174 lines
5.4 KiB
Mathematica
174 lines
5.4 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
simulinkproject('./');
|
||
|
|
||
|
open('simulink/stewart_active_damping.slx')
|
||
|
|
||
|
% Identification of the Dynamics
|
||
|
|
||
|
stewart = initializeFramesPositions('H', 90e-3, 'MO_B', 45e-3);
|
||
|
stewart = generateGeneralConfiguration(stewart);
|
||
|
stewart = computeJointsPose(stewart);
|
||
|
stewart = initializeStrutDynamics(stewart);
|
||
|
stewart = initializeJointDynamics(stewart, 'disable', true);
|
||
|
stewart = initializeCylindricalPlatforms(stewart);
|
||
|
stewart = initializeCylindricalStruts(stewart);
|
||
|
stewart = computeJacobian(stewart);
|
||
|
stewart = initializeStewartPose(stewart);
|
||
|
|
||
|
%% Options for Linearized
|
||
|
options = linearizeOptions;
|
||
|
options.SampleTime = 0;
|
||
|
|
||
|
%% Name of the Simulink File
|
||
|
mdl = 'stewart_active_damping';
|
||
|
|
||
|
%% Input/Output definition
|
||
|
clear io; io_i = 1;
|
||
|
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N]
|
||
|
io(io_i) = linio([mdl, '/Vm'], 1, 'openoutput'); io_i = io_i + 1; % Absolute velocity of each leg [m/s]
|
||
|
|
||
|
%% Run the linearization
|
||
|
G = linearize(mdl, io, options);
|
||
|
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||
|
G.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
||
|
|
||
|
|
||
|
|
||
|
% The transfer function from actuator forces to force sensors is shown in Figure [[fig:inertial_plant_coupling]].
|
||
|
|
||
|
freqs = logspace(1, 3, 1000);
|
||
|
|
||
|
figure;
|
||
|
|
||
|
ax1 = subplot(2, 1, 1);
|
||
|
hold on;
|
||
|
for i = 2:6
|
||
|
set(gca,'ColorOrderIndex',2);
|
||
|
plot(freqs, abs(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
||
|
end
|
||
|
set(gca,'ColorOrderIndex',1);
|
||
|
plot(freqs, abs(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
|
||
|
|
||
|
ax2 = subplot(2, 1, 2);
|
||
|
hold on;
|
||
|
for i = 2:6
|
||
|
set(gca,'ColorOrderIndex',2);
|
||
|
p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Vm', num2str(i)], 'F1'), freqs, 'Hz'))));
|
||
|
end
|
||
|
set(gca,'ColorOrderIndex',1);
|
||
|
p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G('Vm1', 'F1'), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||
|
ylim([-180, 180]);
|
||
|
yticks([-180, -90, 0, 90, 180]);
|
||
|
legend([p1, p2], {'$F_{m,i}/F_i$', '$F_{m,j}/F_i$'})
|
||
|
|
||
|
linkaxes([ax1,ax2],'x');
|
||
|
|
||
|
% Effect of the Flexible Joint stiffness on the Dynamics
|
||
|
% We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
|
||
|
|
||
|
stewart = initializeJointDynamics(stewart);
|
||
|
Gf = linearize(mdl, io, options);
|
||
|
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
|
||
|
Gf.OutputName = {'Vm1', 'Vm2', 'Vm3', 'Vm4', 'Vm5', 'Vm6'};
|
||
|
|
||
|
|
||
|
|
||
|
% The new dynamics from force actuator to force sensor is shown in Figure [[fig:inertial_plant_flexible_joint_decentralized]].
|
||
|
|
||
|
freqs = logspace(1, 3, 1000);
|
||
|
|
||
|
figure;
|
||
|
|
||
|
ax1 = subplot(2, 1, 1);
|
||
|
hold on;
|
||
|
plot(freqs, abs(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
|
||
|
|
||
|
ax2 = subplot(2, 1, 2);
|
||
|
hold on;
|
||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Perfect Joints');
|
||
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gf('Vm1', 'F1'), freqs, 'Hz'))), 'DisplayName', 'Flexible Joints');
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||
|
ylim([-180, 180]);
|
||
|
yticks([-180, -90, 0, 90, 180]);
|
||
|
legend('location', 'southwest')
|
||
|
|
||
|
linkaxes([ax1,ax2],'x');
|
||
|
|
||
|
% Obtained Damping
|
||
|
% The control is a performed in a decentralized manner.
|
||
|
% The $6 \times 6$ control is a diagonal matrix with pure proportional action on the diagonal:
|
||
|
% \[ K(s) = g
|
||
|
% \begin{bmatrix}
|
||
|
% 1 & & 0 \\
|
||
|
% & \ddots & \\
|
||
|
% 0 & & 1
|
||
|
% \end{bmatrix} \]
|
||
|
|
||
|
% The root locus is shown in figure [[fig:root_locus_inertial_rot_stiffness]] and the obtained pole damping function of the control gain is shown in figure [[fig:pole_damping_gain_inertial_rot_stiffness]].
|
||
|
|
||
|
gains = logspace(0, 5, 1000);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
plot(real(pole(G)), imag(pole(G)), 'x');
|
||
|
plot(real(pole(Gf)), imag(pole(Gf)), 'x');
|
||
|
set(gca,'ColorOrderIndex',1);
|
||
|
plot(real(tzero(G)), imag(tzero(G)), 'o');
|
||
|
plot(real(tzero(Gf)), imag(tzero(Gf)), 'o');
|
||
|
for i = 1:length(gains)
|
||
|
cl_poles = pole(feedback(G, gains(i)*eye(6)));
|
||
|
set(gca,'ColorOrderIndex',1);
|
||
|
plot(real(cl_poles), imag(cl_poles), '.');
|
||
|
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
|
||
|
set(gca,'ColorOrderIndex',2);
|
||
|
plot(real(cl_poles), imag(cl_poles), '.');
|
||
|
end
|
||
|
ylim([0,2000]);
|
||
|
xlim([-2000,0]);
|
||
|
xlabel('Real Part')
|
||
|
ylabel('Imaginary Part')
|
||
|
axis square
|
||
|
|
||
|
|
||
|
|
||
|
% #+name: fig:root_locus_inertial_rot_stiffness
|
||
|
% #+caption: Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints ([[./figs/root_locus_inertial_rot_stiffness.png][png]], [[./figs/root_locus_inertial_rot_stiffness.pdf][pdf]])
|
||
|
% [[file:figs/root_locus_inertial_rot_stiffness.png]]
|
||
|
|
||
|
|
||
|
gains = logspace(0, 5, 1000);
|
||
|
|
||
|
figure;
|
||
|
hold on;
|
||
|
for i = 1:length(gains)
|
||
|
set(gca,'ColorOrderIndex',1);
|
||
|
cl_poles = pole(feedback(G, gains(i)*eye(6)));
|
||
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
||
|
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
||
|
set(gca,'ColorOrderIndex',2);
|
||
|
cl_poles = pole(feedback(Gf, gains(i)*eye(6)));
|
||
|
poles_damp = phase(cl_poles(imag(cl_poles)>0)) - pi/2;
|
||
|
plot(gains(i)*ones(size(poles_damp)), poles_damp, '.');
|
||
|
end
|
||
|
xlabel('Control Gain');
|
||
|
ylabel('Damping of the Poles');
|
||
|
set(gca, 'XScale', 'log');
|
||
|
ylim([0,pi/2]);
|