Reworked all computation / new CSS / export to PDF

This commit is contained in:
2020-11-11 16:52:02 +01:00
parent 0bac7ef616
commit 364f138734
122 changed files with 72427 additions and 5888 deletions

View File

@@ -0,0 +1,423 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% The data is loaded in the Matlab workspace.
id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
% Then, any offset is removed.
id_ol.d = detrend(id_ol.d, 0);
id_ol.acc_1 = detrend(id_ol.acc_1, 0);
id_ol.acc_2 = detrend(id_ol.acc_2, 0);
id_ol.geo_1 = detrend(id_ol.geo_1, 0);
id_ol.geo_2 = detrend(id_ol.geo_2, 0);
id_ol.f_meas = detrend(id_ol.f_meas, 0);
id_ol.u = detrend(id_ol.u, 0);
% Excitation Signal
% The generated voltage used to excite the system is a white noise and can be seen in Figure [[fig:excitation_signal_first_identification]].
figure;
plot(id_ol.t, id_ol.u)
xlabel('Time [s]'); ylabel('Voltage [V]');
% Identified Plant
% The transfer function from the excitation voltage to the mass displacement and to the force sensor stack voltage are identified using the =tfestimate= command.
Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));
[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/V]
[tf_G_ol_est, ~] = tfestimate(id_ol.u, id_ol.d, win, [], [], 1/Ts); % [m/V]
% The bode plots of the obtained dynamics are shown in Figures [[fig:force_sensor_bode_plot]] and [[fig:displacement_sensor_bode_plot]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '-')
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% #+name: fig:force_sensor_bode_plot
% #+caption: Bode plot of the dynamics from excitation voltage to measured force sensor stack voltage
% #+RESULTS:
% [[file:figs/force_sensor_bode_plot.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), '-')
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% Simscape Model - Comparison
% A simscape model representing the test-bench has been developed.
% The same transfer functions as the one identified using the test-bench can be obtained thanks to the simscape model.
% They are compared in Figure [[fig:simscape_comp_iff_plant]] and [[fig:simscape_comp_disp_plant]].
% It is shown that there is a good agreement between the model and the experiment.
load('piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
m = 10;
Kiff = tf(0);
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N]
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m]
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Voltage_Conditioner'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V]
options = linearizeOptions('SampleTime', 1e-4);
G = linearize(mdl, io, options);
G.InputName = {'Fd', 'w', 'Va'};
G.OutputName = {'y', 'Vs'};
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), 'DisplayName', 'Identification')
plot(f, abs(squeeze(freqresp(G('Vs', 'Va'), f, 'Hz'))), 'DisplayName', 'Simscape Model')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-1, 1e3]);
legend('location', 'northwest');
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est))
plot(f, 180/pi*angle(squeeze(freqresp(G('Vs', 'Va'), f, 'Hz'))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% #+name: fig:simscape_comp_iff_plant
% #+caption: Comparison of the dynamics from excitation voltage to measured force sensor stack voltage - Identified dynamics and Simscape Model
% #+RESULTS:
% [[file:figs/simscape_comp_iff_plant.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), 'DisplayName', 'Identification')
plot(f, abs(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), 'DisplayName', 'Simscape Model')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-8, 1e-3]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est))
plot(f, 180/pi*angle(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))))
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% Integral Force Feedback
% The force sensor stack can be used to damp the system.
% This makes the system easier to excite properly without too much amplification near resonances.
% This is done thanks to the integral force feedback control architecture.
% The force sensor stack signal is integrated (or rather low pass filtered) and fed back to the force sensor stacks.
% The low pass filter used as the controller is defined below:
Kiff = 102/(s + 2*pi*2);
% The integral force feedback control strategy is applied to the simscape model as well as to the real test bench.
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N]
io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m]
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Voltage_Conditioner'], 1, 'output'); io_i = io_i + 1; % Force Sensor [V]
options = linearizeOptions('SampleTime', 1e-4);
G_cl = linearize(mdl, io, options);
G_cl.InputName = {'Fd', 'w', 'Va'};
G_cl.OutputName = {'y', 'Vs'};
% The damped system is then identified again using a noise excitation.
% The data is loaded into Matlab and any offset is removed.
id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d = detrend(id_cl.d, 0);
id_cl.acc_1 = detrend(id_cl.acc_1, 0);
id_cl.acc_2 = detrend(id_cl.acc_2, 0);
id_cl.geo_1 = detrend(id_cl.geo_1, 0);
id_cl.geo_2 = detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u = detrend(id_cl.u, 0);
% The transfer functions are estimated using =tfestimate=.
[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts);
[co_G_cl_est, ~] = mscohere( id_cl.u, id_cl.d, win, [], [], 1/Ts);
% The dynamics from driving voltage to the measured displacement are compared both in the open-loop and IFF case, and for the test-bench experimental identification and for the Simscape model in Figure [[fig:iff_ol_cl_identified_simscape_comp]].
% This shows that the Integral Force Feedback architecture effectively damps the first resonance of the system.
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, abs(tf_G_ol_est), '-', 'DisplayName', 'OL - Ident.')
set(gca, 'ColorOrderIndex', 1);
plot(f, abs(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), '--', 'DisplayName', 'OL - Simscape')
set(gca, 'ColorOrderIndex', 2);
plot(f, abs(tf_G_cl_est), '-', 'DisplayName', 'CL - Ident.')
set(gca, 'ColorOrderIndex', 2);
plot(f, abs(squeeze(freqresp(G_cl('y', 'Va'), f, 'Hz'))), '--', 'DisplayName', 'CL - Simscape')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
legend('location', 'northeast');
hold off;
ylim([1e-7, 1e-3]);
ax2 = nexttile;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, 180/pi*angle(tf_G_ol_est), '-')
set(gca, 'ColorOrderIndex', 1);
plot(f, 180/pi*angle(squeeze(freqresp(G('y', 'Va'), f, 'Hz'))), '--')
set(gca, 'ColorOrderIndex', 2);
plot(f, 180/pi*angle(tf_G_cl_est), '-')
set(gca, 'ColorOrderIndex', 2);
plot(f, 180/pi*angle(squeeze(freqresp(G_cl('y', 'Va'), f, 'Hz'))), '--')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 5e3]);
% Inertial Sensors
% In order to estimate the dynamics of the inertial sensor (the transfer function from the "absolute" displacement to the measured voltage), the following experiment can be performed:
% - The mass is excited such that is relative displacement as measured by the interferometer is much larger that the ground "absolute" motion.
% - The transfer function from the measured displacement by the interferometer to the measured voltage generated by the inertial sensors can be estimated.
% The first point is quite important in order to have a good coherence between the interferometer measurement and the inertial sensor measurement.
% Here, a first identification is performed were the excitation signal is a white noise.
% As usual, the data is loaded and any offset is removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Then the transfer functions from the measured displacement by the interferometer to the generated voltage of the inertial sensors are computed..
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The same transfer functions are estimated using the Simscape model.
m = 10;
Kiff = tf(0);
%% Name of the Simulink File
mdl = 'sensor_fusion_test_bench_simscape';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage [V]
io(io_i) = linio([mdl, '/Interferometer'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m]
io(io_i) = linio([mdl, '/Vertical_Accelerometer_1'], 1, 'openoutput'); io_i = io_i + 1; % Accelerometer [V]
io(io_i) = linio([mdl, '/Voltage_Ampl_geo_1'], 1, 'openoutput'); io_i = io_i + 1; % Geophone [V]
options = linearizeOptions('SampleTime', 1e-4);
G = linearize(mdl, io, options);
G.InputName = {'Va'};
G.OutputName = {'y', 'a', 'v'};
G_acc = G('a', 'Va')*inv(G('y', 'Va')); % [V/m]
G_geo = G('v', 'Va')*inv(G('y', 'Va')); % [V/m]
% The obtained dynamics of the accelerometer are compared in Figure [[fig:comp_dynamics_accelerometer]] while the one of the geophones are compared in Figure [[fig:comp_dynamics_geophone]].
freqs = logspace(-1, 4, 1000)';
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(freqs, abs(squeeze(freqresp(G_acc, freqs, 'Hz'))./(1i*2*pi*freqs).^2), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s^2}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_acc, freqs, 'Hz'))./(1i*2*pi*freqs).^2), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([2, 2e3]);
% #+name: fig:comp_dynamics_accelerometer
% #+caption: Comparison of the measured accelerometer dynamics
% #+RESULTS:
% [[file:figs/comp_dynamics_accelerometer.png]]
freqs = logspace(-1, 4, 1000)';
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.')
plot(freqs, abs(squeeze(freqresp(G_geo, freqs, 'Hz'))./(1i*2*pi*freqs)), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(tf_geo2_est./(1i*2*pi*f)), '.')
plot(freqs, 180/pi*angle(squeeze(freqresp(G_geo, freqs, 'Hz'))./(1i*2*pi*freqs)), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 2e3]);

View File

@@ -0,0 +1,200 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% Both the measurement data during the identification test and during an "huddle test" are loaded.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
ht = load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
ht.d = detrend(ht.d, 0);
ht.acc_1 = detrend(ht.acc_1, 0);
ht.acc_2 = detrend(ht.acc_2, 0);
ht.geo_1 = detrend(ht.geo_1, 0);
ht.geo_2 = detrend(ht.geo_2, 0);
ht.f_meas = detrend(ht.f_meas, 0);
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Compare PSD during Huddle and and during identification
% The Power Spectral Density of the measured motion during the huddle test and during the identification test are compared in Figures [[fig:comp_psd_huddle_test_identification_acc]] and [[fig:comp_psd_huddle_test_identification_geo]].
Ts = ht.t(2) - ht.t(1);
win = hann(ceil(10/Ts));
[p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts);
[p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts);
[p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts);
[p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts);
[p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts);
[p_ht_d, ~] = pwelch(ht.d, win, [], [], 1/Ts);
[p_ht_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts);
[p_ht_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts);
[p_ht_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts);
[p_ht_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts);
[p_ht_fmeas, ~] = pwelch(ht.f_meas, win, [], [], 1/Ts);
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_acc1, 'DisplayName', 'Huddle Test');
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_acc2, 'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_acc1, 'DisplayName', 'Identification Test');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_acc2, 'HandleVisibility', 'off');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]');
title('Huddle Test - Accelerometers')
legend('location', 'northwest');
xlim([5e-1, 5e3]); ylim([1e-10, 1e-2])
% #+name: fig:comp_psd_huddle_test_identification_acc
% #+caption: Comparison of the PSD of the measured motion during the Huddle test and during the identification
% #+RESULTS:
% [[file:figs/comp_psd_huddle_test_identification_acc.png]]
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_geo1, 'DisplayName', 'Huddle Test');
set(gca, 'ColorOrderIndex', 1);
plot(f, p_ht_geo2, 'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_geo1, 'DisplayName', 'Identification Test');
set(gca, 'ColorOrderIndex', 2);
plot(f, p_id_geo2, 'HandleVisibility', 'off');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$V^2/Hz$]'); xlabel('Frequency [Hz]');
title('Huddle Test - Geophones')
legend('location', 'northeast');
xlim([1e-1, 5e3]); ylim([1e-11, 1e-4]);
% Compute transfer functions
% The transfer functions from the motion as measured by the interferometer (and that should represent the absolute motion of the mass) to the inertial sensors are estimated:
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The obtained coherence are shown in Figure [[fig:id_sensor_dynamics_coherence]].
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, co_acc1_est, '-', 'DisplayName', 'Accelerometer')
set(gca, 'ColorOrderIndex', 1);
plot(f, co_acc2_est, '-', 'HandleVisibility', 'off')
set(gca, 'ColorOrderIndex', 2);
plot(f, co_geo1_est, '-', 'DisplayName', 'Geophone')
set(gca, 'ColorOrderIndex', 2);
plot(f, co_geo2_est, '-', 'HandleVisibility', 'off')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([2, 2e3]); ylim([0, 1])
legend();
% #+name: fig:id_sensor_dynamics_coherence
% #+caption: Coherence for the estimation of the sensor dynamics
% #+RESULTS:
% [[file:figs/id_sensor_dynamics_coherence.png]]
% We also make a simplified model of the inertial sensors to be compared with the identified dynamics.
G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)]
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)]
% The model and identified dynamics show good agreement (Figures [[fig:id_sensor_dynamics_accelerometers]] and [[fig:id_sensor_dynamics_geophones]].)
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(f, abs(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s^2}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.')
plot(f, 180/pi*angle(squeeze(freqresp(G_acc, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([2, 2e3]);
% #+name: fig:id_sensor_dynamics_accelerometers
% #+caption: Identified dynamics of the accelerometers
% #+RESULTS:
% [[file:figs/id_sensor_dynamics_accelerometers.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.')
plot(f, abs(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_geo1_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(tf_geo2_est./(1i*2*pi*f)), '.')
plot(f, 180/pi*angle(squeeze(freqresp(G_geo, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 2e3]);

View File

@@ -0,0 +1,224 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% As before, the identification data is loaded and any offset if removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% ASD of the Measured displacement
% The Power Spectral Density of the displacement as measured by the interferometer and the inertial sensors is computed.
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[p_id_d, f] = pwelch(id.d, win, [], [], 1/Ts);
[p_id_acc1, ~] = pwelch(id.acc_1, win, [], [], 1/Ts);
[p_id_acc2, ~] = pwelch(id.acc_2, win, [], [], 1/Ts);
[p_id_geo1, ~] = pwelch(id.geo_1, win, [], [], 1/Ts);
[p_id_geo2, ~] = pwelch(id.geo_2, win, [], [], 1/Ts);
% Let's use a model of the accelerometer and geophone to compute the motion from the measured voltage.
G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)]
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [[V/(m/s)]
% The obtained ASD in $m/\sqrt{Hz}$ is shown in Figure [[fig:measure_displacement_all_sensors]].
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_id_acc2)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_id_geo2)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 3);
plot(f, sqrt(p_id_d), 'DisplayName', 'Interferometer');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
title('Huddle Test')
legend();
xlim([1e-1, 5e3]); ylim([1e-12, 1e-4]);
% ASD of the Sensor Noise
% The noise of a sensor can be estimated using two identical sensors by computing:
% - the Power Spectral Density of the measured motion by the two sensors
% - the Cross Spectral Density between the two sensors (coherence)
% This technique to estimate the sensor noise is described in cite:barzilai98_techn_measur_noise_sensor_presen.
% The Power Spectral Density of the sensor noise can be estimated using the following equation:
% \begin{equation}
% |S_n(\omega)| = |S_{x_1}(\omega)| \Big( 1 - \gamma_{x_1 x_2}(\omega) \Big)
% \end{equation}
% with $S_{x_1}$ the PSD of one of the sensor and $\gamma_{x_1 x_2}$ the coherence between the two sensors.
% The coherence between the two accelerometers and between the two geophones is computed.
[coh_acc, ~] = mscohere(id.acc_1, id.acc_2, win, [], [], 1/Ts);
[coh_geo, ~] = mscohere(id.geo_1, id.geo_2, win, [], [], 1/Ts);
% Finally, the Power Spectral Density of the sensors is computed and converted in $[m^2/Hz]$.
pN_acc = p_id_acc1.*(1 - coh_acc) .* ... % [V^2/Hz]
1./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))).^2; % [(m/V)^2]
pN_geo = p_id_geo1.*(1 - coh_geo) .* ... % [V^2/Hz]
1./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))).^2; % [(m/V)^2]
% The ASD of obtained noises are compared with the ASD of the measured signals in Figure [[fig:noise_inertial_sensors_comparison]].
figure;
hold on;
plot(f, sqrt(p_id_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
plot(f, sqrt(p_id_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
plot(f, sqrt(pN_acc), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, sqrt(pN_geo), '-', 'DisplayName', 'Geophones - Noise');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$');
xlim([1, 5000]); ylim([1e-12, 1e-5]);
legend('location', 'northeast');
% Noise Model
% Transfer functions are adjusted in order to fit the ASD of the sensor noises (expressed in $[m/s/\sqrt{Hz}]$ for more easy fitting).
% These transfer functions are defined below and compared with the measured ASD in Figure [[fig:noise_models_velocity]].
N_acc = 1*(s/(2*pi*2000) + 1)^2/(s + 0.1*2*pi)/(s + 1e3*2*pi); % [m/sqrt(Hz)]
N_geo = 4e-4*(s/(2*pi*200) + 1)/(s + 1e3*2*pi); % [m/sqrt(Hz)]
freqs = logspace(0, 4, 1000);
figure;
hold on;
plot(f, sqrt(pN_acc).*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, sqrt(pN_geo).*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise');
set(gca, 'ColorOrderIndex', 1);
plot(freqs, abs(squeeze(freqresp(N_acc, freqs, 'Hz'))), '--', 'DisplayName', 'Accelerometer - Noise Model');
plot(freqs, abs(squeeze(freqresp(N_geo, freqs, 'Hz'))), '--', 'DisplayName', 'Geophones - Noise Model');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');
% $\mathcal{H}_2$ Synthesis of the Complementary Filters
% We now wish to synthesize two complementary filters to merge the geophone and the accelerometer signal in such a way that the fused signal has the lowest possible RMS noise.
% To do so, we use the $\mathcal{H}_2$ synthesis where the transfer functions representing the noise density of both sensors are used as weights.
% The generalized plant used for the synthesis is defined below.
P = [0 N_acc 1;
N_geo -N_acc 0];
% And the $\mathcal{H}_2$ synthesis is done using the =h2syn= command.
[H_geo, ~, gamma] = h2syn(P, 1, 1);
H_acc = 1 - H_geo;
% The obtained complementary filters are shown in Figure [[fig:complementary_filters_velocity_H2]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-', 'DisplayName', '$H_{acc}$');
plot(freqs, abs(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-', 'DisplayName', '$H_{geo}$');
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
hold off;
legend('location', 'northeast');
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-');
plot(freqs, 180/pi*angle(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-');
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([freqs(1), freqs(end)]);
% Results
% Finally, the signals of both sensors are merged using the complementary filters and the super sensor noise is estimated and compared with the individual sensor noises in Figure [[fig:super_sensor_noise_asd_velocity]].
freqs = logspace(0, 4, 1000);
figure;
hold on;
plot(f, pN_acc.*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, pN_geo.*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise');
plot(f, sqrt((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2), 'k-', 'DisplayName', 'Super Sensor - Noise');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');
% #+name: fig:super_sensor_noise_asd_velocity
% #+caption: ASD of the super sensor noise (velocity)
% #+RESULTS:
% [[file:figs/super_sensor_noise_asd_velocity.png]]
% Finally, the Cumulative Power Spectrum is computed and compared in Figure [[fig:super_sensor_noise_cas_velocity]].
[~, i_1Hz] = min(abs(f - 1));
CPS_acc = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2)));
CPS_geo = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_geo.*(2*pi*f)).^2)));
CPS_SS = 1/pi*flip(-cumtrapz(2*pi*flip(f), flip((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2)));
figure;
hold on;
plot(f, CPS_acc, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{acc}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_acc(i_1Hz))));
plot(f, CPS_geo, '-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}_{geo}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_geo(i_1Hz))));
plot(f, CPS_SS, 'k-', 'DisplayName', sprintf('$\\sigma_{\\hat{x}} = %.0f\\,\\mu m/s (rms)$', 1e6*sqrt(CPS_SS(i_1Hz))));
set(gca, 'YScale', 'log'); set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Cumulative Power Spectrum');
hold off;
xlim([1, 4e3]);
legend('location', 'northeast');

View File

@@ -0,0 +1,326 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
addpath('./src/');
% Load Data
% Data is loaded and offset is removed.
id = load('identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id.d = detrend(id.d, 0);
id.acc_1 = detrend(id.acc_1, 0);
id.acc_2 = detrend(id.acc_2, 0);
id.geo_1 = detrend(id.geo_1, 0);
id.geo_2 = detrend(id.geo_2, 0);
id.f_meas = detrend(id.f_meas, 0);
% Compute the dynamics of both sensors
% The dynamics of inertial sensors are estimated (in $[V/m]$).
Ts = id.t(2) - id.t(1);
win = hann(ceil(10/Ts));
[tf_acc1_est, f] = tfestimate(id.d, id.acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere( id.d, id.acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(id.d, id.acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere( id.d, id.acc_2, win, [], [], 1/Ts);
[tf_geo1_est, ~] = tfestimate(id.d, id.geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere( id.d, id.geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(id.d, id.geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere( id.d, id.geo_2, win, [], [], 1/Ts);
% The (nominal) models of the inertial sensors from the absolute displacement to the generated voltage are defined below:
G_acc = 1/(1 + s/2/pi/2000)
G_geo = -1200*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2);
% Dynamics uncertainty estimation
% Weights representing the dynamical uncertainty of the sensors are defined below.
w_acc = createWeight('n', 2, 'G0', 10, 'G1', 0.2, 'Gc', 1, 'w0', 6*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 5/0.2, 'Gc', 1/0.2, 'w0', 1300*2*pi);
w_geo = createWeight('n', 2, 'G0', 0.6, 'G1', 0.2, 'Gc', 0.3, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 10/0.2, 'Gc', 1/0.2, 'w0', 800*2*pi);
% The measured dynamics are compared with the modelled one as well as the modelled uncertainty in Figure [[fig:dyn_uncertainty_acc]] for the accelerometers and in Figure [[fig:dyn_uncertainty_geo]] for the geophones.
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'G', G_acc, 'color_i', 1, 'DisplayName', '$G_{acc}$');
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc1_est./(1i*2*pi*f).^2), '.', 'DisplayName', 'Meaurement')
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc2_est./(1i*2*pi*f).^2), '.', 'HandleVisibility', 'off')
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G_acc, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_{acc}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude $[\frac{V}{m}]$');
legend('location', 'southwest', 'FontSize', 8);
hold off;
ylim([1e-3, 1e1])
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'G', G_acc, 'color_i', 1);
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc1_est./(1i*2*pi*f).^2), '.');
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc2_est./(1i*2*pi*f).^2), '.');
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_acc, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
% #+name: fig:dyn_uncertainty_acc
% #+caption: Modeled dynamical uncertainty and meaured dynamics of the accelerometers
% #+RESULTS:
% [[file:figs/dyn_uncertainty_acc.png]]
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_geo, freqs, 'G', G_geo, 'color_i', 2, 'DisplayName', '$G_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo1_est./(1i*2*pi*f)), '.', 'DisplayName', 'Measurement')
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo2_est./(1i*2*pi*f)), '.', 'HandleVisibility', 'off')
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(G_geo, freqs, 'Hz'))), 'DisplayName', '$\hat{G}_{geo}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude $[\frac{V}{m}]$');
legend('location', 'northwest', 'FontSize', 8);
hold off;
ylim([1, 1e4])
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_geo, freqs, 'G', G_geo, 'color_i', 2);
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*unwrap(angle(tf_geo1_est./(1i*2*pi*f)))+360, '.');
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*unwrap(angle(tf_geo2_est./(1i*2*pi*f))), '.');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(G_geo, freqs, 'Hz'))));
set(gca,'xscale','log');
yticks(-270:90:180);
ylim([-270 90]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
% $\mathcal{H}_\infty$ Synthesis of Complementary Filters
% A last weight is now defined that represents the maximum dynamical uncertainty that is allowed for the super sensor.
wu = inv(createWeight('n', 2, 'G0', 0.7, 'G1', 0.3, 'Gc', 0.4, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 6/0.3, 'Gc', 1/0.3, 'w0', 1200*2*pi));
% This dynamical uncertainty is compared with the two sensor uncertainties in Figure [[fig:uncertainty_weight_and_sensor_uncertainties]].
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))));
Dphi_Wu(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))) > 1) = 360;
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$1 + W_{acc} \Delta$');
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$1 + W_{geo} \Delta$');
plot(freqs, 1 + abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'DisplayName', '$1 + W_u^{-1} \Delta$')
plot(freqs, 1 - abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-2, 1e1]);
legend('location', 'southeast', 'FontSize', 8);
hold off;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
plot(freqs, Dphi_Wu, 'k--');
plot(freqs, -Dphi_Wu, 'k--');
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% #+name: fig:uncertainty_weight_and_sensor_uncertainties
% #+caption: Individual sensor uncertainty (normalized by their dynamics) and the wanted maximum super sensor noise uncertainty
% #+RESULTS:
% [[file:figs/uncertainty_weight_and_sensor_uncertainties.png]]
% The generalized plant used for the synthesis is defined:
P = [wu*w_acc -wu*w_acc;
0 wu*w_geo;
1 0];
% And the $\mathcal{H}_\infty$ synthesis using the =hinfsyn= command is performed.
[H_geo, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% #+RESULTS:
% #+begin_example
% Test bounds: 0.8556 <= gamma <= 1.34
% gamma X>=0 Y>=0 rho(XY)<1 p/f
% 1.071e+00 0.0e+00 0.0e+00 0.000e+00 p
% 9.571e-01 0.0e+00 0.0e+00 9.436e-16 p
% 9.049e-01 0.0e+00 0.0e+00 1.084e-15 p
% 8.799e-01 0.0e+00 0.0e+00 1.191e-16 p
% 8.677e-01 0.0e+00 0.0e+00 6.905e-15 p
% 8.616e-01 0.0e+00 0.0e+00 0.000e+00 p
% 8.586e-01 1.1e-17 0.0e+00 6.917e-16 p
% 8.571e-01 0.0e+00 0.0e+00 6.991e-17 p
% 8.564e-01 0.0e+00 0.0e+00 1.492e-16 p
% Best performance (actual): 0.8563
% #+end_example
% The complementary filter is defined as follows:
H_acc = 1 - H_geo;
% The bode plot of the obtained complementary filters is shown in Figure
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2,1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(w_geo, freqs, 'Hz'))), '--', 'DisplayName', '$w_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(w_acc, freqs, 'Hz'))), '--', 'DisplayName', '$w_{acc}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-', 'DisplayName', '$H_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-', 'DisplayName', '$H_{acc}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([1e-2, 1e1]);
legend('location', 'southeast');
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H_geo, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H_acc, freqs, 'Hz'))), '-');
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlim([1, 1e3]);
% Obtained Super Sensor Dynamical Uncertainty
% The obtained super sensor dynamical uncertainty is shown in Figure [[fig:super_sensor_uncertainty_h_infinity]].
Dphi_Wu = 180/pi*asin(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))));
Dphi_Wu(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))) > 1) = 360;
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))));
Dphi_ss(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))) > 1) = 360;
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
plot(freqs, 1 + abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))+abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 'k-', ...
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
plot(freqs, max(1 - abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))-abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 0.001), 'k-', ...
'HandleVisibility', 'off');
plot(freqs, 1 + abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'DisplayName', '$1 + W_u^{-1}\Delta$')
plot(freqs, 1 - abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-2, 1e1]);
legend('location', 'southeast', 'FontSize', 8);
hold off;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
plot(freqs, Dphi_ss, 'k-');
plot(freqs, -Dphi_ss, 'k-');
plot(freqs, Dphi_Wu, 'k--');
plot(freqs, -Dphi_Wu, 'k--');
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

View File

@@ -0,0 +1,226 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Load Data
% The experimental data is loaded and any offset is removed.
id_ol = load('identification_noise_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_ol.d = detrend(id_ol.d, 0);
id_ol.acc_1 = detrend(id_ol.acc_1, 0);
id_ol.acc_2 = detrend(id_ol.acc_2, 0);
id_ol.geo_1 = detrend(id_ol.geo_1, 0);
id_ol.geo_2 = detrend(id_ol.geo_2, 0);
id_ol.f_meas = detrend(id_ol.f_meas, 0);
id_ol.u = detrend(id_ol.u, 0);
% Experimental Data
% The transfer function from force actuator to force sensors is estimated.
% The coherence shown in Figure [[fig:iff_identification_coh]] shows that the excitation signal is good enough.
Ts = id_ol.t(2) - id_ol.t(1);
win = hann(ceil(10/Ts));
[tf_fmeas_est, f] = tfestimate(id_ol.u, id_ol.f_meas, win, [], [], 1/Ts); % [V/m]
[co_fmeas_est, ~] = mscohere( id_ol.u, id_ol.f_meas, win, [], [], 1/Ts);
figure;
hold on;
plot(f, co_fmeas_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([1, 1e3]); ylim([0, 1])
% #+name: fig:iff_identification_coh
% #+caption: Coherence for the identification of the IFF plant
% #+RESULTS:
% [[file:figs/iff_identification_coh.png]]
% The obtained dynamics is shown in Figure [[fig:iff_identification_bode_plot]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-1, 1e3]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);
% Model of the IFF Plant
% In order to plot the root locus for the IFF control strategy, a model of the identified plant is developed.
% It consists of several poles and zeros are shown below.
wz = 2*pi*102;
xi_z = 0.01;
wp = 2*pi*239.4;
xi_p = 0.015;
Giff = 2.2*(s^2 + 2*xi_z*s*wz + wz^2)/(s^2 + 2*xi_p*s*wp + wp^2) * ... % Dynamics
10*(s/3/pi/(1 + s/3/pi)) * ... % Low pass filter and gain of the voltage amplifier
exp(-Ts*s); % Time delay induced by ADC/DAC
% The comparison of the identified dynamics and the developed model is done in Figure [[fig:iff_plant_model]].
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_fmeas_est), '.')
plot(f, abs(squeeze(freqresp(Giff, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-2, 1e3])
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_fmeas_est), '.')
plot(f, 180/pi*angle(squeeze(freqresp(Giff, f, 'Hz'))), 'k-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([0.5, 5e3]);
% Root Locus and optimal Controller
% Now, the root locus for the Integral Force Feedback strategy is computed and shown in Figure [[fig:iff_root_locus]].
% Note that the controller used is not a pure integrator but rather a first order low pass filter with a cut-off frequency set at 2Hz.
gains = logspace(0, 5, 1000);
figure;
hold on;
plot(real(pole(Giff)), imag(pole(Giff)), 'kx');
plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko');
for i = 1:length(gains)
cl_poles = pole(feedback(Giff, gains(i)/(s + 2*pi*2)));
plot(real(cl_poles), imag(cl_poles), 'k.');
end
cl_poles = pole(feedback(Giff, 102/(s + 2*pi*2)));
plot(real(cl_poles), imag(cl_poles), 'rx');
ylim([0, 1800]);
xlim([-1600,200]);
xlabel('Real Part')
ylabel('Imaginary Part')
axis square
% #+name: fig:iff_root_locus
% #+caption: Root Locus for the IFF control
% #+RESULTS:
% [[file:figs/iff_root_locus.png]]
% The controller that yield maximum damping (shown by the red cross in Figure [[fig:iff_root_locus]]) is:
Kiff_opt = 102/(s + 2*pi*2);
% Verification of the achievable damping
% A new identification is performed with the IFF control strategy applied to the system.
% Data is loaded and offset removed.
id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d = detrend(id_cl.d, 0);
id_cl.acc_1 = detrend(id_cl.acc_1, 0);
id_cl.acc_2 = detrend(id_cl.acc_2, 0);
id_cl.geo_1 = detrend(id_cl.geo_1, 0);
id_cl.geo_2 = detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u = detrend(id_cl.u, 0);
% The open-loop and closed-loop dynamics are estimated.
[tf_G_ol_est, f] = tfestimate(id_ol.u, id_ol.d, win, [], [], 1/Ts);
[co_G_ol_est, ~] = mscohere( id_ol.u, id_ol.d, win, [], [], 1/Ts);
[tf_G_cl_est, ~] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts);
[co_G_cl_est, ~] = mscohere( id_cl.u, id_cl.d, win, [], [], 1/Ts);
% The obtained coherence is shown in Figure [[fig:Gd_identification_iff_coherence]] and the dynamics in Figure [[fig:Gd_identification_iff_bode_plot]].
figure;
hold on;
plot(f, co_G_ol_est, '-', 'DisplayName', 'OL')
plot(f, co_G_cl_est, '-', 'DisplayName', 'IFF')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
xlim([1, 1e3]); ylim([0, 1])
legend('location', 'southwest');
% #+name: fig:Gd_identification_iff_coherence
% #+caption: Coherence for the transfer function from F to d, with and without IFF
% #+RESULTS:
% [[file:figs/Gd_identification_iff_coherence.png]]
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_ol_est), '-', 'DisplayName', 'OL')
plot(f, abs(tf_G_cl_est), '-', 'DisplayName', 'IFF')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
hold off;
legend('location', 'northeast');
ylim([2e-7, 2e-4]);
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_ol_est), '-')
plot(f, 180/pi*angle(tf_G_cl_est), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([1, 1e3]);

1870
matlab/mat/APA95ML.step Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

BIN
matlab/mat/huddle_test.mat Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

171
matlab/optimal_excitation.m Normal file
View File

@@ -0,0 +1,171 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
% Transfer function from excitation signal to displacement
% Let's first estimate the transfer function from the excitation signal in [V] to the generated displacement in [m] as measured by the inteferometer.
id_cl = load('identification_noise_iff_bis.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
id_cl.d = detrend(id_cl.d, 0);
id_cl.acc_1 = detrend(id_cl.acc_1, 0);
id_cl.acc_2 = detrend(id_cl.acc_2, 0);
id_cl.geo_1 = detrend(id_cl.geo_1, 0);
id_cl.geo_2 = detrend(id_cl.geo_2, 0);
id_cl.f_meas = detrend(id_cl.f_meas, 0);
id_cl.u = detrend(id_cl.u, 0);
Ts = id_cl.t(2) - id_cl.t(1);
win = hann(ceil(10/Ts));
[tf_G_cl_est, f] = tfestimate(id_cl.u, id_cl.d, win, [], [], 1/Ts);
[co_G_cl_est, ~] = mscohere( id_cl.u, id_cl.d, win, [], [], 1/Ts);
% Approximate transfer function from voltage output to generated displacement when IFF is used, in [m/V].
G_d_est = -5e-6*(2*pi*230)^2/(s^2 + 2*0.3*2*pi*240*s + (2*pi*240)^2);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(f, abs(tf_G_cl_est), '-')
plot(f, abs(squeeze(freqresp(G_d_est, f, 'Hz'))), '--')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(f, 180/pi*angle(tf_G_cl_est), '-')
plot(f, 180/pi*angle(squeeze(freqresp(G_d_est, f, 'Hz'))), '--')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2], 'x');
xlim([10, 1000]);
% Motion measured during Huddle test
% We now compute the PSD of the measured motion by the inertial sensors during the huddle test.
ht = load('huddle_test.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'u', 't');
ht.d = detrend(ht.d, 0);
ht.acc_1 = detrend(ht.acc_1, 0);
ht.acc_2 = detrend(ht.acc_2, 0);
ht.geo_1 = detrend(ht.geo_1, 0);
ht.geo_2 = detrend(ht.geo_2, 0);
[p_d, f] = pwelch(ht.d, win, [], [], 1/Ts);
[p_acc1, ~] = pwelch(ht.acc_1, win, [], [], 1/Ts);
[p_acc2, ~] = pwelch(ht.acc_2, win, [], [], 1/Ts);
[p_geo1, ~] = pwelch(ht.geo_1, win, [], [], 1/Ts);
[p_geo2, ~] = pwelch(ht.geo_2, win, [], [], 1/Ts);
% Using an estimated model of the sensor dynamics from the documentation of the sensors, we can compute the ASD of the motion in $m/\sqrt{Hz}$ measured by the sensors.
G_acc = 1/(1 + s/2/pi/2500); % [V/(m/s2)]
G_geo = -120*s^2/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [V/(m/s)]
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_acc2)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_geo2)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 3);
plot(f, sqrt(p_d), 'DisplayName', 'Interferometer');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
title('Huddle Test')
legend();
% #+name: fig:huddle_test_psd_motion
% #+caption: ASD of the motion measured by the sensors
% #+RESULTS:
% [[file:figs/huddle_test_psd_motion.png]]
% From the ASD of the motion measured by the sensors, we can create an excitation signal that will generate much motion motion that the motion under no excitation.
% We create =G_exc= that corresponds to the wanted generated motion.
G_exc = 0.2e-6/(1 + s/2/pi/2)/(1 + s/2/pi/50);
% And we create a time domain signal =y_d= that have the spectral density described by =G_exc=.
Fs = 1/Ts;
t = 0:Ts:180; % Time Vector [s]
u = sqrt(Fs/2)*randn(length(t), 1); % Signal with an ASD equal to one
y_d = lsim(G_exc, u, t);
[pxx, ~] = pwelch(y_d, win, 0, [], Fs);
figure;
hold on;
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_acc1)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'DisplayName', 'Accelerometer');
set(gca, 'ColorOrderIndex', 1);
plot(f, sqrt(p_acc2)./abs(squeeze(freqresp(G_acc*s^2, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_geo1)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'DisplayName', 'Geophone');
set(gca, 'ColorOrderIndex', 2);
plot(f, sqrt(p_geo2)./abs(squeeze(freqresp(G_geo*s, f, 'Hz'))), ...
'HandleVisibility', 'off');
set(gca, 'ColorOrderIndex', 3);
plot(f, sqrt(pxx), 'k-', ...
'DisplayName', 'Excitation');
plot(f, sqrt(p_d), 'DisplayName', 'Interferometer');
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('ASD [$m/\sqrt{Hz}$]'); xlabel('Frequency [Hz]');
title('Huddle Test')
legend();
% #+name: fig:comp_huddle_test_excited_motion_psd
% #+caption: Comparison of the ASD of the motion during Huddle and the wanted generated motion
% #+RESULTS:
% [[file:figs/comp_huddle_test_excited_motion_psd.png]]
% We can now generate the voltage signal that will generate the wanted motion.
y_v = lsim(G_exc * ... % from unit PSD to shaped PSD
(1 + s/2/pi/50) * ... % Inverse of pre-filter included in the Simulink file
1/G_d_est * ... % Wanted displacement => required voltage
1/(1 + s/2/pi/5e3), ... % Add some high frequency filtering
u, t);
figure;
plot(t, y_v)
xlabel('Time [s]'); ylabel('Voltage [V]');

View File

@@ -0,0 +1,193 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('./mat/');
addpath('./src/');
% Noise and Dynamical uncertainty weights
N_acc = (s/(2*pi*2000) + 1)^2/(s + 0.1*2*pi)/(s + 1e3*2*pi)/(1 + s/2/pi/1e3); % [m/sqrt(Hz)]
N_geo = 4e-4*((s + 2*pi)/(2*pi*200) + 1)/(s + 1e3*2*pi)/(1 + s/2/pi/1e3); % [m/sqrt(Hz)]
w_acc = createWeight('n', 2, 'G0', 10, 'G1', 0.2, 'Gc', 1, 'w0', 6*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 5/0.2, 'Gc', 1/0.2, 'w0', 1300*2*pi);
w_geo = createWeight('n', 2, 'G0', 0.6, 'G1', 0.2, 'Gc', 0.3, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 10/0.2, 'Gc', 1/0.2, 'w0', 800*2*pi);
wu = inv(createWeight('n', 2, 'G0', 0.7, 'G1', 0.3, 'Gc', 0.4, 'w0', 3*2*pi) * ...
createWeight('n', 2, 'G0', 1, 'G1', 6/0.3, 'Gc', 1/0.3, 'w0', 1200*2*pi));
P = [wu*w_acc -wu*w_acc;
0 wu*w_geo;
N_acc -N_acc;
0 N_geo;
1 0];
% And the mixed $\mathcal{H}_2/\mathcal{H}_\infty$ synthesis is performed.
[H_geo, ~] = h2hinfsyn(ss(P), 1, 1, 2, [0, 1], 'HINFMAX', 1, 'H2MAX', Inf, 'DKMAX', 100, 'TOL', 1e-3, 'DISPLAY', 'on');
H_acc = 1 - H_geo;
% Obtained Super Sensor Noise
freqs = logspace(0, 4, 1000);
PSD_Sgeo = abs(squeeze(freqresp(N_geo, freqs, 'Hz'))).^2;
PSD_Sacc = abs(squeeze(freqresp(N_acc, freqs, 'Hz'))).^2;
PSD_Hss = abs(squeeze(freqresp(N_acc*H_acc, freqs, 'Hz'))).^2 + ...
abs(squeeze(freqresp(N_geo*H_geo, freqs, 'Hz'))).^2;
figure;
hold on;
plot(freqs, sqrt(PSD_Sacc), '-', 'DisplayName', '$\Phi_{n_{acc}}$');
plot(freqs, sqrt(PSD_Sgeo), '-', 'DisplayName', '$\Phi_{n_{geo}}$');
plot(freqs, sqrt(PSD_Hss), 'k-.', 'DisplayName', '$\Phi_{n_{\mathcal{H}_2/\mathcal{H}_\infty}}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[ \frac{m/s}{\sqrt{Hz}} \right]$');
hold off;
xlim([freqs(1), freqs(end)]);
legend('location', 'northeast', 'FontSize', 8);
% Obtained Super Sensor Dynamical Uncertainty
Dphi_wu = 180/pi*asin(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))));
Dphi_wu(abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))) > 1) = 360;
Dphi_ss = 180/pi*asin(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))));
Dphi_ss(abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz'))) + abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))) > 1) = 360;
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$1 + W_1 \Delta_1$');
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$1 + W_2 \Delta_2$');
plot(freqs, 1 + abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))+abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 'k-', ...
'DisplayName', '$1 + W_1 \Delta_1 + W_2 \Delta_2$')
plot(freqs, max(1 - abs(squeeze(freqresp(w_geo*H_geo, freqs, 'Hz')))-abs(squeeze(freqresp(w_acc*H_acc, freqs, 'Hz'))), 0.001), 'k-', ...
'HandleVisibility', 'off');
plot(freqs, 1 + abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'DisplayName', '$1 + W_u^{-1}\Delta$')
plot(freqs, 1 - abs(squeeze(freqresp(inv(wu), freqs, 'Hz'))), 'k--', ...
'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ylim([1e-2, 1e1]);
legend('location', 'southeast', 'FontSize', 8);
hold off;
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
plot(freqs, Dphi_ss, 'k-');
plot(freqs, -Dphi_ss, 'k-');
plot(freqs, Dphi_wu, 'k--');
plot(freqs, -Dphi_wu, 'k--');
set(gca,'xscale','log');
ylim([-180 180]); yticks(-180:90:180);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
% Experimental Super Sensor Dynamical Uncertainty
load('./matlab/mat/sensor_dynamics.mat', 'tf_acc1_est', 'tf_acc2_est', 'tf_geo1_est', 'tf_geo2_est', 'f');
G_acc = s^2/(1 + s/2/pi/2000) % [V/m]
G_geo = -1200*s^3/(s^2 + 2*0.7*2*pi*2*s + (2*pi*2)^2); % [V/m]
% The super sensor dynamics is shown in Figure [[fig:super_sensor_optimal_uncertainty]].
figure;
tiledlayout(2, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile;
hold on;
plotMagUncertainty(w_acc, freqs, 'color_i', 1, 'DisplayName', '$G_{acc}$');
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc1_est./squeeze(freqresp(G_acc, f, 'Hz'))), '.', 'DisplayName', 'Meaurement')
set(gca,'ColorOrderIndex',1)
plot(f, abs(tf_acc2_est./squeeze(freqresp(G_acc, f, 'Hz'))), '.', 'HandleVisibility', 'off')
plotMagUncertainty(w_geo, freqs, 'color_i', 2, 'DisplayName', '$G_{geo}$');
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo1_est./squeeze(freqresp(G_geo, f, 'Hz'))), '.', 'DisplayName', 'Meaurement')
set(gca,'ColorOrderIndex',2)
plot(f, abs(tf_geo2_est./squeeze(freqresp(G_geo, f, 'Hz'))), '.', 'HandleVisibility', 'off')
plot(f, abs(tf_acc1_est.*squeeze(freqresp(inv(G_acc)*H_acc, f, 'Hz')) + ...
tf_geo1_est.*squeeze(freqresp(inv(G_geo)*H_geo, f, 'Hz'))), 'k.', 'DisplayName', 'ss')
plot(f, abs(tf_acc2_est.*squeeze(freqresp(inv(G_acc)*H_acc, f, 'Hz')) + ...
tf_geo2_est.*squeeze(freqresp(inv(G_geo)*H_geo, f, 'Hz'))), 'k.', 'HandleVisibility', 'off')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude $[\frac{V}{m}]$');
legend('location', 'southwest', 'FontSize', 8);
hold off;
ylim([1e-3, 1e1])
% Phase
ax2 = nexttile;
hold on;
plotPhaseUncertainty(w_acc, freqs, 'color_i', 1);
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc1_est./squeeze(freqresp(G_acc, f, 'Hz'))), '.');
set(gca,'ColorOrderIndex',1)
plot(f, 180/pi*angle(tf_acc2_est./squeeze(freqresp(G_acc, f, 'Hz'))), '.');
plotPhaseUncertainty(w_geo, freqs, 'color_i', 2);
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*angle(tf_geo1_est./squeeze(freqresp(G_geo, f, 'Hz'))), '.');
set(gca,'ColorOrderIndex',2)
plot(f, 180/pi*angle(tf_geo2_est./squeeze(freqresp(G_geo, f, 'Hz'))), '.');
plot(f, 180/pi*angle(tf_acc1_est.*squeeze(freqresp(inv(G_acc)*H_acc, f, 'Hz')) + ...
tf_geo1_est.*squeeze(freqresp(inv(G_geo)*H_geo, f, 'Hz'))), 'k.')
plot(f, 180/pi*angle(tf_acc2_est.*squeeze(freqresp(inv(G_acc)*H_acc, f, 'Hz')) + ...
tf_geo2_est.*squeeze(freqresp(inv(G_geo)*H_geo, f, 'Hz'))), 'k.')
set(gca,'xscale','log');
yticks(-180:90:180);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([1, 5e3]);
% Experimental Super Sensor Noise
load('./matlab/mat/sensor_noises.mat', 'pN_acc', 'pN_geo', 'N_acc', 'N_geo', 'f')
% The obtained super sensor noise is shown in Figure [[fig:super_sensor_optimal_noise]].
freqs = logspace(0, 4, 1000);
figure;
hold on;
plot(f, pN_acc.*(2*pi*f), '-', 'DisplayName', 'Accelerometers - Noise');
plot(f, pN_geo.*(2*pi*f), '-', 'DisplayName', 'Geophones - Noise');
plot(f, sqrt((pN_acc.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_acc, f, 'Hz'))).^2 + (pN_geo.*(2*pi*f)).^2.*abs(squeeze(freqresp(H_geo, f, 'Hz'))).^2), 'k-', 'DisplayName', 'Super Sensor - Noise');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');

153
matlab/runtest.m Normal file
View File

@@ -0,0 +1,153 @@
tg = slrt;
%%
f = SimulinkRealTime.openFTP(tg);
mget(f, 'apa95ml.dat', 'data');
close(f);
%% Convert the Data
data = SimulinkRealTime.utils.getFileScopeData('data/apa95ml.dat').data;
d = data(:, 1); % Interferomter [m]
acc_1 = data(:, 2);
acc_2 = data(:, 3);
geo_1 = data(:, 4);
geo_2 = data(:, 5);
u = data(:, 6); % Excitation Signal [V]
v = data(:, 7); % Input signal to the amplifier [V]
f_meas = data(:, 8); % Voltage generated by the force sensor [V]
t = data(:, 9);
save('./mat/identification_noise_opt_iff.mat', 'd', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 'f_meas', 'v', 'u', 't');
%%
d = detrend(d, 0);
acc_1 = detrend(acc_1, 0);
acc_2 = detrend(acc_2, 0);
geo_1 = detrend(geo_1, 0);
geo_2 = detrend(geo_2, 0);
u = detrend(u, 0);
%%
run setup;
win = hann(ceil(10/Ts));
[p_d, f] = pwelch(d, win, [], [], 1/Ts);
[p_acc1, ~] = pwelch(acc_1, win, [], [], 1/Ts);
[p_acc2, ~] = pwelch(acc_2, win, [], [], 1/Ts);
[p_geo1, ~] = pwelch(geo_1, win, [], [], 1/Ts);
[p_geo2, ~] = pwelch(geo_2, win, [], [], 1/Ts);
%%
figure;
hold on;
plot(f, p_acc1);
plot(f, p_acc2);
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$(m/s^2)^2/Hz$]'); xlabel('Frequency [Hz]');
figure;
hold on;
plot(f, p_geo1);
plot(f, p_geo2);
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$(m/s)^2/Hz$]'); xlabel('Frequency [Hz]');
figure;
hold on;
plot(f, p_d);
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD [$m^2/Hz$]'); xlabel('Frequency [Hz]');
%%
run setup;
win = hann(ceil(10/Ts));
[tf_geo1_est, f] = tfestimate(d, geo_1, win, [], [], 1/Ts);
[co_geo1_est, ~] = mscohere(d, geo_1, win, [], [], 1/Ts);
[tf_geo2_est, ~] = tfestimate(d, geo_2, win, [], [], 1/Ts);
[co_geo2_est, ~] = mscohere(d, geo_2, win, [], [], 1/Ts);
[tf_acc1_est, ~] = tfestimate(d, acc_1, win, [], [], 1/Ts);
[co_acc1_est, ~] = mscohere(d, acc_1, win, [], [], 1/Ts);
[tf_acc2_est, ~] = tfestimate(d, acc_2, win, [], [], 1/Ts);
[co_acc2_est, ~] = mscohere(d, acc_2, win, [], [], 1/Ts);
%%
figure;
hold on;
plot(f, co_geo1_est, '-')
plot(f, co_geo2_est, '-')
plot(f, co_acc1_est, '-')
plot(f, co_acc2_est, '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Coherence'); xlabel('Frequency [Hz]');
hold off;
%%
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_geo1_est), '-', 'DisplayName', 'Geo1')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*unwrap(angle(tf_geo1_est)), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
linkaxes([ax1,ax2], 'x');
%%
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(tf_acc1_est), '-', 'DisplayName', 'Acc1')
plot(f, abs(tf_acc2_est), '-', 'DisplayName', 'Acc2')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
hold off;
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*unwrap(angle(tf_acc1_est)), '-')
plot(f, 180/pi*unwrap(angle(tf_acc2_est)), '-')
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'lin');
ylabel('Phase'); xlabel('Frequency [Hz]');
hold off;
linkaxes([ax1,ax2], 'x');
%%
win = hann(ceil(10/Ts));
[p_acc_1, f] = pwelch(acc_1, win, [], [], 1/Ts);
[co_acc12, ~] = mscohere(acc_1, acc_2, win, [], [], 1/Ts);
[p_geo_1, ~] = pwelch(geo_1, win, [], [], 1/Ts);
[co_geo12, ~] = mscohere(geo_1, geo_2, win, [], [], 1/Ts);
p_acc_N = p_acc_1.*(1 - co_acc12);
p_geo_N = p_geo_1.*(1 - co_geo12);
figure;
hold on;
plot(f, sqrt(p_acc_N)./abs(tf_acc1_est));
plot(f, sqrt(p_geo_N)./abs(tf_geo1_est));
hold off;
set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log');
ylabel('PSD'); xlabel('Frequency [Hz]');

Binary file not shown.

25
matlab/setup.m Normal file
View File

@@ -0,0 +1,25 @@
%%
s = tf('s');
Ts = 1e-4; % [s]
%% Pre-Filter
% Glpf = 1/(1 + s/2/pi/2e3);
G_pf = 1/(1 + s/2/pi/50); % Used to excite with constant velocity
G_pf = c2d(G_pf, Ts, 'tustin');
%% Force Sensor Filter (HPF)
Gf_hpf = s/(s + 2*pi*2);
Gf_hpf = tf(1);
Gf_hpf = c2d(Gf_hpf, Ts, 'tustin');
%% IFF Controller
Kiff = 1/(s + 2*pi*2);
Kiff = c2d(Kiff, Ts, 'tustin');
%% Excitation Signal
Tsim = 180; % Excitation time + Measurement time [s]
t = 0:Ts:Tsim;
% u_exc = timeseries(chirp(t, 0.1, Tsim, 1e3, 'logarithmic'), t);
u_exc = timeseries(chirp(t, 40, Tsim, 400, 'logarithmic'), t);
u_exc = timeseries(y_v, t);

39
matlab/src/createWeight.m Normal file
View File

@@ -0,0 +1,39 @@
function [W] = createWeight(args)
% createWeight -
%
% Syntax: [in_data] = createWeight(in_data)
%
% Inputs:
% - n - Weight Order
% - G0 - Low frequency Gain
% - G1 - High frequency Gain
% - Gc - Gain of W at frequency w0
% - w0 - Frequency at which |W(j w0)| = Gc
%
% Outputs:
% - W - Generated Weight
arguments
args.n (1,1) double {mustBeInteger, mustBePositive} = 1
args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.G1 (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
end
mustBeBetween(args.G0, args.Gc, args.G1);
s = tf('s');
W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (args.G0/args.Gc)^(1/args.n))/((1/args.G1)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.G1)^(2/args.n)))*s + (1/args.Gc)^(1/args.n)))^args.n;
end
% Custom validation function
function mustBeBetween(a,b,c)
if ~((a > b && b > c) || (c > b && b > a))
eid = 'createWeight:inputError';
msg = 'Gc should be between G0 and G1.';
throwAsCaller(MException(eid,msg))
end
end

View File

@@ -0,0 +1,38 @@
function [p] = plotMagUncertainty(W, freqs, args)
% plotMagUncertainty -
%
% Syntax: [p] = plotMagUncertainty(W, freqs, args)
%
% Inputs:
% - W - Multiplicative Uncertainty Weight
% - freqs - Frequency Vector [Hz]
% - args - Optional Arguments:
% - G
% - color_i
% - opacity
%
% Outputs:
% - p - Plot Handle
arguments
W
freqs double {mustBeNumeric, mustBeNonnegative}
args.G = tf(1)
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
args.DisplayName char = ''
end
% Get defaults colors
colors = get(groot, 'defaultAxesColorOrder');
p = patch([freqs flip(freqs)], ...
[abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
'DisplayName', args.DisplayName);
p.FaceColor = colors(args.color_i, :);
p.EdgeColor = 'none';
p.FaceAlpha = args.opacity;
end

View File

@@ -0,0 +1,43 @@
function [p] = plotPhaseUncertainty(W, freqs, args)
% plotPhaseUncertainty -
%
% Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
%
% Inputs:
% - W - Multiplicative Uncertainty Weight
% - freqs - Frequency Vector [Hz]
% - args - Optional Arguments:
% - G
% - color_i
% - opacity
%
% Outputs:
% - p - Plot Handle
arguments
W
freqs double {mustBeNumeric, mustBeNonnegative}
args.G = tf(1)
args.color_i (1,1) double {mustBeInteger, mustBePositive} = 1
args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
args.DisplayName char = ''
end
% Get defaults colors
colors = get(groot, 'defaultAxesColorOrder');
% Compute Phase Uncertainty
Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;
% Compute Plant Phase
G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
'DisplayName', args.DisplayName);
p.FaceColor = colors(args.color_i, :);
p.EdgeColor = 'none';
p.FaceAlpha = args.opacity;
end