stewart-simscape/identification_control.m

78 lines
2.4 KiB
Mathematica
Raw Normal View History

%% Script Description
% Script used to identify the transfer functions of the
% Stewart platform (from actuator to displacement)
%%
clear;
close all;
clc
%% Define options for bode plots
bode_opts = bodeoptions;
bode_opts.Title.FontSize = 12;
bode_opts.XLabel.FontSize = 12;
bode_opts.YLabel.FontSize = 12;
bode_opts.FreqUnits = 'Hz';
bode_opts.MagUnits = 'abs';
bode_opts.MagScale = 'log';
bode_opts.PhaseWrapping = 'on';
bode_opts.PhaseVisible = 'on';
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'stewart_simscape';
%% Centralized control (Cartesian coordinates)
% Input/Output definition
io(1) = linio([mdl, '/F_cart'],1,'input');
io(2) = linio([mdl, '/Stewart_Platform'],1,'output');
% Run the linearization
G_cart = linearize(mdl,io, 0);
% Input/Output names
G_cart.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
G_cart.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
% Bode Plot of the linearized function
freqs = logspace(2, 4, 1000);
bodeFig({G_cart(1, 1), G_cart(2, 2), G_cart(3, 3)}, freqs, struct('phase', true))
legend({'$F_x \rightarrow D_x$', '$F_y \rightarrow D_y$', '$F_z \rightarrow D_z$'})
exportFig('hexapod_cart_trans', 'normal-normal')
bodeFig({G_cart(4, 4), G_cart(5, 5), G_cart(6, 6)}, freqs, struct('phase', true))
legend({'$M_x \rightarrow R_x$', '$M_y \rightarrow R_y$', '$M_z \rightarrow R_z$'})
exportFig('hexapod_cart_rot', 'normal-normal')
bodeFig({G_cart(1, 1), G_cart(2, 1), G_cart(3, 1)}, freqs, struct('phase', true))
legend({'$F_x \rightarrow D_x$', '$F_x \rightarrow D_y$', '$F_x \rightarrow D_z$'})
exportFig('hexapod_cart_coupling', 'normal-normal')
%% Centralized control (Cartesian coordinates)
% Input/Output definition
io(1) = linio([mdl, '/F_legs'],1,'input');
io(2) = linio([mdl, '/Stewart_Platform'],2,'output');
% Run the linearization
G_legs = linearize(mdl,io, 0);
% Input/Output names
G_legs.InputName = {'F1', 'F2', 'F3', 'M4', 'M5', 'M6'};
G_legs.OutputName = {'D1', 'D2', 'D3', 'R4', 'R5', 'R6'};
% Bode Plot of the linearized function
freqs = logspace(2, 4, 1000);
bodeFig({G_legs(1, 1)}, freqs, struct('phase', true))
legend({'$F_i \rightarrow D_i$'})
exportFig('hexapod_legs', 'normal-normal')
bodeFig({G_legs(1, 1), G_legs(2, 1)}, freqs, struct('phase', true))
legend({'$F_i \rightarrow D_i$', '$F_i \rightarrow D_j$'})
exportFig('hexapod_legs_coupling', 'normal-normal')