Use online CSS and JS

This commit is contained in:
2020-11-12 10:21:37 +01:00
parent 14b54fb912
commit 9c1d16e11a
13 changed files with 48 additions and 1474 deletions

View File

@@ -4,6 +4,8 @@ clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Signal's PSD
% We load the PSD of the signal we wish to replicate.

View File

@@ -4,6 +4,8 @@ clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Signal's PSD
% We load the PSD of the signal we wish to replicate.

View File

@@ -4,6 +4,8 @@ clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Time Domain Signal
% Let's first define the number of sample and the sampling time.

BIN
matlab/mat/data_028.mat Normal file

Binary file not shown.

BIN
matlab/mat/dist_psd.mat Normal file

Binary file not shown.

View File

@@ -4,10 +4,9 @@ clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% #+RESULTS:
% [[file:figs/velocity_to_voltage.png]]
% #+NAME: fig:velocity_to_voltage
% #+CAPTION: Schematic of the instrumentation used for the measurement
@@ -69,8 +68,7 @@ ylabel("Velocity [m/s]");
% The goal of spectral estimation is to describe the distribution (over frequency) of the power contained in a signal, based on a finite set of data.
% #+end_quote
% We now have the velocity $v$ in the time domain:
% \[ v(t)\ [m/s] \]
% We now have the velocity $v(t)\ [m/s]$ in the time domain.
% The Power Spectral Density (PSD) $S_v(f)$ of the time domain $v(t)$ can be computed using the following equation:
% \[ S_v(f) = \frac{1}{f_s} \sum_{m=-\infty}^{\infty} R_{xx}(m) e^{-j 2 \pi m f / f_s} \ \left[\frac{(m/s)^2}{Hz}\right] \]
@@ -85,7 +83,7 @@ ylabel("Velocity [m/s]");
% To compute the Power Spectral Density with matlab, we use the =pwelch= function ([[https://fr.mathworks.com/help/signal/ref/pwelch.html?s_tid=doc_ta][documentation]]).
% The use of the =pwelch= function is:
% =[pxx,w] = pwelch(x,window,noverlap,nfft, fs)=
% With:
% with:
% - =x= is the discrete time signal
% - =window= is a window that is used to smooth the obtained PSD
% - =overlap= can be used to have some overlap from section to section