sensor-fusion-test-bench/index.org

199 lines
5.8 KiB
Org Mode
Raw Normal View History

2020-08-19 10:29:15 +02:00
#+TITLE: Sensor Fusion - Test Bench
:DRAWER:
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :tangle filters.m
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :noweb yes
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Experimental Setup
| | |
|---------------+------------------------------|
| Accelerometer | PCB 393B05 - Vertical ([[https://www.pcb.com/products?m=393B05][link]]) |
| Geophone | Mark Product L4C - Vertical |
* Huddle Test
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load Data
#+begin_src matlab
load('./mat/huddle_test.mat', 'acc_1', 'acc_2', 'geo_1', 'geo_2', 't');
dt = t(2) - t(1);
#+end_src
** Data
#+begin_src matlab
acc_1 = acc_1 - mean(acc_1);
acc_2 = acc_2 - mean(acc_2);
geo_1 = geo_1 - mean(geo_1);
geo_2 = geo_2 - mean(geo_2);
#+end_src
** Scale Data
From raw data to estimated velocity.
This takes into account the sensibility of the sensor and possible integration to go from acceleration to velocity.
#+begin_src matlab
G0 = 1.02; % [V/(m/s2)]
G_acc = tf(G0);
#+end_src
#+begin_src matlab
T = 276;
xi = 0.5;
w = 2*pi;
G_geo = -T*s^2/(s^2 + 2*xi*w*s + w^2);
#+end_src
#+begin_src matlab
acc_1 = lsim(inv(G_acc), acc_1, t);
acc_2 = lsim(inv(G_acc), acc_2, t);
2020-08-27 18:00:20 +02:00
geo_1 = lsim(inv(G_geo), geo_1, t);
2020-08-19 10:29:15 +02:00
geo_2 = lsim(inv(G_geo), geo_2, t);
#+end_src
** Compare Time Domain Signals
#+begin_src matlab
figure;
hold on;
plot(t, acc_1);
plot(t, acc_2);
plot(t, geo_1);
plot(t, geo_2);
hold off;
#+end_src
** Compute PSD
We first define the parameters for the frequency domain analysis.
#+begin_src matlab :results none
Fs = 1/dt; % [Hz]
win = hanning(ceil(1*Fs));
#+end_src
Then we compute the Power Spectral Density using =pwelch= function.
#+begin_src matlab :results none
[p_acc_1, f] = pwelch(acc_1, win, [], [], Fs);
[p_acc_2, ~] = pwelch(acc_2, win, [], [], Fs);
[p_geo_1, ~] = pwelch(geo_1, win, [], [], Fs);
[p_geo_2, ~] = pwelch(geo_2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(p_acc_1));
plot(f, sqrt(p_acc_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Accelerometers $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
#+end_src
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(p_geo_1));
plot(f, sqrt(p_geo_2));
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD Geophones $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
xlim([1, 5000]);
#+end_src
** Dynamical Uncertainty
#+begin_src matlab :results none
[T_acc, ~] = tfestimate(acc_1, acc_2, win, [], [], Fs);
[T_geo, ~] = tfestimate(geo_1, geo_2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none :exports none
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(f, abs(T_acc), 'DisplayName', 'Accelerometers');
plot(f, abs(T_geo), 'DisplayName', 'Geophones');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(f, 180/pi*phase(T_acc));
plot(f, 180/pi*phase(T_geo));
hold off;
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
linkaxes([ax1,ax2],'x');
xlim([1, 5000]);
#+end_src
** Sensor Noise
#+begin_src matlab
[coh_acc, ~] = mscohere(acc_1, acc_2, win, [], [], Fs);
[coh_geo, ~] = mscohere(geo_1, geo_2, win, [], [], Fs);
#+end_src
#+begin_src matlab
pN_acc = p_acc_1.*(1 - coh_acc);
pN_geo = p_geo_1.*(1 - coh_geo);
#+end_src
#+begin_src matlab :results none
figure;
hold on;
plot(f, pN_acc, '-', 'DisplayName', 'Accelerometers');
plot(f, pN_geo, '-', 'DisplayName', 'Geophones');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the Measurement Noise $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
xlim([1, 5000]);
legend('location', 'northeast');
#+end_src