBF;">(</span>points<span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:size</span><span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">points, </span><span style="color: #BFEBBF;">1</span><span style="color: #DCDCCC;">)</span>
|
||||
cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = R <span style="color: #7CB8BB;">*</span> points<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>';
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">cube = zeros<span class="org-rainbow-delimiters-depth-1">(</span>size<span class="org-rainbow-delimiters-depth-2">(</span>points<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:size</span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-constant">points, </span><span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant"><span class="org-rainbow-delimiters-depth-1">)</span></span>
|
||||
cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = R <span class="org-type">*</span> points<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>';
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #7CB8BB;">figure</span>;
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
hold on;
|
||||
plot3<span style="color: #DCDCCC;">(</span>points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, points<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'ko'</span><span style="color: #DCDCCC;">)</span>;
|
||||
plot3<span style="color: #DCDCCC;">(</span>cube<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, cube<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, cube<span style="color: #BFEBBF;">(</span><span style="color: #7CB8BB;">:</span>,<span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'ro'</span><span style="color: #DCDCCC;">)</span>;
|
||||
plot3<span class="org-rainbow-delimiters-depth-1">(</span>points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, points<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ko'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
plot3<span class="org-rainbow-delimiters-depth-1">(</span>cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-type">:</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'ro'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
hold off;
|
||||
</pre>
|
||||
</div>
|
||||
@@ -1229,18 +1233,18 @@ hold off;
|
||||
Now we plot the legs of the hexapod.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">leg_indices = <span style="color: #DCDCCC;">[</span><span style="color: #BFEBBF;">3</span>, <span style="color: #BFEBBF;">4</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">4</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">6</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">5</span>, <span style="color: #BFEBBF;">6</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">5</span>, <span style="color: #BFEBBF;">7</span>; <span style="text-decoration: underline;">...</span>
|
||||
<span style="color: #BFEBBF;">3</span>, <span style="color: #BFEBBF;">7</span><span style="color: #DCDCCC;">]</span>
|
||||
<pre class="src src-matlab">leg_indices = <span class="org-rainbow-delimiters-depth-1">[</span><span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">4</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">4</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">6</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">6</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">5</span>, <span class="org-highlight-numbers-number">7</span>; <span class="org-underline">...</span>
|
||||
<span class="org-highlight-numbers-number">3</span>, <span class="org-highlight-numbers-number">7</span><span class="org-rainbow-delimiters-depth-1">]</span>
|
||||
|
||||
<span style="color: #7CB8BB;">figure</span>;
|
||||
<span class="org-type">figure</span>;
|
||||
hold on;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
plot3<span style="color: #DCDCCC;">(</span>cube<span style="color: #BFEBBF;">(</span>leg_indices<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #D0BF8F;">)</span>,<span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, cube<span style="color: #BFEBBF;">(</span>leg_indices<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #D0BF8F;">)</span>,<span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, cube<span style="color: #BFEBBF;">(</span>leg_indices<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #D0BF8F;">)</span>,<span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span>, <span style="color: #CC9393;">'-'</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
plot3<span class="org-rainbow-delimiters-depth-1">(</span>cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, cube<span class="org-rainbow-delimiters-depth-2">(</span>leg_indices<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-3">)</span>,<span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-string">'-'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
hold off;
|
||||
</pre>
|
||||
</div>
|
||||
@@ -1249,13 +1253,13 @@ hold off;
|
||||
Vectors are:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">legs = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
legs_start = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">legs = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
legs_start = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">-</span> cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = cube<span style="color: #DCDCCC;">(</span>leg_indices<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">)</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = cube<span class="org-rainbow-delimiters-depth-1">(</span>leg_indices<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">)</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1271,7 +1275,7 @@ We here want to see if the position of the "slice" changes something.
|
||||
Let's first estimate the maximum height of the Stewart platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Hmax = cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">4</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">-</span> cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<pre class="src src-matlab">Hmax = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">4</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">-</span> cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1279,26 +1283,26 @@ Let's first estimate the maximum height of the Stewart platform.
|
||||
Let's then estimate the middle position of the platform
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Hmid = cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">8</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span>;
|
||||
<pre class="src src-matlab">Hmid = cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">8</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgc132128" class="outline-3">
|
||||
<h3 id="orgc132128"><span class="section-number-3">5.3</span> Generate the Stewart platform for a Cubic configuration</h3>
|
||||
<div id="outline-container-org7824b39" class="outline-3">
|
||||
<h3 id="org7824b39"><span class="section-number-3">5.3</span> Generate the Stewart platform for a Cubic configuration</h3>
|
||||
<div class="outline-text-3" id="text-5-3">
|
||||
<p>
|
||||
First we defined the height of the Hexapod.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">H = Hmax<span style="color: #7CB8BB;">/</span><span style="color: #BFEBBF;">2</span>;
|
||||
<pre class="src src-matlab">H = Hmax<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span>;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Zs = <span style="color: #BFEBBF;">1</span>.<span style="color: #BFEBBF;">2</span><span style="color: #7CB8BB;">*</span>cube<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">2</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>; <span style="color: #7F9F7F;">% Height of the fixed platform</span>
|
||||
Ze = Zs <span style="color: #7CB8BB;">+</span> H; <span style="color: #7F9F7F;">% Height of the mobile platform</span>
|
||||
<pre class="src src-matlab">Zs = <span class="org-highlight-numbers-number">1</span>.<span class="org-highlight-numbers-number">2</span><span class="org-type">*</span>cube<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>; <span class="org-comment">% Height of the fixed platform</span>
|
||||
Ze = Zs <span class="org-type">+</span> H; <span class="org-comment">% Height of the mobile platform</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1306,11 +1310,11 @@ Ze = Zs <span style="color: #7CB8BB;">+</span> H; <span style="color: #7F9F7F;">
|
||||
We now determine the location of the joints on the fixed platform.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Aa = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
t = <span style="color: #DCDCCC;">(</span>Zs<span style="color: #7CB8BB;">-</span>legs_start<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">/</span><span style="color: #DCDCCC;">(</span>legs<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
Aa<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">+</span> t<span style="color: #7CB8BB;">*</span>legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Aa = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
t = <span class="org-rainbow-delimiters-depth-1">(</span>Zs<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
Aa<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1318,11 +1322,11 @@ We now determine the location of the joints on the fixed platform.
|
||||
And the location of the joints on the mobile platform
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">Ab = zeros<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">6</span>, <span style="color: #BFEBBF;">3</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
t = <span style="color: #DCDCCC;">(</span>Ze<span style="color: #7CB8BB;">-</span>legs_start<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span><span style="color: #7CB8BB;">/</span><span style="color: #DCDCCC;">(</span>legs<span style="color: #BFEBBF;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #BFEBBF;">)</span><span style="color: #DCDCCC;">)</span>;
|
||||
Ab<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> = legs_start<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span> <span style="color: #7CB8BB;">+</span> t<span style="color: #7CB8BB;">*</span>legs<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #7CB8BB;">:</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<pre class="src src-matlab">Ab = zeros<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">6</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
t = <span class="org-rainbow-delimiters-depth-1">(</span>Ze<span class="org-type">-</span>legs_start<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span>legs<span class="org-rainbow-delimiters-depth-2">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
Ab<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> = legs_start<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span> <span class="org-type">+</span> t<span class="org-type">*</span>legs<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-constant">i</span>, <span class="org-type">:</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
@@ -1330,15 +1334,15 @@ And the location of the joints on the mobile platform
|
||||
And we plot the legs.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab"><span style="color: #7CB8BB;">figure</span>;
|
||||
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
||||
hold on;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">for</span> <span style="color: #DFAF8F;">i</span> = <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">:</span><span style="color: #BFEBBF;">6</span>
|
||||
plot3<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span>Ab<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #D0BF8F;">)</span>,Aa<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">1</span><span style="color: #D0BF8F;">)</span><span style="color: #BFEBBF;">]</span>, <span style="color: #BFEBBF;">[</span>Ab<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">2</span><span style="color: #D0BF8F;">)</span>,Aa<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">2</span><span style="color: #D0BF8F;">)</span><span style="color: #BFEBBF;">]</span>, <span style="color: #BFEBBF;">[</span>Ab<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #D0BF8F;">)</span>,Aa<span style="color: #D0BF8F;">(</span><span style="color: #BFEBBF;">i</span>, <span style="color: #BFEBBF;">3</span><span style="color: #D0BF8F;">)</span><span style="color: #BFEBBF;">]</span>, <span style="color: #CC9393;">'k-'</span><span style="color: #DCDCCC;">)</span>;
|
||||
<span style="color: #F0DFAF; font-weight: bold;">end</span>
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name">i</span> = <span class="org-constant"><span class="org-highlight-numbers-number">1</span></span><span class="org-constant">:</span><span class="org-constant"><span class="org-highlight-numbers-number">6</span></span>
|
||||
plot3<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-rainbow-delimiters-depth-2">[</span>Ab<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span>,Aa<span class="org-rainbow-delimiters-depth-3">(</span><span class="org-constant">i</span>, <span class="org-highlight-numbers-number">3</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">]</span>, <span class="org-string">'k-'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
<span class="org-keyword">end</span>
|
||||
hold off;
|
||||
xlim<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span><span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
ylim<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span><span style="color: #7CB8BB;">-</span><span style="color: #BFEBBF;">1</span>, <span style="color: #BFEBBF;">1</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
zlim<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span><span style="color: #BFEBBF;">0</span>, <span style="color: #BFEBBF;">2</span><span style="color: #BFEBBF;">]</span><span style="color: #DCDCCC;">)</span>;
|
||||
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
ylim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-type">-</span><span class="org-highlight-numbers-number">1</span>, <span class="org-highlight-numbers-number">1</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
zlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">0</span>, <span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
@@ -1356,7 +1360,7 @@ zlim<span style="color: #DCDCCC;">(</span><span style="color: #BFEBBF;">[</span>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Thomas Dehaeze</p>
|
||||
<p class="date">Created: 2019-03-26 mar. 08:47</p>
|
||||
<p class="date">Created: 2019-08-26 lun. 11:58</p>
|
||||
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
|
||||
</div>
|
||||
</body>
|
||||
|
Reference in New Issue
Block a user