2020-01-22 16:31:44 +01:00
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
< !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
< html xmlns = "http://www.w3.org/1999/xhtml" lang = "en" xml:lang = "en" >
< head >
2020-02-06 15:39:35 +01:00
<!-- 2020 - 02 - 06 jeu. 15:39 -->
2020-01-22 16:31:44 +01:00
< meta http-equiv = "Content-Type" content = "text/html;charset=utf-8" / >
< meta name = "viewport" content = "width=device-width, initial-scale=1" / >
2020-02-06 15:39:35 +01:00
< title > Stewart Platform - Decentralized Active Damping< / title >
2020-01-22 16:31:44 +01:00
< meta name = "generator" content = "Org mode" / >
< meta name = "author" content = "Dehaeze Thomas" / >
< style type = "text/css" >
<!-- /* --> <![CDATA[/*> <!-- */
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
< / style >
< link rel = "stylesheet" type = "text/css" href = "./css/htmlize.css" / >
< link rel = "stylesheet" type = "text/css" href = "./css/readtheorg.css" / >
< script src = "./js/jquery.min.js" > < / script >
< script src = "./js/bootstrap.min.js" > < / script >
< script src = "./js/jquery.stickytableheaders.min.js" > < / script >
< script src = "./js/readtheorg.js" > < / script >
< script type = "text/javascript" >
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2020 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!-- /* --> <![CDATA[/*> <!-- */
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
< / script >
2020-02-06 15:39:35 +01:00
< script >
MathJax = {
tex: { macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
< / script >
< script type = "text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">< / script >
2020-01-22 16:31:44 +01:00
< / head >
< body >
< div id = "org-div-home-and-up" >
< a accesskey = "h" href = "./index.html" > UP < / a >
|
< a accesskey = "H" href = "./index.html" > HOME < / a >
< / div > < div id = "content" >
2020-02-06 15:39:35 +01:00
< h1 class = "title" > Stewart Platform - Decentralized Active Damping< / h1 >
2020-01-22 16:31:44 +01:00
< div id = "table-of-contents" >
< h2 > Table of Contents< / h2 >
< div id = "text-table-of-contents" >
< ul >
2020-02-06 15:39:35 +01:00
< li > < a href = "#orgfba33d4" > 1. Inertial Control< / a >
< ul >
< li > < a href = "#org0ea4bd4" > 1.1. Identification of the Dynamics< / a > < / li >
< li > < a href = "#org5a29480" > 1.2. Effect of the Flexible Joint stiffness on the Dynamics< / a > < / li >
< li > < a href = "#orga92be75" > 1.3. Obtained Damping< / a > < / li >
< li > < a href = "#orgb29f377" > 1.4. Conclusion< / a > < / li >
< / ul >
< / li >
< li > < a href = "#org5fde56d" > 2. Integral Force Feedback< / a >
< ul >
< li > < a href = "#org8823e64" > 2.1. Identification of the Dynamics with perfect Joints< / a > < / li >
< li > < a href = "#org2aff899" > 2.2. Effect of the Flexible Joint stiffness on the Dynamics< / a > < / li >
< li > < a href = "#org40dffdd" > 2.3. Obtained Damping< / a > < / li >
< li > < a href = "#org2ae5aaf" > 2.4. Conclusion< / a > < / li >
< / ul >
< / li >
< li > < a href = "#org9425768" > 3. Direct Velocity Feedback< / a >
2020-01-22 16:31:44 +01:00
< ul >
2020-02-06 15:39:35 +01:00
< li > < a href = "#org61043ac" > 3.1. Identification of the Dynamics with perfect Joints< / a > < / li >
< li > < a href = "#org8f71141" > 3.2. Effect of the Flexible Joint stiffness on the Dynamics< / a > < / li >
< li > < a href = "#org87c6911" > 3.3. Obtained Damping< / a > < / li >
< li > < a href = "#org516fed1" > 3.4. Conclusion< / a > < / li >
2020-01-22 16:31:44 +01:00
< / ul >
< / li >
< / ul >
< / div >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The following decentralized active damping techniques are briefly studied:
< / p >
< ul class = "org-ul" >
< li > Inertial Control (proportional feedback of the absolute velocity): Section < a href = "#org3c68d9e" > 1< / a > < / li >
< li > Integral Force Feedback: Section < a href = "#org62cd19c" > 2< / a > < / li >
< li > Direct feedback of the relative velocity of each strut: Section < a href = "#org587277a" > 3< / a > < / li >
< / ul >
< div id = "outline-container-orgfba33d4" class = "outline-2" >
< h2 id = "orgfba33d4" > < span class = "section-number-2" > 1< / span > Inertial Control< / h2 >
2020-01-22 16:31:44 +01:00
< div class = "outline-text-2" id = "text-1" >
2020-02-06 15:39:35 +01:00
< p >
< a id = "org3c68d9e" > < / a >
< / p >
2020-01-22 16:31:44 +01:00
< / div >
2020-02-06 15:39:35 +01:00
< div id = "outline-container-org0ea4bd4" class = "outline-3" >
< h3 id = "org0ea4bd4" > < span class = "section-number-3" > 1.1< / span > Identification of the Dynamics< / h3 >
2020-01-22 16:31:44 +01:00
< div class = "outline-text-3" id = "text-1-1" >
< div class = "org-src-container" >
2020-02-06 15:39:35 +01:00
< pre class = "src src-matlab" > stewart = initializeFramesPositions(< span class = "org-string" > 'H'< / span > , 90e< span class = "org-type" > -< / span > 3, < span class = "org-string" > 'MO_B'< / span > , 45e< span class = "org-type" > -< / span > 3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, < span class = "org-string" > 'disable'< / span > , < span class = "org-constant" > true< / span > );
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
< / pre >
< / div >
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Options for Linearized< / span > < / span >
options = linearizeOptions;
options.SampleTime = 0;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Name of the Simulink File< / span > < / span >
mdl = < span class = "org-string" > 'stewart_active_damping'< / span > ;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Input/Output definition< / span > < / span >
clear io; io_i = 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/F'< / span > ], 1, < span class = "org-string" > 'openinput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Actuator Force Inputs [N]< / span >
io(io_i) = linio([mdl, < span class = "org-string" > '/Vm'< / span > ], 1, < span class = "org-string" > 'openoutput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Absolute velocity of each leg [m/s]< / span >
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Run the linearization< / span > < / span >
G = linearize(mdl, io, options);
G.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
G.OutputName = {< span class = "org-string" > 'Vm1'< / span > , < span class = "org-string" > 'Vm2'< / span > , < span class = "org-string" > 'Vm3'< / span > , < span class = "org-string" > 'Vm4'< / span > , < span class = "org-string" > 'Vm5'< / span > , < span class = "org-string" > 'Vm6'< / span > };
2020-01-22 16:31:44 +01:00
< / pre >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The transfer function from actuator forces to force sensors is shown in Figure < a href = "#orgfc5367b" > 1< / a > .
< / p >
< div id = "orgfc5367b" class = "figure" >
< p > < img src = "figs/inertial_plant_coupling.png" alt = "inertial_plant_coupling.png" / >
< / p >
< p > < span class = "figure-number" > Figure 1: < / span > Transfer function from the Actuator force \(F_{i}\) to the absolute velocity of the same leg \(v_{m,i}\) and to the absolute velocity of the other legs \(v_{m,j}\) with \(i \neq j\) in grey (< a href = "./figs/inertial_plant_coupling.png" > png< / a > , < a href = "./figs/inertial_plant_coupling.pdf" > pdf< / a > )< / p >
< / div >
2020-01-22 16:31:44 +01:00
< / div >
< / div >
2020-02-06 15:39:35 +01:00
< div id = "outline-container-org5a29480" class = "outline-3" >
< h3 id = "org5a29480" > < span class = "section-number-3" > 1.2< / span > Effect of the Flexible Joint stiffness on the Dynamics< / h3 >
2020-01-22 16:31:44 +01:00
< div class = "outline-text-3" id = "text-1-2" >
2020-02-06 15:39:35 +01:00
< p >
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
< / p >
2020-01-22 16:31:44 +01:00
< div class = "org-src-container" >
2020-02-06 15:39:35 +01:00
< pre class = "src src-matlab" > stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
Gf.OutputName = {< span class = "org-string" > 'Vm1'< / span > , < span class = "org-string" > 'Vm2'< / span > , < span class = "org-string" > 'Vm3'< / span > , < span class = "org-string" > 'Vm4'< / span > , < span class = "org-string" > 'Vm5'< / span > , < span class = "org-string" > 'Vm6'< / span > };
2020-01-22 16:31:44 +01:00
< / pre >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The new dynamics from force actuator to force sensor is shown in Figure < a href = "#org2ee5d65" > 2< / a > .
< / p >
< div id = "org2ee5d65" class = "figure" >
< p > < img src = "figs/inertial_plant_flexible_joint_decentralized.png" alt = "inertial_plant_flexible_joint_decentralized.png" / >
< / p >
< p > < span class = "figure-number" > Figure 2: < / span > Transfer function from the Actuator force \(F_{i}\) to the absolute velocity sensor \(v_{m,i}\) (< a href = "./figs/inertial_plant_flexible_joint_decentralized.png" > png< / a > , < a href = "./figs/inertial_plant_flexible_joint_decentralized.pdf" > pdf< / a > )< / p >
< / div >
2020-01-22 16:31:44 +01:00
< / div >
< / div >
2020-02-06 15:39:35 +01:00
< div id = "outline-container-orga92be75" class = "outline-3" >
< h3 id = "orga92be75" > < span class = "section-number-3" > 1.3< / span > Obtained Damping< / h3 >
2020-01-22 16:31:44 +01:00
< div class = "outline-text-3" id = "text-1-3" >
2020-02-06 15:39:35 +01:00
< p >
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure proportional action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{bmatrix} \]
< / p >
< p >
The root locus is shown in figure < a href = "#org78a599c" > 3< / a > and the obtained pole damping function of the control gain is shown in figure < a href = "#org0b6bb28" > 4< / a > .
< / p >
< div id = "org78a599c" class = "figure" >
< p > < img src = "figs/root_locus_inertial_rot_stiffness.png" alt = "root_locus_inertial_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 3: < / span > Root Locus plot with Decentralized Inertial Control when considering the stiffness of flexible joints (< a href = "./figs/root_locus_inertial_rot_stiffness.png" > png< / a > , < a href = "./figs/root_locus_inertial_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org0b6bb28" class = "figure" >
< p > < img src = "figs/pole_damping_gain_inertial_rot_stiffness.png" alt = "pole_damping_gain_inertial_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 4: < / span > Damping of the poles with respect to the gain of the Decentralized Inertial Control when considering the stiffness of flexible joints (< a href = "./figs/pole_damping_gain_inertial_rot_stiffness.png" > png< / a > , < a href = "./figs/pole_damping_gain_inertial_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-orgb29f377" class = "outline-3" >
< h3 id = "orgb29f377" > < span class = "section-number-3" > 1.4< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-1-4" >
< div class = "important" >
< p >
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
< / p >
< / div >
< / div >
< / div >
< / div >
< div id = "outline-container-org5fde56d" class = "outline-2" >
< h2 id = "org5fde56d" > < span class = "section-number-2" > 2< / span > Integral Force Feedback< / h2 >
< div class = "outline-text-2" id = "text-2" >
< p >
< a id = "org62cd19c" > < / a >
< / p >
< / div >
< div id = "outline-container-org8823e64" class = "outline-3" >
< h3 id = "org8823e64" > < span class = "section-number-3" > 2.1< / span > Identification of the Dynamics with perfect Joints< / h3 >
< div class = "outline-text-3" id = "text-2-1" >
< p >
We first initialize the Stewart platform without joint stiffness.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > stewart = initializeFramesPositions(< span class = "org-string" > 'H'< / span > , 90e< span class = "org-type" > -< / span > 3, < span class = "org-string" > 'MO_B'< / span > , 45e< span class = "org-type" > -< / span > 3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, < span class = "org-string" > 'disable'< / span > , < span class = "org-constant" > true< / span > );
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
< / pre >
< / div >
< p >
And we identify the dynamics from force actuators to force sensors.
< / p >
2020-01-22 16:31:44 +01:00
< div class = "org-src-container" >
< pre class = "src src-matlab" > < span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Options for Linearized< / span > < / span >
options = linearizeOptions;
options.SampleTime = 0;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Name of the Simulink File< / span > < / span >
mdl = < span class = "org-string" > 'stewart_active_damping'< / span > ;
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Input/Output definition< / span > < / span >
clear io; io_i = 1;
2020-02-06 15:39:35 +01:00
io(io_i) = linio([mdl, < span class = "org-string" > '/F'< / span > ], 1, < span class = "org-string" > 'openinput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Actuator Force Inputs [N]< / span >
io(io_i) = linio([mdl, < span class = "org-string" > '/Fm'< / span > ], 1, < span class = "org-string" > 'openoutput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Force Sensor Outputs [N]< / span >
2020-01-22 16:31:44 +01:00
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Run the linearization< / span > < / span >
G = linearize(mdl, io, options);
G.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
2020-02-06 15:39:35 +01:00
G.OutputName = {< span class = "org-string" > 'Fm1'< / span > , < span class = "org-string" > 'Fm2'< / span > , < span class = "org-string" > 'Fm3'< / span > , < span class = "org-string" > 'Fm4'< / span > , < span class = "org-string" > 'Fm5'< / span > , < span class = "org-string" > 'Fm6'< / span > };
2020-01-22 16:31:44 +01:00
< / pre >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The transfer function from actuator forces to force sensors is shown in Figure < a href = "#orgae4e327" > 5< / a > .
< / p >
< div id = "orgae4e327" class = "figure" >
< p > < img src = "figs/iff_plant_coupling.png" alt = "iff_plant_coupling.png" / >
< / p >
< p > < span class = "figure-number" > Figure 5: < / span > Transfer function from the Actuator force \(F_{i}\) to the Force sensor of the same leg \(F_{m,i}\) and to the force sensor of the other legs \(F_{m,j}\) with \(i \neq j\) in grey (< a href = "./figs/iff_plant_coupling.png" > png< / a > , < a href = "./figs/iff_plant_coupling.pdf" > pdf< / a > )< / p >
< / div >
2020-01-22 16:31:44 +01:00
< / div >
< / div >
2020-02-06 15:39:35 +01:00
< div id = "outline-container-org2aff899" class = "outline-3" >
< h3 id = "org2aff899" > < span class = "section-number-3" > 2.2< / span > Effect of the Flexible Joint stiffness on the Dynamics< / h3 >
< div class = "outline-text-3" id = "text-2-2" >
< p >
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
Gf.OutputName = {< span class = "org-string" > 'Fm1'< / span > , < span class = "org-string" > 'Fm2'< / span > , < span class = "org-string" > 'Fm3'< / span > , < span class = "org-string" > 'Fm4'< / span > , < span class = "org-string" > 'Fm5'< / span > , < span class = "org-string" > 'Fm6'< / span > };
< / pre >
< / div >
< p >
The new dynamics from force actuator to force sensor is shown in Figure < a href = "#orgd21a8a8" > 6< / a > .
< / p >
< div id = "orgd21a8a8" class = "figure" >
< p > < img src = "figs/iff_plant_flexible_joint_decentralized.png" alt = "iff_plant_flexible_joint_decentralized.png" / >
< / p >
< p > < span class = "figure-number" > Figure 6: < / span > Transfer function from the Actuator force \(F_{i}\) to the force sensor \(F_{m,i}\) (< a href = "./figs/iff_plant_flexible_joint_decentralized.png" > png< / a > , < a href = "./figs/iff_plant_flexible_joint_decentralized.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org40dffdd" class = "outline-3" >
< h3 id = "org40dffdd" > < span class = "section-number-3" > 2.3< / span > Obtained Damping< / h3 >
< div class = "outline-text-3" id = "text-2-3" >
< p >
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure integration action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
\frac{1}{s} & & 0 \\
& \ddots & \\
0 & & \frac{1}{s}
\end{bmatrix} \]
< / p >
< p >
The root locus is shown in figure < a href = "#org2cdbf69" > 7< / a > and the obtained pole damping function of the control gain is shown in figure < a href = "#orge344229" > 8< / a > .
< /p>
< div id = "org2cdbf69" class = "figure" >
< p > < img src = "figs/root_locus_iff_rot_stiffness.png" alt = "root_locus_iff_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 7: < / span > Root Locus plot with Decentralized Integral Force Feedback when considering the stiffness of flexible joints (< a href = "./figs/root_locus_iff_rot_stiffness.png" > png< / a > , < a href = "./figs/root_locus_iff_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< div id = "orge344229" class = "figure" >
< p > < img src = "figs/pole_damping_gain_iff_rot_stiffness.png" alt = "pole_damping_gain_iff_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 8: < / span > Damping of the poles with respect to the gain of the Decentralized Integral Force Feedback when considering the stiffness of flexible joints (< a href = "./figs/pole_damping_gain_iff_rot_stiffness.png" > png< / a > , < a href = "./figs/pole_damping_gain_iff_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org2ae5aaf" class = "outline-3" >
< h3 id = "org2ae5aaf" > < span class = "section-number-3" > 2.4< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-2-4" >
< div class = "important" >
< p >
The joint stiffness has a huge impact on the attainable active damping performance when using force sensors.
Thus, if Integral Force Feedback is to be used in a Stewart platform with flexible joints, the rotational stiffness of the joints should be minimized.
< / p >
< / div >
< / div >
< / div >
< / div >
< div id = "outline-container-org9425768" class = "outline-2" >
< h2 id = "org9425768" > < span class = "section-number-2" > 3< / span > Direct Velocity Feedback< / h2 >
< div class = "outline-text-2" id = "text-3" >
< p >
< a id = "org587277a" > < / a >
< / p >
< / div >
< div id = "outline-container-org61043ac" class = "outline-3" >
< h3 id = "org61043ac" > < span class = "section-number-3" > 3.1< / span > Identification of the Dynamics with perfect Joints< / h3 >
< div class = "outline-text-3" id = "text-3-1" >
< p >
We first initialize the Stewart platform without joint stiffness.
< / p >
< div class = "org-src-container" >
< pre class = "src src-matlab" > stewart = initializeFramesPositions(< span class = "org-string" > 'H'< / span > , 90e< span class = "org-type" > -< / span > 3, < span class = "org-string" > 'MO_B'< / span > , 45e< span class = "org-type" > -< / span > 3);
stewart = generateGeneralConfiguration(stewart);
stewart = computeJointsPose(stewart);
stewart = initializeStrutDynamics(stewart);
stewart = initializeJointDynamics(stewart, < span class = "org-string" > 'disable'< / span > , < span class = "org-constant" > true< / span > );
stewart = initializeCylindricalPlatforms(stewart);
stewart = initializeCylindricalStruts(stewart);
stewart = computeJacobian(stewart);
stewart = initializeStewartPose(stewart);
< / pre >
< / div >
< p >
And we identify the dynamics from force actuators to force sensors.
< / p >
2020-01-22 16:31:44 +01:00
< div class = "org-src-container" >
2020-02-06 15:39:35 +01:00
< pre class = "src src-matlab" > < span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Options for Linearized< / span > < / span >
options = linearizeOptions;
options.SampleTime = 0;
2020-01-22 16:31:44 +01:00
2020-02-06 15:39:35 +01:00
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Name of the Simulink File< / span > < / span >
mdl = < span class = "org-string" > 'stewart_active_damping'< / span > ;
2020-01-22 16:31:44 +01:00
2020-02-06 15:39:35 +01:00
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Input/Output definition< / span > < / span >
clear io; io_i = 1;
io(io_i) = linio([mdl, < span class = "org-string" > '/F'< / span > ], 1, < span class = "org-string" > 'openinput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Actuator Force Inputs [N]< / span >
io(io_i) = linio([mdl, < span class = "org-string" > '/Dm'< / span > ], 1, < span class = "org-string" > 'openoutput'< / span > ); io_i = io_i < span class = "org-type" > +< / span > 1; < span class = "org-comment" > % Relative Displacement Outputs [N]< / span >
< span class = "org-matlab-cellbreak" > < span class = "org-comment" > %% Run the linearization< / span > < / span >
G = linearize(mdl, io, options);
G.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
G.OutputName = {< span class = "org-string" > 'Dm1'< / span > , < span class = "org-string" > 'Dm2'< / span > , < span class = "org-string" > 'Dm3'< / span > , < span class = "org-string" > 'Dm4'< / span > , < span class = "org-string" > 'Dm5'< / span > , < span class = "org-string" > 'Dm6'< / span > };
2020-01-22 16:31:44 +01:00
< / pre >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The transfer function from actuator forces to relative motion sensors is shown in Figure < a href = "#orgd8d51db" > 9< / a > .
< / p >
< div id = "orgd8d51db" class = "figure" >
< p > < img src = "figs/dvf_plant_coupling.png" alt = "dvf_plant_coupling.png" / >
< / p >
< p > < span class = "figure-number" > Figure 9: < / span > Transfer function from the Actuator force \(F_{i}\) to the Relative Motion Sensor \(D_{m,j}\) with \(i \neq j\) (< a href = "./figs/dvf_plant_coupling.png" > png< / a > , < a href = "./figs/dvf_plant_coupling.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org8f71141" class = "outline-3" >
< h3 id = "org8f71141" > < span class = "section-number-3" > 3.2< / span > Effect of the Flexible Joint stiffness on the Dynamics< / h3 >
< div class = "outline-text-3" id = "text-3-2" >
< p >
We add some stiffness and damping in the flexible joints and we re-identify the dynamics.
< / p >
2020-01-22 16:31:44 +01:00
< div class = "org-src-container" >
2020-02-06 15:39:35 +01:00
< pre class = "src src-matlab" > stewart = initializeJointDynamics(stewart);
Gf = linearize(mdl, io, options);
Gf.InputName = {< span class = "org-string" > 'F1'< / span > , < span class = "org-string" > 'F2'< / span > , < span class = "org-string" > 'F3'< / span > , < span class = "org-string" > 'F4'< / span > , < span class = "org-string" > 'F5'< / span > , < span class = "org-string" > 'F6'< / span > };
Gf.OutputName = {< span class = "org-string" > 'Dm1'< / span > , < span class = "org-string" > 'Dm2'< / span > , < span class = "org-string" > 'Dm3'< / span > , < span class = "org-string" > 'Dm4'< / span > , < span class = "org-string" > 'Dm5'< / span > , < span class = "org-string" > 'Dm6'< / span > };
2020-01-22 16:31:44 +01:00
< / pre >
< / div >
2020-02-06 15:39:35 +01:00
< p >
The new dynamics from force actuator to relative motion sensor is shown in Figure < a href = "#orgb18f950" > 10< / a > .
< / p >
< div id = "orgb18f950" class = "figure" >
< p > < img src = "figs/dvf_plant_flexible_joint_decentralized.png" alt = "dvf_plant_flexible_joint_decentralized.png" / >
< / p >
< p > < span class = "figure-number" > Figure 10: < / span > Transfer function from the Actuator force \(F_{i}\) to the relative displacement sensor \(D_{m,i}\) (< a href = "./figs/dvf_plant_flexible_joint_decentralized.png" > png< / a > , < a href = "./figs/dvf_plant_flexible_joint_decentralized.pdf" > pdf< / a > )< / p >
< / div >
2020-01-22 16:31:44 +01:00
< / div >
< / div >
2020-02-06 15:39:35 +01:00
< div id = "outline-container-org87c6911" class = "outline-3" >
< h3 id = "org87c6911" > < span class = "section-number-3" > 3.3< / span > Obtained Damping< / h3 >
< div class = "outline-text-3" id = "text-3-3" >
2020-01-22 16:31:44 +01:00
< p >
2020-02-06 15:39:35 +01:00
The control is a performed in a decentralized manner.
The \(6 \times 6\) control is a diagonal matrix with pure derivative action on the diagonal:
\[ K(s) = g
\begin{bmatrix}
s & & \\
& \ddots & \\
& & s
\end{bmatrix} \]
2020-01-22 16:31:44 +01:00
< / p >
2020-02-06 15:39:35 +01:00
< p >
The root locus is shown in figure < a href = "#org5cb31c8" > 11< / a > and the obtained pole damping function of the control gain is shown in figure < a href = "#org4618492" > 12< / a > .
< / p >
< div id = "org5cb31c8" class = "figure" >
< p > < img src = "figs/root_locus_dvf_rot_stiffness.png" alt = "root_locus_dvf_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 11: < / span > Root Locus plot with Direct Velocity Feedback when considering the Stiffness of flexible joints (< a href = "./figs/root_locus_dvf_rot_stiffness.png" > png< / a > , < a href = "./figs/root_locus_dvf_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< div id = "org4618492" class = "figure" >
< p > < img src = "figs/pole_damping_gain_dvf_rot_stiffness.png" alt = "pole_damping_gain_dvf_rot_stiffness.png" / >
< / p >
< p > < span class = "figure-number" > Figure 12: < / span > Damping of the poles with respect to the gain of the Direct Velocity Feedback when considering the Stiffness of flexible joints (< a href = "./figs/pole_damping_gain_dvf_rot_stiffness.png" > png< / a > , < a href = "./figs/pole_damping_gain_dvf_rot_stiffness.pdf" > pdf< / a > )< / p >
< / div >
< / div >
< / div >
< div id = "outline-container-org516fed1" class = "outline-3" >
< h3 id = "org516fed1" > < span class = "section-number-3" > 3.4< / span > Conclusion< / h3 >
< div class = "outline-text-3" id = "text-3-4" >
< div class = "important" >
< p >
Joint stiffness does increase the resonance frequencies of the system but does not change the attainable damping when using relative motion sensors.
< / p >
< / div >
2020-01-22 16:31:44 +01:00
< / div >
< / div >
< / div >
< / div >
< div id = "postamble" class = "status" >
< p class = "author" > Author: Dehaeze Thomas< / p >
2020-02-06 15:39:35 +01:00
< p class = "date" > Created: 2020-02-06 jeu. 15:39< / p >
2020-01-22 16:31:44 +01:00
< / div >
< / body >
< / html >