Compare commits

..

6 Commits

Author SHA1 Message Date
586a5983fe Simlink index.html 2021-02-02 19:13:50 +01:00
282a5bac04 Change pdf output and rename files 2021-02-02 19:11:20 +01:00
3ef8b604c5 Rename files 2021-02-02 18:54:35 +01:00
d56313fef7 Use online CSS and JS 2020-11-12 10:10:55 +01:00
364f138734 Reworked all computation / new CSS / export to PDF 2020-11-11 16:52:02 +01:00
0bac7ef616 Add figures 2020-11-03 10:53:34 +01:00
131 changed files with 75764 additions and 8065 deletions

263
.gitignore vendored
View File

@@ -35,3 +35,266 @@ codegen/
# Octave session info # Octave session info
octave-workspace octave-workspace
.auctex-auto/
.log/
## Core latex/pdflatex auxiliary files:
*.aux
*.lof
*.log
*.lot
*.fls
*.out
*.toc
*.fmt
*.fot
*.cb
*.cb2
.*.lb
## Intermediate documents:
*.dvi
*.xdv
*-converted-to.*
# these rules might exclude image files for figures etc.
# *.ps
# *.eps
# *.pdf
## Generated if empty string is given at "Please type another file name for output:"
.pdf
## Bibliography auxiliary files (bibtex/biblatex/biber):
*.bbl
*.bcf
*.blg
*-blx.aux
*-blx.bib
*.run.xml
## Build tool auxiliary files:
*.fdb_latexmk
*.synctex
*.synctex(busy)
*.synctex.gz
*.synctex.gz(busy)
*.pdfsync
## Build tool directories for auxiliary files
# latexrun
latex.out/
## Auxiliary and intermediate files from other packages:
# algorithms
*.alg
*.loa
# achemso
acs-*.bib
# amsthm
*.thm
# beamer
*.nav
*.pre
*.snm
*.vrb
# changes
*.soc
# comment
*.cut
# cprotect
*.cpt
# elsarticle (documentclass of Elsevier journals)
*.spl
# endnotes
*.ent
# fixme
*.lox
# feynmf/feynmp
*.mf
*.mp
*.t[1-9]
*.t[1-9][0-9]
*.tfm
#(r)(e)ledmac/(r)(e)ledpar
*.end
*.?end
*.[1-9]
*.[1-9][0-9]
*.[1-9][0-9][0-9]
*.[1-9]R
*.[1-9][0-9]R
*.[1-9][0-9][0-9]R
*.eledsec[1-9]
*.eledsec[1-9]R
*.eledsec[1-9][0-9]
*.eledsec[1-9][0-9]R
*.eledsec[1-9][0-9][0-9]
*.eledsec[1-9][0-9][0-9]R
# glossaries
*.acn
*.acr
*.glg
*.glo
*.gls
*.glsdefs
# gnuplottex
*-gnuplottex-*
# gregoriotex
*.gaux
*.gtex
# htlatex
*.4ct
*.4tc
*.idv
*.lg
*.trc
*.xref
# hyperref
*.brf
# knitr
*-concordance.tex
# TODO Comment the next line if you want to keep your tikz graphics files
*.tikz
*-tikzDictionary
# listings
*.lol
# makeidx
*.idx
*.ilg
*.ind
*.ist
# minitoc
*.maf
*.mlf
*.mlt
*.mtc[0-9]*
*.slf[0-9]*
*.slt[0-9]*
*.stc[0-9]*
# minted
_minted*
*.pyg
# morewrites
*.mw
# nomencl
*.nlg
*.nlo
*.nls
# pax
*.pax
# pdfpcnotes
*.pdfpc
# sagetex
*.sagetex.sage
*.sagetex.py
*.sagetex.scmd
# scrwfile
*.wrt
# sympy
*.sout
*.sympy
sympy-plots-for-*.tex/
# pdfcomment
*.upa
*.upb
# pythontex
*.pytxcode
pythontex-files-*/
# tcolorbox
*.listing
# thmtools
*.loe
# TikZ & PGF
*.dpth
*.md5
*.auxlock
# todonotes
*.tdo
# vhistory
*.hst
*.ver
# easy-todo
*.lod
# xcolor
*.xcp
# xmpincl
*.xmpi
# xindy
*.xdy
# xypic precompiled matrices
*.xyc
# endfloat
*.ttt
*.fff
# Latexian
TSWLatexianTemp*
## Editors:
# WinEdt
*.bak
*.sav
# Texpad
.texpadtmp
# LyX
*.lyx~
# Kile
*.backup
# KBibTeX
*~[0-9]*
# auto folder when using emacs and auctex
./auto/*
*.el
# expex forward references with \gathertags
*-tags.tex
# standalone packages
*.sta

View File

@@ -1,145 +0,0 @@
.org-bold { /* bold */ font-weight: bold; }
.org-bold-italic { /* bold-italic */ font-weight: bold; font-style: italic; }
.org-buffer-menu-buffer { /* buffer-menu-buffer */ font-weight: bold; }
.org-builtin { /* font-lock-builtin-face */ color: #7a378b; }
.org-button { /* button */ text-decoration: underline; }
.org-calendar-today { /* calendar-today */ text-decoration: underline; }
.org-change-log-acknowledgement { /* change-log-acknowledgement */ color: #b22222; }
.org-change-log-conditionals { /* change-log-conditionals */ color: #a0522d; }
.org-change-log-date { /* change-log-date */ color: #8b2252; }
.org-change-log-email { /* change-log-email */ color: #a0522d; }
.org-change-log-file { /* change-log-file */ color: #0000ff; }
.org-change-log-function { /* change-log-function */ color: #a0522d; }
.org-change-log-list { /* change-log-list */ color: #a020f0; }
.org-change-log-name { /* change-log-name */ color: #008b8b; }
.org-comint-highlight-input { /* comint-highlight-input */ font-weight: bold; }
.org-comint-highlight-prompt { /* comint-highlight-prompt */ color: #00008b; }
.org-comment { /* font-lock-comment-face */ color: #999988; font-style: italic; }
.org-comment-delimiter { /* font-lock-comment-delimiter-face */ color: #999988; font-style: italic; }
.org-completions-annotations { /* completions-annotations */ font-style: italic; }
.org-completions-common-part { /* completions-common-part */ color: #000000; background-color: #ffffff; }
.org-completions-first-difference { /* completions-first-difference */ font-weight: bold; }
.org-constant { /* font-lock-constant-face */ color: #008b8b; }
.org-diary { /* diary */ color: #ff0000; }
.org-diff-context { /* diff-context */ color: #7f7f7f; }
.org-diff-file-header { /* diff-file-header */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-function { /* diff-function */ background-color: #cccccc; }
.org-diff-header { /* diff-header */ background-color: #cccccc; }
.org-diff-hunk-header { /* diff-hunk-header */ background-color: #cccccc; }
.org-diff-index { /* diff-index */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-nonexistent { /* diff-nonexistent */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-refine-change { /* diff-refine-change */ background-color: #d9d9d9; }
.org-dired-directory { /* dired-directory */ color: #0000ff; }
.org-dired-flagged { /* dired-flagged */ color: #ff0000; font-weight: bold; }
.org-dired-header { /* dired-header */ color: #228b22; }
.org-dired-ignored { /* dired-ignored */ color: #7f7f7f; }
.org-dired-mark { /* dired-mark */ color: #008b8b; }
.org-dired-marked { /* dired-marked */ color: #ff0000; font-weight: bold; }
.org-dired-perm-write { /* dired-perm-write */ color: #b22222; }
.org-dired-symlink { /* dired-symlink */ color: #a020f0; }
.org-dired-warning { /* dired-warning */ color: #ff0000; font-weight: bold; }
.org-doc { /* font-lock-doc-face */ color: #8b2252; }
.org-escape-glyph { /* escape-glyph */ color: #a52a2a; }
.org-file-name-shadow { /* file-name-shadow */ color: #7f7f7f; }
.org-flyspell-duplicate { /* flyspell-duplicate */ color: #cdad00; font-weight: bold; text-decoration: underline; }
.org-flyspell-incorrect { /* flyspell-incorrect */ color: #ff4500; font-weight: bold; text-decoration: underline; }
.org-fringe { /* fringe */ background-color: #f2f2f2; }
.org-function-name { /* font-lock-function-name-face */ color: teal; }
.org-header-line { /* header-line */ color: #333333; background-color: #e5e5e5; }
.org-help-argument-name { /* help-argument-name */ font-style: italic; }
.org-highlight { /* highlight */ background-color: #b4eeb4; }
.org-holiday { /* holiday */ background-color: #ffc0cb; }
.org-isearch { /* isearch */ color: #b0e2ff; background-color: #cd00cd; }
.org-isearch-fail { /* isearch-fail */ background-color: #ffc1c1; }
.org-italic { /* italic */ font-style: italic; }
.org-keyword { /* font-lock-keyword-face */ color: #0086b3; }
.org-lazy-highlight { /* lazy-highlight */ background-color: #afeeee; }
.org-link { /* link */ color: #0000ff; text-decoration: underline; }
.org-link-visited { /* link-visited */ color: #8b008b; text-decoration: underline; }
.org-log-edit-header { /* log-edit-header */ color: #a020f0; }
.org-log-edit-summary { /* log-edit-summary */ color: #0000ff; }
.org-log-edit-unknown-header { /* log-edit-unknown-header */ color: #b22222; }
.org-match { /* match */ background-color: #ffff00; }
.org-next-error { /* next-error */ background-color: #eedc82; }
.org-nobreak-space { /* nobreak-space */ color: #a52a2a; text-decoration: underline; }
.org-org-archived { /* org-archived */ color: #7f7f7f; }
.org-org-block { /* org-block */ color: #7f7f7f; }
.org-org-block-begin-line { /* org-block-begin-line */ color: #b22222; }
.org-org-block-end-line { /* org-block-end-line */ color: #b22222; }
.org-org-checkbox { /* org-checkbox */ font-weight: bold; }
.org-org-checkbox-statistics-done { /* org-checkbox-statistics-done */ color: #228b22; font-weight: bold; }
.org-org-checkbox-statistics-todo { /* org-checkbox-statistics-todo */ color: #ff0000; font-weight: bold; }
.org-org-clock-overlay { /* org-clock-overlay */ background-color: #ffff00; }
.org-org-code { /* org-code */ color: #7f7f7f; }
.org-org-column { /* org-column */ background-color: #e5e5e5; }
.org-org-column-title { /* org-column-title */ background-color: #e5e5e5; font-weight: bold; text-decoration: underline; }
.org-org-date { /* org-date */ color: #a020f0; text-decoration: underline; }
.org-org-document-info { /* org-document-info */ color: #191970; }
.org-org-document-info-keyword { /* org-document-info-keyword */ color: #7f7f7f; }
.org-org-document-title { /* org-document-title */ color: #191970; font-size: 144%; font-weight: bold; }
.org-org-done { /* org-done */ color: #228b22; font-weight: bold; }
.org-org-drawer { /* org-drawer */ color: #0000ff; }
.org-org-ellipsis { /* org-ellipsis */ color: #b8860b; text-decoration: underline; }
.org-org-footnote { /* org-footnote */ color: #a020f0; text-decoration: underline; }
.org-org-formula { /* org-formula */ color: #b22222; }
.org-org-headline-done { /* org-headline-done */ color: #bc8f8f; }
.org-org-hide { /* org-hide */ color: #ffffff; }
.org-org-latex-and-export-specials { /* org-latex-and-export-specials */ color: #8b4513; }
.org-org-level-1 { /* org-level-1 */ color: #0000ff; }
.org-org-level-2 { /* org-level-2 */ color: #a0522d; }
.org-org-level-3 { /* org-level-3 */ color: #a020f0; }
.org-org-level-4 { /* org-level-4 */ color: #b22222; }
.org-org-level-5 { /* org-level-5 */ color: #228b22; }
.org-org-level-6 { /* org-level-6 */ color: #008b8b; }
.org-org-level-7 { /* org-level-7 */ color: #7a378b; }
.org-org-level-8 { /* org-level-8 */ color: #8b2252; }
.org-org-link { /* org-link */ color: #0000ff; text-decoration: underline; }
.org-org-meta-line { /* org-meta-line */ color: #b22222; }
.org-org-mode-line-clock { /* org-mode-line-clock */ color: #000000; background-color: #bfbfbf; }
.org-org-mode-line-clock-overrun { /* org-mode-line-clock-overrun */ color: #000000; background-color: #ff0000; }
.org-org-quote { /* org-quote */ color: #7f7f7f; }
.org-org-scheduled { /* org-scheduled */ color: #006400; }
.org-org-scheduled-previously { /* org-scheduled-previously */ color: #b22222; }
.org-org-scheduled-today { /* org-scheduled-today */ color: #006400; }
.org-org-sexp-date { /* org-sexp-date */ color: #a020f0; }
.org-org-special-keyword { /* org-special-keyword */ color: #a020f0; }
.org-org-table { /* org-table */ color: #0000ff; }
.org-org-tag { /* org-tag */ font-weight: bold; }
.org-org-target { /* org-target */ text-decoration: underline; }
.org-org-time-grid { /* org-time-grid */ color: #b8860b; }
.org-org-todo { /* org-todo */ color: #ff0000; font-weight: bold; }
.org-org-upcoming-deadline { /* org-upcoming-deadline */ color: #b22222; }
.org-org-verbatim { /* org-verbatim */ color: #7f7f7f; }
.org-org-verse { /* org-verse */ color: #7f7f7f; }
.org-org-warning { /* org-warning */ color: #ff0000; font-weight: bold; }
.org-outline-1 { /* outline-1 */ color: #0000ff; }
.org-outline-2 { /* outline-2 */ color: #a0522d; }
.org-outline-3 { /* outline-3 */ color: #a020f0; }
.org-outline-4 { /* outline-4 */ color: #b22222; }
.org-outline-5 { /* outline-5 */ color: #228b22; }
.org-outline-6 { /* outline-6 */ color: #008b8b; }
.org-outline-7 { /* outline-7 */ color: #7a378b; }
.org-outline-8 { /* outline-8 */ color: #8b2252; }
.org-preprocessor { /* font-lock-preprocessor-face */ color: #7a378b; }
.org-query-replace { /* query-replace */ color: #b0e2ff; background-color: #cd00cd; }
.org-regexp-grouping-backslash { /* font-lock-regexp-grouping-backslash */ font-weight: bold; }
.org-regexp-grouping-construct { /* font-lock-regexp-grouping-construct */ font-weight: bold; }
.org-region { /* region */ background-color: #eedc82; }
.org-secondary-selection { /* secondary-selection */ background-color: #ffff00; }
.org-shadow { /* shadow */ color: #7f7f7f; }
.org-show-paren-match { /* show-paren-match */ background-color: #40e0d0; }
.org-show-paren-mismatch { /* show-paren-mismatch */ color: #ffffff; background-color: #a020f0; }
.org-string { /* font-lock-string-face */ color: #dd1144; }
.org-tool-bar { /* tool-bar */ color: #000000; background-color: #bfbfbf; }
.org-tooltip { /* tooltip */ color: #000000; background-color: #ffffe0; }
.org-trailing-whitespace { /* trailing-whitespace */ background-color: #ff0000; }
.org-type { /* font-lock-type-face */ color: #228b22; }
.org-underline { /* underline */ text-decoration: underline; }
.org-variable-name { /* font-lock-variable-name-face */ color: teal; }
.org-warning { /* font-lock-warning-face */ color: #ff0000; font-weight: bold; }
.org-widget-button { /* widget-button */ font-weight: bold; }
.org-widget-button-pressed { /* widget-button-pressed */ color: #ff0000; }
.org-widget-documentation { /* widget-documentation */ color: #006400; }
.org-widget-field { /* widget-field */ background-color: #d9d9d9; }
.org-widget-inactive { /* widget-inactive */ color: #7f7f7f; }
.org-widget-single-line-field { /* widget-single-line-field */ background-color: #d9d9d9; }

File diff suppressed because it is too large Load Diff

BIN
doc/LA75B.pdf Normal file

Binary file not shown.

Binary file not shown.

BIN
doc/de-dlpva-100-b.pdf Normal file

Binary file not shown.

BIN
doc/model_5113.pdf Normal file

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 128 KiB

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 197 KiB

After

Width:  |  Height:  |  Size: 197 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 332 KiB

After

Width:  |  Height:  |  Size: 154 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 227 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 167 KiB

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 125 KiB

After

Width:  |  Height:  |  Size: 137 KiB

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 232 KiB

After

Width:  |  Height:  |  Size: 160 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 206 KiB

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 822 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

1019
index.html

File diff suppressed because it is too large Load Diff

1
index.html Symbolic link
View File

@@ -0,0 +1 @@
test-bench-sensor-fusion.html

1129
index.org

File diff suppressed because it is too large Load Diff

7
js/bootstrap.min.js vendored

File diff suppressed because one or more lines are too long

4
js/jquery.min.js vendored

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
!function(a,b){"use strict";function c(c,g){var h=this;h.$el=a(c),h.el=c,h.id=e++,h.$window=a(b),h.$document=a(document),h.$el.bind("destroyed",a.proxy(h.teardown,h)),h.$clonedHeader=null,h.$originalHeader=null,h.isSticky=!1,h.hasBeenSticky=!1,h.leftOffset=null,h.topOffset=null,h.init=function(){h.$el.each(function(){var b=a(this);b.css("padding",0),h.$originalHeader=a("thead:first",this),h.$clonedHeader=h.$originalHeader.clone(),b.trigger("clonedHeader."+d,[h.$clonedHeader]),h.$clonedHeader.addClass("tableFloatingHeader"),h.$clonedHeader.css("display","none"),h.$originalHeader.addClass("tableFloatingHeaderOriginal"),h.$originalHeader.after(h.$clonedHeader),h.$printStyle=a('<style type="text/css" media="print">.tableFloatingHeader{display:none !important;}.tableFloatingHeaderOriginal{position:static !important;}</style>'),a("head").append(h.$printStyle)}),h.setOptions(g),h.updateWidth(),h.toggleHeaders(),h.bind()},h.destroy=function(){h.$el.unbind("destroyed",h.teardown),h.teardown()},h.teardown=function(){h.isSticky&&h.$originalHeader.css("position","static"),a.removeData(h.el,"plugin_"+d),h.unbind(),h.$clonedHeader.remove(),h.$originalHeader.removeClass("tableFloatingHeaderOriginal"),h.$originalHeader.css("visibility","visible"),h.$printStyle.remove(),h.el=null,h.$el=null},h.bind=function(){h.$scrollableArea.on("scroll."+d,h.toggleHeaders),h.isWindowScrolling||(h.$window.on("scroll."+d+h.id,h.setPositionValues),h.$window.on("resize."+d+h.id,h.toggleHeaders)),h.$scrollableArea.on("resize."+d,h.toggleHeaders),h.$scrollableArea.on("resize."+d,h.updateWidth)},h.unbind=function(){h.$scrollableArea.off("."+d,h.toggleHeaders),h.isWindowScrolling||(h.$window.off("."+d+h.id,h.setPositionValues),h.$window.off("."+d+h.id,h.toggleHeaders)),h.$scrollableArea.off("."+d,h.updateWidth)},h.toggleHeaders=function(){h.$el&&h.$el.each(function(){var b,c=a(this),d=h.isWindowScrolling?isNaN(h.options.fixedOffset)?h.options.fixedOffset.outerHeight():h.options.fixedOffset:h.$scrollableArea.offset().top+(isNaN(h.options.fixedOffset)?0:h.options.fixedOffset),e=c.offset(),f=h.$scrollableArea.scrollTop()+d,g=h.$scrollableArea.scrollLeft(),i=h.isWindowScrolling?f>e.top:d>e.top,j=(h.isWindowScrolling?f:0)<e.top+c.height()-h.$clonedHeader.height()-(h.isWindowScrolling?0:d);i&&j?(b=e.left-g+h.options.leftOffset,h.$originalHeader.css({position:"fixed","margin-top":h.options.marginTop,left:b,"z-index":3}),h.leftOffset=b,h.topOffset=d,h.$clonedHeader.css("display",""),h.isSticky||(h.isSticky=!0,h.updateWidth()),h.setPositionValues()):h.isSticky&&(h.$originalHeader.css("position","static"),h.$clonedHeader.css("display","none"),h.isSticky=!1,h.resetWidth(a("td,th",h.$clonedHeader),a("td,th",h.$originalHeader)))})},h.setPositionValues=function(){var a=h.$window.scrollTop(),b=h.$window.scrollLeft();!h.isSticky||0>a||a+h.$window.height()>h.$document.height()||0>b||b+h.$window.width()>h.$document.width()||h.$originalHeader.css({top:h.topOffset-(h.isWindowScrolling?0:a),left:h.leftOffset-(h.isWindowScrolling?0:b)})},h.updateWidth=function(){if(h.isSticky){h.$originalHeaderCells||(h.$originalHeaderCells=a("th,td",h.$originalHeader)),h.$clonedHeaderCells||(h.$clonedHeaderCells=a("th,td",h.$clonedHeader));var b=h.getWidth(h.$clonedHeaderCells);h.setWidth(b,h.$clonedHeaderCells,h.$originalHeaderCells),h.$originalHeader.css("width",h.$clonedHeader.width())}},h.getWidth=function(c){var d=[];return c.each(function(c){var e,f=a(this);if("border-box"===f.css("box-sizing"))e=f[0].getBoundingClientRect().width;else{var g=a("th",h.$originalHeader);if("collapse"===g.css("border-collapse"))if(b.getComputedStyle)e=parseFloat(b.getComputedStyle(this,null).width);else{var i=parseFloat(f.css("padding-left")),j=parseFloat(f.css("padding-right")),k=parseFloat(f.css("border-width"));e=f.outerWidth()-i-j-k}else e=f.width()}d[c]=e}),d},h.setWidth=function(a,b,c){b.each(function(b){var d=a[b];c.eq(b).css({"min-width":d,"max-width":d})})},h.resetWidth=function(b,c){b.each(function(b){var d=a(this);c.eq(b).css({"min-width":d.css("min-width"),"max-width":d.css("max-width")})})},h.setOptions=function(c){h.options=a.extend({},f,c),h.$scrollableArea=a(h.options.scrollableArea),h.isWindowScrolling=h.$scrollableArea[0]===b},h.updateOptions=function(a){h.setOptions(a),h.unbind(),h.bind(),h.updateWidth(),h.toggleHeaders()},h.init()}var d="stickyTableHeaders",e=0,f={fixedOffset:0,leftOffset:0,marginTop:0,scrollableArea:b};a.fn[d]=function(b){return this.each(function(){var e=a.data(this,"plugin_"+d);e?"string"==typeof b?e[b].apply(e):e.updateOptions(b):"destroy"!==b&&a.data(this,"plugin_"+d,new c(this,b))})}}(jQuery,window);

View File

@@ -1,85 +0,0 @@
$(function() {
$('.note').before("<p class='admonition-title note'>Note</p>");
$('.seealso').before("<p class='admonition-title seealso'>See also</p>");
$('.warning').before("<p class='admonition-title warning'>Warning</p>");
$('.caution').before("<p class='admonition-title caution'>Caution</p>");
$('.attention').before("<p class='admonition-title attention'>Attention</p>");
$('.tip').before("<p class='admonition-title tip'>Tip</p>");
$('.important').before("<p class='admonition-title important'>Important</p>");
$('.hint').before("<p class='admonition-title hint'>Hint</p>");
$('.error').before("<p class='admonition-title error'>Error</p>");
$('.danger').before("<p class='admonition-title danger'>Danger</p>");
});
$( document ).ready(function() {
// Shift nav in mobile when clicking the menu.
$(document).on('click', "[data-toggle='wy-nav-top']", function() {
$("[data-toggle='wy-nav-shift']").toggleClass("shift");
$("[data-toggle='rst-versions']").toggleClass("shift");
});
// Close menu when you click a link.
$(document).on('click', ".wy-menu-vertical .current ul li a", function() {
$("[data-toggle='wy-nav-shift']").removeClass("shift");
$("[data-toggle='rst-versions']").toggleClass("shift");
});
$(document).on('click', "[data-toggle='rst-current-version']", function() {
$("[data-toggle='rst-versions']").toggleClass("shift-up");
});
// Make tables responsive
$("table.docutils:not(.field-list)").wrap("<div class='wy-table-responsive'></div>");
});
$( document ).ready(function() {
$('#text-table-of-contents ul').first().addClass('nav');
// ScrollSpy also requires that we use
// a Bootstrap nav component.
$('body').scrollspy({target: '#text-table-of-contents'});
// add sticky table headers
$('table').stickyTableHeaders();
// set the height of tableOfContents
var $postamble = $('#postamble');
var $tableOfContents = $('#table-of-contents');
$tableOfContents.css({paddingBottom: $postamble.outerHeight()});
// add TOC button
var toggleSidebar = $('<div id="toggle-sidebar"><a href="#table-of-contents"><h2>Table of Contents</h2></a></div>');
$('#content').prepend(toggleSidebar);
// add close button when sidebar showed in mobile screen
var closeBtn = $('<a class="close-sidebar" href="#">Close</a>');
var tocTitle = $('#table-of-contents').find('h2');
tocTitle.append(closeBtn);
});
window.SphinxRtdTheme = (function (jquery) {
var stickyNav = (function () {
var navBar,
win,
stickyNavCssClass = 'stickynav',
applyStickNav = function () {
if (navBar.height() <= win.height()) {
navBar.addClass(stickyNavCssClass);
} else {
navBar.removeClass(stickyNavCssClass);
}
},
enable = function () {
applyStickNav();
win.on('resize', applyStickNav);
},
init = function () {
navBar = jquery('nav.wy-nav-side:first');
win = jquery(window);
};
jquery(init);
return {
enable : enable
};
}());
return {
StickyNav : stickyNav
};
}($));

View File

@@ -0,0 +1,423 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% The data is loaded in the Matlab workspace.
id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
% Then, any offset is removed.
id_ol.d = detrend(id_ol.d, 0);
id_ol.acc_1 = detrend(id_ol.acc_1, 0);
id_ol.acc_2 = detrend(id_ol.acc_2, 0);
id_ol.geo_1 = detrend(id_ol.geo_1, 0);
id_ol.geo_2 = detrend(id_ol.geo_2, 0);
id_ol.f_meas = detrend(id_ol.f_meas, 0);
id_ol.u = detrend(id_ol.u, 0);
% Excitation Signal
% The generated voltage used to excite the system is a white noise and can be seen in Figure [[fig:excitation_signal_first_identification]].
figure;
plot(id_ol.t, id_ol.u)
xlabel('Time [s]'); ylabel('Voltage [V]');
% Identified Plant
% The transfer function from the excitation voltage to the mass displacement and to the force sensor stack voltage are identified using the =tfestimate= command.
Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));
[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/V]
[tf_G_ol_est, ~] = tfestimate(id_ol.u, id_ol.d, win, [], [], 1/Ts); % [m/V]
% The bode plots of the obtained dynamics are shown in Figures [[fig:force_sensor_bode_plot]] and [[fig:displacement_sensor_bode_plot]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '-')
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% #+name: fig:force_sensor_bode_plot
% #+caption: Bode plot of the dynamics from excitation voltage to measured force sensor stack voltage
% #+RESULTS:
% [[file:figs/force_sensor_bode_plot.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), '-')
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% Simscape Model - Comparison
% A simscape model representing the test-bench has been developed.
% The same transfer functions as the one identified using the test-bench can be obtained thanks to the simscape model.
% They are compared in Figure [[fig:simscape_comp_iff_plant]] and [[fig:simscape_comp_disp_plant]].
% It is shown that there is a good agreement between the model and the experiment.
load('piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
m = 10;
Kiff = tf(0);
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N]
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m]
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Voltage_Conditioner'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V]
options = linearizeOptions('SampleTime', 1e-4);
G = linearize(mdl, io, options);
G.InputName = {'Fd', 'w', 'Va'};
G.OutputName = {'y', 'Vs'};
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), 'DisplayName', 'Identification')
plot(f, abs(squeeze(freqresp(G('Vs', 'Va'), f, 'Hz'))), 'DisplayName', 'Simscape Model')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-1, 1e3]);
legend('location', 'northwest');
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est))
plot(f, 180/pi*angle(squeeze(freqresp(G('Vs', 'Va'), f, 'Hz'))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% #+name: fig:simscape_comp_iff_plant
% #+caption: Comparison of the dynamics from excitation voltage to measured force sensor stack voltage - Identified dynamics and Simscape Model
% #+RESULTS:
% [[file:figs/simscape_comp_iff_plant.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), 'DisplayName', 'Identification')
plot(f, abs(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), 'DisplayName', 'Simscape Model')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-8, 1e-3]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est))
plot(f, 180/pi*angle(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% Integral Force Feedback
% The force sensor stack can be used to damp the system.
% This makes the system easier to excite properly without too much amplification near resonances.
% This is done thanks to the integral force feedback control architecture.
% The force sensor stack signal is integrated (or rather low pass filtered) and fed back to the force sensor stacks.
% The low pass filter used as the controller is defined below:
Kiff = 102/(s + 2*pi*2);
% The integral force feedback control strategy is applied to the simscape model as well as to the real test bench.
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N]
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m]
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Voltage_Conditioner'], 1, 'output'); io_i = io_i + 1; % Force Sensor [V]
options = linearizeOptions('SampleTime', 1e-4);
G_cl = linearize(mdl, io, options);
G_cl.InputName = {'Fd', 'w', 'Va'};
G_cl.OutputName = {'y', 'Vs'};
% The damped system is then identified again using a noise excitation.
% The data is loaded into Matlab and any offset is removed.
id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d = detrend(id_cl.d, 0);
id_cl.acc_1 = detrend(id_cl.acc_1, 0);
id_cl.acc_2 = detrend(id_cl.acc_2, 0);
id_cl.geo_1 = detrend(id_cl.geo_1, 0);
id_cl.geo_2 = detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u = detrend(id_cl.u, 0);
% The transfer functions are estimated using =tfestimate=.
[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts);
[co_G_cl_est, ~] = mscohere( id_cl.u, id_cl.d, win, [], [], 1/Ts);
% The dynamics from driving voltage to the measured displacement are compared both in the open-loop and IFF case, and for the test-bench experimental identification and for the Simscape model in Figure [[fig:iff_ol_cl_identified_simscape_comp]].
% This shows that the Integral Force Feedback architecture effectively damps the first resonance of the system.
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, abs(tf_G_ol_est), '-', 'DisplayName', 'OL - Ident.')
set(gca, 'ColorOrderIndex', 1);
plot(f, abs(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), '--', 'DisplayName', 'OL - Simscape')
set(gca, 'ColorOrderIndex', 2);
plot(f, abs(tf_G_cl_est), '-', 'DisplayName', 'CL - Ident.')
set(gca, 'ColorOrderIndex', 2);
plot(f, abs(squeeze(freqresp(G_cl('y', 'Va'), f, 'Hz'))), '--', 'DisplayName', 'CL - Simscape')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'northeast');
hold off;
ylim([1e-7, 1e-3]);
ax2 = nexttile;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, 180/pi*angle(tf_G_ol_est), '-')
set(gca, 'ColorOrderIndex', 1);
plot(f, 180/pi*angle(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), '--')
set(gca, 'ColorOrderIndex', 2);
plot(f, 180/pi*angle(tf_G_cl_est), '-')
set(gca, 'ColorOrderIndex', 2);
plot(f, 180/pi*angle(squeeze(freqresp(G_cl('y', 'Va'), f, 'Hz'))), '--')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% Inertial Sensors
% In order to estimate the dynamics of the inertial sensor (the transfer function from the "absolute" displacement to the measured voltage), the following experiment can be performed:
% - The mass is excited such that is relative displacement as measured by the interferometer is much larger that the ground "absolute" motion.
% - The transfer function from the measured displacement by the interferometer to the measured voltage generated by the inertial sensors can be estimated.
% The first point is quite important in order to have a good coherence between the interferometer measurement and the inertial sensor measurement.
% Here, a first identification is performed were the excitation signal is a white noise.
% As usual, the data is loaded and any offset is removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Then the transfer functions from the measured displacement by the interferometer to the generated voltage of the inertial sensors are computed..
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The same transfer functions are estimated using the Simscape model.
m = 10;
Kiff = tf(0);
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Vertical_Accelerometer_1'], 1, 'openoutput'); io_i = io_i + 1; % Accelerometer [V]
io(io_i) = linio([mdl, '/Voltage_Ampl_geo_1'], 1, 'openoutput'); io_i = io_i + 1; % Geophone [V]
options = linearizeOptions('SampleTime', 1e-4);
G = linearize(mdl, io, options);
G.InputName = {'Va'};
G.OutputName = {'y', 'a', 'v'};
G_acc = G('a', 'Va')*inv(G('y', 'Va')); % [V/m]
G_geo = G('v', 'Va')*inv(G('y', 'Va')); % [V/m]
% The obtained dynamics of the accelerometer are compared in Figure [[fig:comp_dynamics_accelerometer]] while the one of the geophones are compared in Figure [[fig:comp_dynamics_geophone]].
freqs = logspace(-1, 4, 1000)';
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(freqs, abs(squeeze(freqresp(G_acc, freqs, 'Hz'))./(1i*2*pi*freqs).^2), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s^2}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_acc, freqs, 'Hz'))./(1i*2*pi*freqs).^2), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([2, 2e3]);
% #+name: fig:comp_dynamics_accelerometer
% #+caption: Comparison of the measured accelerometer dynamics
% #+RESULTS:
% [[file:figs/comp_dynamics_accelerometer.png]]
freqs = logspace(-1, 4, 1000)';
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.')
plot(freqs, abs(squeeze(freqresp(G_geo, freqs, 'Hz'))./(1i*2*pi*freqs)), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(tf_geo2_est./(1i*2*pi*f)), '.')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_geo, freqs, 'Hz'))./(1i*2*pi*freqs)), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 2e3]);

View File

@@ -0,0 +1,200 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% Both the measurement data during the identification test and during an "huddle test" are loaded.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
ht = load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
ht.d = detrend(ht.d, 0);
ht.acc_1 = detrend(ht.acc_1, 0);
ht.acc_2 = detrend(ht.acc_2, 0);
ht.geo_1 = detrend(ht.geo_1, 0);
ht.geo_2 = detrend(ht.geo_2, 0);
ht.f_meas = detrend(ht.f_meas, 0);
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Compare PSD during Huddle and and during identification
% The Power Spectral Density of the measured motion during the huddle test and during the identification test are compared in Figures [[fig:comp_psd_huddle_test_identification_acc]] and [[fig:comp_psd_huddle_test_identification_geo]].
Ts = ht.t(2) - ht.t(1);
win = hann(ceil(10/Ts));
[p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts);
[p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts);
[p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts);
[p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts);
[p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts);
[p_ht_d, ~] = pwelch(ht.d, win, [], [], 1/Ts);
[p_ht_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts);
[p_ht_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts);
[p_ht_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts);
[p_ht_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts);
[p_ht_fmeas, ~] = pwelch(ht.f_meas, win, [], [], 1/Ts);
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_acc1, 'DisplayName', 'Huddle Test');
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_acc2, 'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_acc1, 'DisplayName', 'Identification Test');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_acc2, 'HandleVisibility', 'off');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]');
title('Huddle Test - Accelerometers')
legend('location', 'northwest');
xlim([5e-1, 5e3]); ylim([1e-10, 1e-2])
% #+name: fig:comp_psd_huddle_test_identification_acc
% #+caption: Comparison of the PSD of the measured motion during the Huddle test and during the identification
% #+RESULTS:
% [[file:figs/comp_psd_huddle_test_identification_acc.png]]
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_geo1, 'DisplayName', 'Huddle Test');
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_geo2, 'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_geo1, 'DisplayName', 'Identification Test');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_geo2, 'HandleVisibility', 'off');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]');
title('Huddle Test - Geophones')
legend('location', 'northeast');
xlim([1e-1, 5e3]); ylim([1e-11, 1e-4]);
% Compute transfer functions
% The transfer functions from the motion as measured by the interferometer (and that should represent the absolute motion of the mass) to the inertial sensors are estimated:
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The obtained coherence are shown in Figure [[fig:id_sensor_dynamics_coherence]].
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, co_acc1_est, '-', 'DisplayName', 'Accelerometer')
set(gca, 'ColorOrderIndex', 1);
plot(f, co_acc2_est, '-', 'HandleVisibility', 'off')
set(gca, 'ColorOrderIndex', 2);
plot(f, co_geo1_est, '-', 'DisplayName', 'Geophone')
set(gca, 'ColorOrderIndex', 2);
plot(f, co_geo2_est, '-', 'HandleVisibility', 'off')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([2, 2e3]); ylim([0, 1])
legend();
% #+name: fig:id_sensor_dynamics_coherence
% #+caption: Coherence for the estimation of the sensor dynamics
% #+RESULTS:
% [[file:figs/id_sensor_dynamics_coherence.png]]
% We also make a simplified model of the inertial sensors to be compared with the identified dynamics.
G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)]
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)]
% The model and identified dynamics show good agreement (Figures [[fig:id_sensor_dynamics_accelerometers]] and [[fig:id_sensor_dynamics_geophones]].)
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(f, abs(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s^2}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([2, 2e3]);
% #+name: fig:id_sensor_dynamics_accelerometers
% #+caption: Identified dynamics of the accelerometers
% #+RESULTS:
% [[file:figs/id_sensor_dynamics_accelerometers.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.')
plot(f, abs(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(tf_geo2_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 2e3]);

View File

@@ -0,0 +1,224 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% As before, the identification data is loaded and any offset if removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% ASD of the Measured displacement
% The Power Spectral Density of the displacement as measured by the interferometer and the inertial sensors is computed.
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts);
[p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts);
[p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts);
[p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts);
[p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts);
% Let's use a model of the accelerometer and geophone to compute the motion from the measured voltage.
G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)]
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)]
% The obtained ASD in $m/\sqrt{Hz}$ is shown in Figure [[fig:measure_displacement_all_sensors]].
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_id_acc2)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_id_geo2)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 3);
plot(f, sqrt(p_id_d), 'DisplayName', 'Interferometer');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
title('Huddle Test')
legend();
xlim([1e-1, 5e3]); ylim([1e-12, 1e-4]);
% ASD of the Sensor Noise
% The noise of a sensor can be estimated using two identical sensors by computing:
% - the Power Spectral Density of the measured motion by the two sensors
% - the Cross Spectral Density between the two sensors (coherence)
% This technique to estimate the sensor noise is described in cite:barzilai98_techn_measur_noise_sensor_presen.
% The Power Spectral Density of the sensor noise can be estimated using the following equation:
% \begin{equation}
% |S_n(\omega)| = |S_{x_1}(\omega)| \Big( 1 - \gamma_{x_1 x_2}(\omega) \Big)
% \end{equation}
% with $S_{x_1}$ the PSD of one of the sensor and $\gamma_{x_1 x_2}$ the coherence between the two sensors.
% The coherence between the two accelerometers and between the two geophones is computed.
[coh_acc, ~] = mscohere(id.acc_1, id.acc_2, win, [], [], 1/Ts);
[coh_geo, ~] = mscohere(id.geo_1, id.geo_2, win, [], [], 1/Ts);
% Finally, the Power Spectral Density of the sensors is computed and converted in $[m^2/Hz]$.
pN_acc = p_id_acc1.*(1 - coh_acc) .* ... % [V^2/Hz]
1./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))).^2; % [(m/V)^2]
pN_geo = p_id_geo1.*(1 - coh_geo) .* ... % [V^2/Hz]
1./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))).^2; % [(m/V)^2]
% The ASD of obtained noises are compared with the ASD of the measured signals in Figure [[fig:noise_inertial_sensors_comparison]].
figure;
hold on;
plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
plot(f, sqrt(pN_acc), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, sqrt(pN_geo), '-', 'DisplayName', 'Geophones - Noise');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$');
xlim([1, 5000]); ylim([1e-12, 1e-5]);
legend('location', 'northeast');
% Noise Model
% Transfer functions are adjusted in order to fit the ASD of the sensor noises (expressed in $[m/s/\sqrt{Hz}]$ for more easy fitting).
% These transfer functions are defined below and compared with the measured ASD in Figure [[fig:noise_models_velocity]].
N_acc = 1*(s/(2*pi*2000) + 1)^2/(s + 0.1*2*pi)/(s + 1e3*2*pi); % [m/sqrt(Hz)]
N_geo = 4e-4*(s/(2*pi*200) + 1)/(s + 1e3*2*pi); % [m/sqrt(Hz)]
freqs = logspace(0, 4, 1000);
figure;
hold on;
plot(f, sqrt(pN_acc).*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, sqrt(pN_geo).*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise');
set(gca, 'ColorOrderIndex', 1);
plot(freqs, abs(squeeze(freqresp(N_acc, freqs, 'Hz'))), '--', 'DisplayName', 'Accelerometer - Noise Model');
plot(freqs, abs(squeeze(freqresp(N_geo, freqs, 'Hz'))), '--', 'DisplayName', 'Geophones - Noise Model');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');
% $\mathcal{H}_2$ Synthesis of the Complementary Filters
% We now wish to synthesize two complementary filters to merge the geophone and the accelerometer signal in such a way that the fused signal has the lowest possible RMS noise.
% To do so, we use the $\mathcal{H}_2$ synthesis where the transfer functions representing the noise density of both sensors are used as weights.
% The generalized plant used for the synthesis is defined below.
P = [0 N_acc 1;
N_geo -N_acc 0];
% And the $\mathcal{H}_2$ synthesis is done using the =h2syn= command.
[H_geo, ~, gamma] = h2syn(P, 1, 1);
H_acc = 1 - H_geo;
% The obtained complementary filters are shown in Figure [[fig:complementary_filters_velocity_H2]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-', 'DisplayName', '$H_{acc}$');
plot(freqs, abs(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-', 'DisplayName', '$H_{geo}$');
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
hold off;
legend('location', 'northeast');
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-');
plot(freqs, 180/pi*angle(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-');
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([freqs(1), freqs(end)]);
% Results
% Finally, the signals of both sensors are merged using the complementary filters and the super sensor noise is estimated and compared with the individual sensor noises in Figure [[fig:super_sensor_noise_asd_velocity]].
freqs = logspace(0, 4, 1000);
figure;
hold on;
plot(f, pN_acc.*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, pN_geo.*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise');
plot(f, sqrt((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2), 'k-', 'DisplayName', 'Super Sensor - Noise');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');
% #+name: fig:super_sensor_noise_asd_velocity
% #+caption: ASD of the super sensor noise (velocity)
% #+RESULTS:
% [[file:figs/super_sensor_noise_asd_velocity.png]]
% Finally, the Cumulative Power Spectrum is computed and compared in Figure [[fig:super_sensor_noise_cas_velocity]].
[~, i_1Hz] = min(abs(f - 1));
CPS_acc = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2)));
CPS_geo = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_geo.*(2*pi*f)).^2)));
CPS_SS = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2)));
figure;
hold on;
plot(f, CPS_acc, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{acc}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_acc(i_1Hz))));
plot(f, CPS_geo, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{geo}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_geo(i_1Hz))));
plot(f, CPS_SS, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_SS(i_1Hz))));
set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum');
hold off;
xlim([1, 4e3]);
legend('location', 'northeast');

View File

@@ -0,0 +1,326 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
addpath('./src/');
% Load Data
% Data is loaded and offset is removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Compute the dynamics of both sensors
% The dynamics of inertial sensors are estimated (in $[V/m]$).
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The (nominal) models of the inertial sensors from the absolute displacement to the generated voltage are defined below:
G_acc = 1/(1 + s/2/pi/2000)
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2);
% Dynamics uncertainty estimation
% Weights representing the dynamical uncertainty of the sensors are defined below.
w_acc = createWeight('n', 2, 'G0', 10, 'G1', 0.2, 'Gc', 1, 'w0', 6*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 5/0.2, 'Gc', 1/0.2, 'w0', 1300*2*pi);
w_geo = createWeight('n', 2, 'G0', 0.6, 'G1', 0.2, 'Gc', 0.3, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 10/0.2, 'Gc', 1/0.2, 'w0', 800*2*pi);
% The measured dynamics are compared with the modelled one as well as the modelled uncertainty in Figure [[fig:dyn_uncertainty_acc]] for the accelerometers and in Figure [[fig:dyn_uncertainty_geo]] for the geophones.
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'G', G_acc, 'color_i', 1, 'DisplayName', '$G_{acc}$');
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.', 'DisplayName', 'Meaurement')
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.', 'HandleVisibility', 'off')
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G_acc, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_{acc}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude $[\frac{V}{m}]$');
legend('location', 'southwest', 'FontSize', 8);
hold off;
ylim([1e-3, 1e1])
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'G', G_acc, 'color_i', 1);
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.');
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.');
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_acc, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
% #+name: fig:dyn_uncertainty_acc
% #+caption: Modeled dynamical uncertainty and meaured dynamics of the accelerometers
% #+RESULTS:
% [[file:figs/dyn_uncertainty_acc.png]]
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_geo, freqs, 'G', G_geo, 'color_i', 2, 'DisplayName', '$G_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.', 'DisplayName', 'Measurement')
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.', 'HandleVisibility', 'off')
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(G_geo, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_{geo}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude $[\frac{V}{m}]$');
legend('location', 'northwest', 'FontSize', 8);
hold off;
ylim([1, 1e4])
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_geo, freqs, 'G', G_geo, 'color_i', 2);
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*unwrap(angle(tf_geo1_est./(1i*2*pi*f)))+360, '.');
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*unwrap(angle(tf_geo2_est./(1i*2*pi*f))), '.');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_geo, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-270:90:180);
ylim([-270 90]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
% $\mathcal{H}_\infty$ Synthesis of Complementary Filters
% A last weight is now defined that represents the maximum dynamical uncertainty that is allowed for the super sensor.
wu = inv(createWeight('n', 2, 'G0', 0.7, 'G1', 0.3, 'Gc', 0.4, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 6/0.3, 'Gc', 1/0.3, 'w0', 1200*2*pi));
% This dynamical uncertainty is compared with the two sensor uncertainties in Figure [[fig:uncertainty_weight_and_sensor_uncertainties]].
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))));
Dphi_Wu(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))) > 1) = 360;
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$1 + W_{acc} \Delta$');
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$1 + W_{geo} \Delta$');
plot(freqs, 1 + abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'DisplayName', '$1 + W_u^{-1} \Delta$')
plot(freqs, 1 - abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-2, 1e1]);
legend('location', 'southeast', 'FontSize', 8);
hold off;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
plot(freqs, Dphi_Wu, 'k--');
plot(freqs, -Dphi_Wu, 'k--');
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% #+name: fig:uncertainty_weight_and_sensor_uncertainties
% #+caption: Individual sensor uncertainty (normalized by their dynamics) and the wanted maximum super sensor noise uncertainty
% #+RESULTS:
% [[file:figs/uncertainty_weight_and_sensor_uncertainties.png]]
% The generalized plant used for the synthesis is defined:
P = [wu*w_acc -wu*w_acc;
0 wu*w_geo;
1 0];
% And the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command is performed.
[H_geo, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% Test bounds: 0.8556 <= gamma <= 1.34
% gamma X>=0 Y>=0 rho(XY)<1 p/f
% 1.071e+00 0.0e+00 0.0e+00 0.000e+00 p
% 9.571e-01 0.0e+00 0.0e+00 9.436e-16 p
% 9.049e-01 0.0e+00 0.0e+00 1.084e-15 p
% 8.799e-01 0.0e+00 0.0e+00 1.191e-16 p
% 8.677e-01 0.0e+00 0.0e+00 6.905e-15 p
% 8.616e-01 0.0e+00 0.0e+00 0.000e+00 p
% 8.586e-01 1.1e-17 0.0e+00 6.917e-16 p
% 8.571e-01 0.0e+00 0.0e+00 6.991e-17 p
% 8.564e-01 0.0e+00 0.0e+00 1.492e-16 p
% Best performance (actual): 0.8563
% #+end_example
% The complementary filter is defined as follows:
H_acc = 1 - H_geo;
% The bode plot of the obtained complementary filters is shown in Figure
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2,1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(w_geo, freqs, 'Hz'))), '--', 'DisplayName', '$w_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(w_acc, freqs, 'Hz'))), '--', 'DisplayName', '$w_{acc}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-', 'DisplayName', '$H_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-', 'DisplayName', '$H_{acc}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([1e-2, 1e1]);
legend('location', 'southeast');
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([1, 1e3]);
% Obtained Super Sensor Dynamical Uncertainty
% The obtained super sensor dynamical uncertainty is shown in Figure [[fig:super_sensor_uncertainty_h_infinity]].
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))));
Dphi_Wu(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))) > 1) = 360;
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))));
Dphi_ss(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))) > 1) = 360;
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
plot(freqs, 1 + abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))+abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 'k-', ...
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
plot(freqs, max(1 - abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))-abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 0.001), 'k-', ...
'HandleVisibility', 'off');
plot(freqs, 1 + abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'DisplayName', '$1 + W_u^{-1}\Delta$')
plot(freqs, 1 - abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-2, 1e1]);
legend('location', 'southeast', 'FontSize', 8);
hold off;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
plot(freqs, Dphi_ss, 'k-');
plot(freqs, -Dphi_ss, 'k-');
plot(freqs, Dphi_Wu, 'k--');
plot(freqs, -Dphi_Wu, 'k--');
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

View File

@@ -0,0 +1,226 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% The experimental data is loaded and any offset is removed.
id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_ol.d = detrend(id_ol.d, 0);
id_ol.acc_1 = detrend(id_ol.acc_1, 0);
id_ol.acc_2 = detrend(id_ol.acc_2, 0);
id_ol.geo_1 = detrend(id_ol.geo_1, 0);
id_ol.geo_2 = detrend(id_ol.geo_2, 0);
id_ol.f_meas = detrend(id_ol.f_meas, 0);
id_ol.u = detrend(id_ol.u, 0);
% Experimental Data
% The transfer function from force actuator to force sensors is estimated.
% The coherence shown in Figure [[fig:iff_identification_coh]] shows that the excitation signal is good enough.
Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));
[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/m]
[co_fmeas_est, ~] = mscohere( id_ol.u, id_ol.f_meas, win, [], [], 1/Ts);
figure;
hold on;
plot(f, co_fmeas_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([1, 1e3]); ylim([0, 1])
% #+name: fig:iff_identification_coh
% #+caption: Coherence for the identification of the IFF plant
% #+RESULTS:
% [[file:figs/iff_identification_coh.png]]
% The obtained dynamics is shown in Figure [[fig:iff_identification_bode_plot]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-1, 1e3]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% Model of the IFF Plant
% In order to plot the root locus for the IFF control strategy, a model of the identified plant is developed.
% It consists of several poles and zeros are shown below.
wz = 2*pi*102;
xi_z = 0.01;
wp = 2*pi*239.4;
xi_p = 0.015;
Giff = 2.2*(s^2 + 2*xi_z*s*wz + wz^2)/(s^2 + 2*xi_p*s*wp + wp^2) * ... % Dynamics
10*(s/3/pi/(1 + s/3/pi)) * ... % Low pass filter and gain of the voltage amplifier
exp(-Ts*s); % Time delay induced by ADC/DAC
% The comparison of the identified dynamics and the developed model is done in Figure [[fig:iff_plant_model]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '.')
plot(f, abs(squeeze(freqresp(Giff, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-2, 1e3])
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '.')
plot(f, 180/pi*angle(squeeze(freqresp(Giff, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 5e3]);
% Root Locus and optimal Controller
% Now, the root locus for the Integral Force Feedback strategy is computed and shown in Figure [[fig:iff_root_locus]].
% Note that the controller used is not a pure integrator but rather a first order low pass filter with a cut-off frequency set at 2Hz.
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(Giff)), imag(pole(Giff)), 'kx');
plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko');
for i = 1:length(gains)
cl_poles = pole(feedback(Giff, gains(i)/(s + 2*pi*2)));
plot(real(cl_poles), imag(cl_poles), 'k.');
end
cl_poles = pole(feedback(Giff, 102/(s + 2*pi*2)));
plot(real(cl_poles), imag(cl_poles), 'rx');
ylim([0, 1800]);
xlim([-1600,200]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
% #+name: fig:iff_root_locus
% #+caption: Root Locus for the IFF control
% #+RESULTS:
% [[file:figs/iff_root_locus.png]]
% The controller that yield maximum damping (shown by the red cross in Figure [[fig:iff_root_locus]]) is:
Kiff_opt = 102/(s + 2*pi*2);
% Verification of the achievable damping
% A new identification is performed with the IFF control strategy applied to the system.
% Data is loaded and offset removed.
id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d = detrend(id_cl.d, 0);
id_cl.acc_1 = detrend(id_cl.acc_1, 0);
id_cl.acc_2 = detrend(id_cl.acc_2, 0);
id_cl.geo_1 = detrend(id_cl.geo_1, 0);
id_cl.geo_2 = detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u = detrend(id_cl.u, 0);
% The open-loop and closed-loop dynamics are estimated.
[tf_G_ol_est, f] = tfestimate(id_ol.u, id_ol.d, win, [], [], 1/Ts);
[co_G_ol_est, ~] = mscohere( id_ol.u, id_ol.d, win, [], [], 1/Ts);
[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts);
[co_G_cl_est, ~] = mscohere( id_cl.u, id_cl.d, win, [], [], 1/Ts);
% The obtained coherence is shown in Figure [[fig:Gd_identification_iff_coherence]] and the dynamics in Figure [[fig:Gd_identification_iff_bode_plot]].
figure;
hold on;
plot(f, co_G_ol_est, '-', 'DisplayName', 'OL')
plot(f, co_G_cl_est, '-', 'DisplayName', 'IFF')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([1, 1e3]); ylim([0, 1])
legend('location', 'southwest');
% #+name: fig:Gd_identification_iff_coherence
% #+caption: Coherence for the transfer function from F to d, with and without IFF
% #+RESULTS:
% [[file:figs/Gd_identification_iff_coherence.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), '-', 'DisplayName', 'OL')
plot(f, abs(tf_G_cl_est), '-', 'DisplayName', 'IFF')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
hold off;
legend('location', 'northeast');
ylim([2e-7, 2e-4]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est), '-')
plot(f, 180/pi*angle(tf_G_cl_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);

Some files were not shown because too many files have changed in this diff Show More