78 lines
2.4 KiB
Mathematica
78 lines
2.4 KiB
Mathematica
|
%% Script Description
|
||
|
% Script used to identify the transfer functions of the
|
||
|
% Stewart platform (from actuator to displacement)
|
||
|
|
||
|
%%
|
||
|
clear;
|
||
|
close all;
|
||
|
clc
|
||
|
|
||
|
%% Define options for bode plots
|
||
|
bode_opts = bodeoptions;
|
||
|
|
||
|
bode_opts.Title.FontSize = 12;
|
||
|
bode_opts.XLabel.FontSize = 12;
|
||
|
bode_opts.YLabel.FontSize = 12;
|
||
|
bode_opts.FreqUnits = 'Hz';
|
||
|
bode_opts.MagUnits = 'abs';
|
||
|
bode_opts.MagScale = 'log';
|
||
|
bode_opts.PhaseWrapping = 'on';
|
||
|
bode_opts.PhaseVisible = 'on';
|
||
|
|
||
|
%% Options for Linearized
|
||
|
options = linearizeOptions;
|
||
|
options.SampleTime = 0;
|
||
|
|
||
|
%% Name of the Simulink File
|
||
|
mdl = 'stewart_simscape';
|
||
|
|
||
|
%% Centralized control (Cartesian coordinates)
|
||
|
% Input/Output definition
|
||
|
io(1) = linio([mdl, '/F_cart'],1,'input');
|
||
|
io(2) = linio([mdl, '/Stewart_Platform'],1,'output');
|
||
|
|
||
|
% Run the linearization
|
||
|
G_cart = linearize(mdl,io, 0);
|
||
|
|
||
|
% Input/Output names
|
||
|
G_cart.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
|
||
|
G_cart.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
|
||
|
|
||
|
% Bode Plot of the linearized function
|
||
|
freqs = logspace(2, 4, 1000);
|
||
|
|
||
|
bodeFig({G_cart(1, 1), G_cart(2, 2), G_cart(3, 3)}, freqs, struct('phase', true))
|
||
|
legend({'$F_x \rightarrow D_x$', '$F_y \rightarrow D_y$', '$F_z \rightarrow D_z$'})
|
||
|
exportFig('hexapod_cart_trans', 'normal-normal')
|
||
|
|
||
|
bodeFig({G_cart(4, 4), G_cart(5, 5), G_cart(6, 6)}, freqs, struct('phase', true))
|
||
|
legend({'$M_x \rightarrow R_x$', '$M_y \rightarrow R_y$', '$M_z \rightarrow R_z$'})
|
||
|
exportFig('hexapod_cart_rot', 'normal-normal')
|
||
|
|
||
|
bodeFig({G_cart(1, 1), G_cart(2, 1), G_cart(3, 1)}, freqs, struct('phase', true))
|
||
|
legend({'$F_x \rightarrow D_x$', '$F_x \rightarrow D_y$', '$F_x \rightarrow D_z$'})
|
||
|
exportFig('hexapod_cart_coupling', 'normal-normal')
|
||
|
|
||
|
%% Centralized control (Cartesian coordinates)
|
||
|
% Input/Output definition
|
||
|
io(1) = linio([mdl, '/F_legs'],1,'input');
|
||
|
io(2) = linio([mdl, '/Stewart_Platform'],2,'output');
|
||
|
|
||
|
% Run the linearization
|
||
|
G_legs = linearize(mdl,io, 0);
|
||
|
|
||
|
% Input/Output names
|
||
|
G_legs.InputName = {'F1', 'F2', 'F3', 'M4', 'M5', 'M6'};
|
||
|
G_legs.OutputName = {'D1', 'D2', 'D3', 'R4', 'R5', 'R6'};
|
||
|
|
||
|
% Bode Plot of the linearized function
|
||
|
freqs = logspace(2, 4, 1000);
|
||
|
|
||
|
bodeFig({G_legs(1, 1)}, freqs, struct('phase', true))
|
||
|
legend({'$F_i \rightarrow D_i$'})
|
||
|
exportFig('hexapod_legs', 'normal-normal')
|
||
|
|
||
|
bodeFig({G_legs(1, 1), G_legs(2, 1)}, freqs, struct('phase', true))
|
||
|
legend({'$F_i \rightarrow D_i$', '$F_i \rightarrow D_j$'})
|
||
|
exportFig('hexapod_legs_coupling', 'normal-normal')
|