stewart-simscape/org/dynamics-study.org

385 lines
16 KiB
Org Mode
Raw Normal View History

2020-01-20 16:29:48 +01:00
#+TITLE: Stewart Platform - Dynamics Study
:DRAWER:
2020-02-11 15:50:52 +01:00
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
2020-01-20 16:29:48 +01:00
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
2021-01-08 15:34:53 +01:00
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
2020-01-20 16:29:48 +01:00
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
2020-02-11 15:27:39 +01:00
2020-08-05 13:26:06 +02:00
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
2020-02-11 15:27:39 +01:00
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
2020-02-11 15:50:52 +01:00
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
2020-02-11 15:27:39 +01:00
#+PROPERTY: header-args:latex+ :eval no-export
2020-02-11 15:50:52 +01:00
#+PROPERTY: header-args:latex+ :exports results
2020-02-11 15:27:39 +01:00
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
2020-02-11 15:50:52 +01:00
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
2020-01-20 16:29:48 +01:00
:END:
2020-02-13 15:19:30 +01:00
* Compare external forces and forces applied by the actuators
** Introduction :ignore:
2020-02-13 15:37:06 +01:00
In this section, we wish to compare the effect of forces/torques applied by the actuators with the effect of external forces/torques on the displacement of the mobile platform.
2020-02-13 15:19:30 +01:00
** Matlab Init :noexport:ignore:
2020-01-20 16:29:48 +01:00
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2021-01-08 15:54:58 +01:00
<<matlab-dir>>
2020-01-20 16:29:48 +01:00
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2021-01-08 15:54:58 +01:00
<<matlab-init>>
2020-01-20 16:29:48 +01:00
#+end_src
#+begin_src matlab
2021-01-08 15:54:58 +01:00
simulinkproject('../');
2020-01-20 16:29:48 +01:00
#+end_src
#+begin_src matlab
2021-01-08 15:54:58 +01:00
open('stewart_platform_model.slx')
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:19:30 +01:00
** Comparison with fixed support
2020-02-13 15:37:06 +01:00
Let's generate a Stewart platform.
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
We don't put any flexibility below the Stewart platform such that *its base is fixed to an inertial frame*.
We also don't put any payload on top of the Stewart platform.
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
The transfer function from actuator forces $\bm{\tau}$ to the relative displacement of the mobile platform $\mathcal{\bm{X}}$ is extracted.
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
Using the Jacobian matrix, we compute the transfer function from force/torques applied by the actuators on the frame $\{B\}$ fixed to the mobile platform:
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
We also extract the transfer function from external forces $\bm{\mathcal{F}}_{\text{ext}}$ on the frame $\{B\}$ fixed to the mobile platform to the relative displacement $\mathcal{\bm{X}}$ of $\{B\}$ with respect to frame $\{A\}$:
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
The comparison of the two transfer functions is shown in Figure [[fig:comparison_Fext_F_fixed_base]].
2020-02-13 15:19:30 +01:00
#+begin_src matlab :exports none
2021-01-08 15:54:58 +01:00
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gc(1,1), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1,1), freqs, 'Hz'))), '-');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend({'$\mathcal{X}_{x}/\mathcal{F}_{x}$', '$\mathcal{X}_{x}/\mathcal{F}_{x,ext}$'});
linkaxes([ax1,ax2],'x');
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/comparison_Fext_F_fixed_base.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:comparison_Fext_F_fixed_base
#+caption: Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ ([[./figs/comparison_Fext_F_fixed_base.png][png]], [[./figs/comparison_Fext_F_fixed_base.pdf][pdf]])
[[file:figs/comparison_Fext_F_fixed_base.png]]
2020-02-13 15:19:30 +01:00
2020-02-14 14:11:57 +01:00
This can be understood from figure [[fig:1dof_actuator_external_forces]] where $\mathcal{F}_{x}$ and $\mathcal{F}_{x,\text{ext}}$ have clearly the same effect on $\mathcal{X}_{x}$.
#+begin_src latex :file 1dof_actuator_external_forces.pdf
2021-01-08 15:54:58 +01:00
\begin{tikzpicture}
\draw[ground] (-1, 0) -- (1, 0);
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[spring] (-0.6, 0) -- (-0.6, 1.5) node[midway, left=0.1]{$k$};
\draw[actuator] ( 0.6, 0) -- ( 0.6, 1.5) node[midway, left=0.1](F){$\mathcal{F}_{x}$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[fill=white] (-1, 1.5) rectangle (1, 2) node[pos=0.5]{$m$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[dashed] (1, 2) -- ++(0.5, 0);
\draw[->] (1.5, 2) -- ++(0, 0.5) node[right]{$\mathcal{X}_{x}$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[->] (0, 2) node[]{$\bullet$} -- (0, 2.8) node[below right]{$\mathcal{F}_{x,\text{ext}}$};
\end{tikzpicture}
2020-02-14 14:11:57 +01:00
#+end_src
#+name: fig:1dof_actuator_external_forces
#+caption: Schematic representation of the stewart platform on a rigid support
#+RESULTS:
[[file:figs/1dof_actuator_external_forces.png]]
2020-02-13 15:19:30 +01:00
** Comparison with a flexible support
2020-02-13 15:37:06 +01:00
We now add a flexible support under the Stewart platform.
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
ground = initializeGround('type', 'flexible');
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
And we perform again the identification.
2020-01-20 16:29:48 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'F_ext'); io_i = io_i + 1; % External forces/torques applied on {B}
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
%% Run the linearization
Gd = linearize(mdl, io, options);
Gd.InputName = {'Fex', 'Fey', 'Fez', 'Mex', 'Mey', 'Mez'};
Gd.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
The comparison between the obtained transfer functions is shown in Figure [[fig:comparison_Fext_F_flexible_base]].
2020-02-13 15:19:30 +01:00
#+begin_src matlab :exports none
2021-01-08 15:54:58 +01:00
freqs = logspace(1, 4, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gc(1,1), freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1,1), freqs, 'Hz'))), '-');
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(1,1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend({'$\mathcal{X}_{x}/\mathcal{F}_{x}$', '$\mathcal{X}_{x}/\mathcal{F}_{x,ext}$'});
linkaxes([ax1,ax2],'x');
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
#+header: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/comparison_Fext_F_flexible_base.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+name: fig:comparison_Fext_F_flexible_base
#+caption: Comparison of the transfer functions from $\bm{\mathcal{F}}$ to $\mathcal{\bm{X}}$ and from $\bm{\mathcal{F}}_{\text{ext}}$ to $\mathcal{\bm{X}}$ ([[./figs/comparison_Fext_F_flexible_base.png][png]], [[./figs/comparison_Fext_F_flexible_base.pdf][pdf]])
[[file:figs/comparison_Fext_F_flexible_base.png]]
2020-02-14 14:11:57 +01:00
The addition of a flexible support can be schematically represented in Figure [[fig:2dof_actuator_external_forces]].
We see that $\mathcal{F}_{x}$ applies a force both on $m$ and $m^{\prime}$ whereas $\mathcal{F}_{x,\text{ext}}$ only applies a force on $m$.
And thus $\mathcal{F}_{x}$ and $\mathcal{F}_{x,\text{ext}}$ have clearly *not* the same effect on $\mathcal{X}_{x}$.
#+begin_src latex :file 2dof_actuator_external_forces.pdf
2021-01-08 15:54:58 +01:00
\begin{tikzpicture}
\draw[ground] (-1, 0) -- (1, 0);
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[spring] (0, 0) -- (0, 1.5) node[midway, left=0.1]{$k^{\prime}$};
\draw[fill=white] (-1, 1.5) rectangle (1, 2) node[pos=0.5]{$m^{\prime}$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[spring] (-0.6, 2) -- (-0.6, 3.5) node[midway, left=0.1]{$k$};
\draw[actuator] ( 0.6, 2) -- ( 0.6, 3.5) node[midway, left=0.1](F){$\mathcal{F}_{x}$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[fill=white] (-1, 3.5) rectangle (1, 4) node[pos=0.5]{$m$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[dashed] (1, 4) -- ++(0.5, 0);
\draw[->] (1.5, 4) -- ++(0, 0.5) node[right]{$\mathcal{X}_{x}$};
2020-02-14 14:11:57 +01:00
2021-01-08 15:54:58 +01:00
\draw[->] (0, 4) node[]{$\bullet$} -- (0, 4.8) node[below right]{$\mathcal{F}_{x,\text{ext}}$};
\end{tikzpicture}
2020-02-14 14:11:57 +01:00
#+end_src
#+name: fig:2dof_actuator_external_forces
#+caption: Schematic representation of the stewart platform on top of a flexible support
#+RESULTS:
[[file:figs/2dof_actuator_external_forces.png]]
2020-02-13 15:19:30 +01:00
** Conclusion
2020-01-20 16:29:48 +01:00
#+begin_important
2020-02-13 15:19:30 +01:00
The transfer function from forces/torques applied by the actuators on the payload $\bm{\mathcal{F}} = \bm{J}^T \bm{\tau}$ to the pose of the mobile platform $\bm{\mathcal{X}}$ is the same as the transfer function from external forces/torques to $\bm{\mathcal{X}}$ as long as the Stewart platform's base is fixed.
2020-01-20 16:29:48 +01:00
#+end_important
2020-02-13 15:19:30 +01:00
* Comparison of the static transfer function and the Compliance matrix
** Introduction :ignore:
2020-02-13 15:37:06 +01:00
In this section, we see how the Compliance matrix of the Stewart platform is linked to the static relation between $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
2020-02-13 15:19:30 +01:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2021-01-08 15:54:58 +01:00
<<matlab-dir>>
2020-02-13 15:19:30 +01:00
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2021-01-08 15:54:58 +01:00
<<matlab-init>>
2020-02-13 15:19:30 +01:00
#+end_src
#+begin_src matlab
2021-01-08 15:54:58 +01:00
simulinkproject('../');
2020-02-13 15:19:30 +01:00
#+end_src
#+begin_src matlab
2021-01-08 15:54:58 +01:00
open('stewart_platform_model.slx')
2020-02-13 15:19:30 +01:00
#+end_src
** Analysis
2020-01-20 16:29:48 +01:00
Initialization of the Stewart platform.
#+begin_src matlab
2021-01-08 15:54:58 +01:00
stewart = initializeStewartPlatform();
stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, 'type_F', 'universal_p', 'type_M', 'spherical_p');
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
stewart = initializeInertialSensor(stewart, 'type', 'none');
2020-02-13 15:19:30 +01:00
#+end_src
2020-02-13 15:37:06 +01:00
No flexibility below the Stewart platform and no payload.
2020-02-13 15:19:30 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
ground = initializeGround('type', 'none');
payload = initializePayload('type', 'none');
controller = initializeController('type', 'open-loop');
2020-01-20 16:29:48 +01:00
#+end_src
Estimation of the transfer function from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$:
#+begin_src matlab
2021-01-08 15:54:58 +01:00
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_platform_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
io(io_i) = linio([mdl, '/Relative Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Position/Orientation of {B} w.r.t. {A}
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
2020-01-20 16:29:48 +01:00
#+end_src
2020-02-13 15:19:30 +01:00
#+begin_src matlab
2021-01-08 15:54:58 +01:00
Gc = minreal(G*inv(stewart.kinematics.J'));
Gc.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
2020-02-13 15:19:30 +01:00
#+end_src
2020-01-20 16:29:48 +01:00
Let's first look at the low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$.
#+begin_src matlab :exports results :results value table replace :tangle no
2020-02-13 15:19:30 +01:00
data2orgtable(real(freqresp(Gd, 0.1)), {}, {}, ' %.1e ');
2020-01-20 16:29:48 +01:00
#+end_src
#+RESULTS:
2020-02-13 15:19:30 +01:00
| 4.7e-08 | -7.2e-19 | 5.0e-18 | -8.9e-18 | 3.2e-07 | 9.9e-18 |
| 4.7e-18 | 4.7e-08 | -5.7e-18 | -3.2e-07 | -1.6e-17 | -1.7e-17 |
| 3.3e-18 | -6.3e-18 | 2.1e-08 | 4.4e-17 | 6.6e-18 | 7.4e-18 |
| -3.2e-17 | -3.2e-07 | 6.2e-18 | 5.2e-06 | -3.5e-16 | 6.3e-17 |
| 3.2e-07 | 2.7e-17 | 4.8e-17 | -4.5e-16 | 5.2e-06 | -1.2e-19 |
| 4.0e-17 | -9.5e-17 | 8.4e-18 | 4.3e-16 | 5.8e-16 | 1.7e-06 |
2020-01-20 16:29:48 +01:00
And now at the Compliance matrix.
#+begin_src matlab :exports results :results value table replace :tangle no
2020-02-13 15:19:30 +01:00
data2orgtable(stewart.kinematics.C, {}, {}, ' %.1e ');
2020-01-20 16:29:48 +01:00
#+end_src
#+RESULTS:
2020-02-13 15:19:30 +01:00
| 4.7e-08 | -2.0e-24 | 7.4e-25 | 5.9e-23 | 3.2e-07 | 5.9e-24 |
| -7.1e-25 | 4.7e-08 | 2.9e-25 | -3.2e-07 | -5.4e-24 | -3.3e-23 |
| 7.9e-26 | -6.4e-25 | 2.1e-08 | 1.9e-23 | 5.3e-25 | -6.5e-40 |
| 1.4e-23 | -3.2e-07 | 1.3e-23 | 5.2e-06 | 4.9e-22 | -3.8e-24 |
| 3.2e-07 | 7.6e-24 | 1.2e-23 | 6.9e-22 | 5.2e-06 | -2.6e-22 |
| 7.3e-24 | -3.2e-23 | -1.6e-39 | 9.9e-23 | -3.3e-22 | 1.7e-06 |
** Conclusion
2020-01-20 16:29:48 +01:00
#+begin_important
The low frequency transfer function matrix from $\mathcal{\bm{F}}$ to $\mathcal{\bm{X}}$ corresponds to the compliance matrix of the Stewart platform.
#+end_important