394 lines
16 KiB
HTML
394 lines
16 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||
<head>
|
||
<!-- 2022-06-02 Thu 19:15 -->
|
||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||
<title>Research Pages</title>
|
||
<meta name="author" content="Dehaeze Thomas" />
|
||
<meta name="generator" content="Org Mode" />
|
||
<link rel="stylesheet" type="text/css" href="css/style.css"/>
|
||
<link rel="stylesheet" href="https://maxst.icons8.com/vue-static/landings/line-awesome/line-awesome/1.3.0/css/line-awesome.min.css">
|
||
<script type="text/javascript" src="js/script.js"></script>
|
||
<style> #content {margin: auto;} </style>
|
||
<script>
|
||
MathJax = {
|
||
svg: {
|
||
scale: 1,
|
||
fontCache: "global"
|
||
},
|
||
tex: {
|
||
tags: "ams",
|
||
multlineWidth: "%MULTLINEWIDTH",
|
||
tagSide: "right",
|
||
macros: {bm: ["\\boldsymbol{#1}",1],},
|
||
tagIndent: ".8em"
|
||
}
|
||
};
|
||
</script>
|
||
<script id="MathJax-script" async
|
||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-svg.js"></script>
|
||
</head>
|
||
<body>
|
||
<div id="content" class="content">
|
||
<h1 class="title">Research Pages</h1>
|
||
<p>
|
||
Welcome to my research pages.
|
||
</p>
|
||
|
||
<div id="outline-container-org5bcf370" class="outline-2">
|
||
<h2 id="org5bcf370"><span class="section-number-2">1.</span> Papers</h2>
|
||
<div class="outline-text-2" id="text-1">
|
||
</div>
|
||
|
||
<div id="outline-container-orge197ac1" class="outline-3">
|
||
<h3 id="orge197ac1"><span class="section-number-3">1.1.</span> Conference Papers</h3>
|
||
<div class="outline-text-3" id="text-1-1">
|
||
<ul class="org-ul">
|
||
<li>Dehaeze, T., Mattenet, M. M., Collette, C., <b>Sample Stabilization For Tomography Experiments In Presence Of Large Plant Uncertainty</b>, In MEDSI’18 (pp. 153–157) (2018). Geneva, Switzerland: JACoW Publishing
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/paper/dehaeze18_sampl_stabil_for_tomog_exper.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/poster/dehaeze18_sampl_stabil_for_tomog_exper_poster.pdf"><i class="las la-pager"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/talk/dehaeze18_sampl_stabil_for_tomog_exper_talk.pdf"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze18_sampl_stabil_for_tomog_exper/dehaeze18_sampl_stabil_for_tomog_exper.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Vermat, M., Christophe, C., <b>Complementary filters shaping using \(H_\infty\) synthesis</b>, In 7th International Conference on Control, Mechatronics and Automation (ICCMA) (pp. 459–464) (2019)
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/paper/dehaeze19_compl_filter_shapin_using_synth.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/poster/dehaeze19_compl_filter_shapin_using_synth_poster.pdf"><i class="las la-pager"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/talk/dehaeze19_compl_filter_shapin_using_synth_talk.pdf"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze19_compl_filter_shapin_using_synth/dehaeze19_compl_filter_shapin_using_synth.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Collette, C., <b>Active damping of rotating platforms using Integral Force Feedback</b>, In Proceedings of the International Conference on Modal Analysis Noise and Vibration Engineering (ISMA) (2020)
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/paper/dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="https://www.youtube.com/watch?v=F9j2-ge2FPE"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze20_activ_dampin_rotat_platf_integ_force_feedb/dehaeze20_activ_dampin_rotat_platf_integ_force_feedb.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Bonnefoy, J., Collette, C., <b>Mechatronics approach for the development of a Nano-Active-Stabilization-System</b>, In MEDSI’20 (2021). JACoW Publishing
|
||
<a href="dehaeze21_mechatronics_approach_nass/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/paper/dehaeze21_mechatronics_approach_nass.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/talk/dehaeze21_mechatronics_approach_nass_talk.pdf"><i class="las la-pager"></i></a>
|
||
<a href="https://www.youtube.com/watch?v=kaplQJoqqDg"><i class="las la-file-video"></i></a>
|
||
<a href="dehaeze21_mechatronics_approach_nass/dehaeze21_mechatronics_approach_nass.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Brumund, P., Dehaeze, T., <b>Multibody simulations with reduced order flexible bodies obtained by FEA</b>, In MEDSI’20 (2021). JACoW Publishing
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/index.html"><i class="las la-globe"></i></a>
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/paper/brumund21_multib_simul_reduc_order_flexib_bodies_fea.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="brumund21_multib_simul_reduc_order_flexib_bodies_fea/brumund21_multib_simul_reduc_order_flexib_bodies_fea.bib"><i class="las la-quote-left"></i></a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org5ffc110" class="outline-3">
|
||
<h3 id="org5ffc110"><span class="section-number-3">1.2.</span> Journal Papers</h3>
|
||
<div class="outline-text-3" id="text-1-2">
|
||
<ul class="org-ul">
|
||
<li>Verma, M., Dehaeze, T., Zhao, G., Watchi, J., Collette, C., <b>Virtual sensor fusion for high precision control, Mechanical Systems and Signal Processing</b>, 150, 107241 (2020)
|
||
<a href="personnal-papers/verma20_virtual_sensor_fusion_high_precis_contr.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="personnal-papers/verma20_virtual_sensor_fusion_high_precis_contr.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Verma, M., Lafarga, V., Dehaeze, T., Collette, C., <b>Multi-degree of freedom isolation system with high frequency roll-off for drone camera stabilization</b>, IEEE Access, (2020)
|
||
<a href="personnal-papers/verma20_multi_degree_freed_isolat_system.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="personnal-papers/verma20_multi_degree_freed_isolat_system.bib"><i class="las la-quote-left"></i></a></li>
|
||
<li>Dehaeze, T., Collette, C., <b>Active damping of rotating platforms using integral force feedback</b>, Engineering Research Express, (2021)
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/index.html"><i class="las la-globe"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/journal/dehaeze21_activ_dampin_rotat_platf_using.pdf"><i class="las la-file-pdf"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/matlab/index.html"><i class="las la-file-code"></i></a>
|
||
<a href="dehaeze21_activ_dampin_rotat_platf_using/dehaeze21_activ_dampin_rotat_platf_using.bib"><i class="las la-quote-left"></i></a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgf56927c" class="outline-2">
|
||
<h2 id="orgf56927c"><span class="section-number-2">2.</span> Nano Active Stabilization System (NASS)</h2>
|
||
<div class="outline-text-2" id="text-2">
|
||
</div>
|
||
<div id="outline-container-org3c680e7" class="outline-3">
|
||
<h3 id="org3c680e7"><span class="section-number-3">2.1.</span> General Reports</h3>
|
||
<div class="outline-text-3" id="text-2-1">
|
||
<p>
|
||
<a href="nass-report-2020/index.html">NASS - Report 2020</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
General report on the NASS project made in 2020.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgc0f126f" class="outline-3">
|
||
<h3 id="orgc0f126f"><span class="section-number-3">2.2.</span> Measurements, Models and Test Benches</h3>
|
||
<div class="outline-text-3" id="text-2-2">
|
||
<p>
|
||
<a href="nass-micro-station-measurements/index.html">NASS - Micro Station Measurements</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This document gathers all the measurements made on the Micro-Station.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-simscape/docs/index.html">NASS - Simscape Model</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
This document presents the Simscape model used to represent the micro-station as well as the Nano Active Stabilization System.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-fem/index.html">NASS - Finite Element Models</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Finite Element Models of the nano-hexapod are developed and used with Simscape to perform dynamics meaurements.
|
||
In this document, models of Amplified Piezoelectric Actuators, Flexible Joints, and Entire Stewart platform’s strut are developed and tested.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-metrology-test-bench/index.html">NASS - Metrology Concept 1</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Presentation of the first metrology concept for the NASS.
|
||
First experimental results are presented.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="nass-short-stroke-metrology/short-stroke-metrology.html">NASS - Short Stroke Metrology</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Presentation of the short stroke metrology concept.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org7b3660b" class="outline-3">
|
||
<h3 id="org7b3660b"><span class="section-number-3">2.3.</span> Nano-Hexapod</h3>
|
||
<div class="outline-text-3" id="text-2-3">
|
||
<p>
|
||
<b>Equipments</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-pd200/index.html">Voltage Amplifier: PD200</a></li>
|
||
<li><a href="test-bench-vionic/index.html">Encoder: Renishaw Vionic</a></li>
|
||
<li><a href="test-bench-nass-flexible-joints/index.html">Flexible Joints</a></li>
|
||
<li><a href="test-bench-apa300ml/index.html">Amplified Piezoelectric Actuator: APA300ML</a></li>
|
||
<li><a href="nass-cabling/index.html">Control Electronics and Cabling</a></li>
|
||
</ul>
|
||
|
||
<p>
|
||
<b>Assembly</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-strut-mounting/index.html">Nano-Hexapod Struts - Assembly</a></li>
|
||
<li><a href="nass-nano-hexapod-assembly/index.html">Nano-Hexapod - Assembly</a></li>
|
||
</ul>
|
||
|
||
<p>
|
||
<b>Nano-Hexapod Test Benches</b>:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li><a href="test-bench-nano-hexapod/index.html">Nano-Hexapod on a Granite</a></li>
|
||
<li><a href="test-bench-nass-spindle/index.html">Nano-Hexapod on top of Spindle</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org49e79f0" class="outline-2">
|
||
<h2 id="org49e79f0"><span class="section-number-2">3.</span> Double Crystal Monochromator (DCM)</h2>
|
||
<div class="outline-text-2" id="text-3">
|
||
<p>
|
||
<a href="dcm-kinematics/index.html">Kinematics</a>
|
||
<a href="dcm-metrology/index.html">Metrology</a>
|
||
</p>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org3564575" class="outline-2">
|
||
<h2 id="org3564575"><span class="section-number-2">4.</span> Useful Pages / Tutorials</h2>
|
||
<div class="outline-text-2" id="text-4">
|
||
</div>
|
||
<div id="outline-container-orgd677c17" class="outline-3">
|
||
<h3 id="orgd677c17"><span class="section-number-3">4.1.</span> General Mechatronics</h3>
|
||
<div class="outline-text-3" id="text-4-1">
|
||
<p>
|
||
<a href="spectral-analysis/index.html">Spectral Analysis</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Basics of spectral analysis are presented alongside the Matlab codes.
|
||
This includes:
|
||
</p>
|
||
<ul class="org-ul">
|
||
<li>power spectral density</li>
|
||
<li>cumulative power spectrum</li>
|
||
<li>noise budgeting</li>
|
||
<li>…</li>
|
||
</ul>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="filters-matlab-bank/index.html">Bank of Filters using matlab</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Several types of linear filters (low pass, high pass, notch, lead, etc.) are presented with the corresponding Matlab code.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org923c658" class="outline-3">
|
||
<h3 id="org923c658"><span class="section-number-3">4.2.</span> System Modeling using Simscape</h3>
|
||
<div class="outline-text-3" id="text-4-2">
|
||
<p>
|
||
<a href="simscape-fem/index.html">Finite Element Models with Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Finite Element Models (FEM) can be included into Simscape Multi-Body models.
|
||
This document presents how to do so.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="stewart-simscape/docs/index.html">Stewart Platforms modeled with Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The goal of this project is to provide a Matlab/Simscape Toolbox to study Stewart platforms.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="simscape-gravity/index.html">Manage Gravity within Simscape</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Gravity can add some problems in multi-body simscape models: at the beginning of the simulation, some sag will be experience that may be unwanted.
|
||
In order to start the simulation at equilibrium, few measured can be employed that are described in this document.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org09bc092" class="outline-2">
|
||
<h2 id="org09bc092"><span class="section-number-2">5.</span> Test Benches / Experiments</h2>
|
||
<div class="outline-text-2" id="text-5">
|
||
</div>
|
||
<div id="outline-container-orge25dfd1" class="outline-3">
|
||
<h3 id="orge25dfd1"><span class="section-number-3">5.1.</span> Intrumentation Related</h3>
|
||
<div class="outline-text-3" id="text-5-1">
|
||
<p>
|
||
<a href="test-bench-piezo-amplifiers/index.html">Voltage Amplifiers for Piezoelectric Actuators</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
Voltage amplifiers for capacitive loads (piezoelectric actuators) are measured in term of dynamics from input voltage to output voltage.
|
||
Their output impedance are also measured.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="attocube-test-bench/index.html">Attocube</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
The Attocube (a fiber based interferometer) is tested.
|
||
Its noise characteristics as well as non-linearities are measured.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org50f7033" class="outline-3">
|
||
<h3 id="org50f7033"><span class="section-number-3">5.2.</span> Amplified Piezoelecric Actuator</h3>
|
||
<div class="outline-text-3" id="text-5-2">
|
||
<p>
|
||
<a href="test-bench-apa/index.html">Amplified Piezoelectric Actuator - Test bench and Finite Element Model</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A test bench is used to characterise the performances of an Amplified Piezoelectric Actuator (APA).
|
||
The dynamics of the system is identified and compared with a Finite Element Model (FEM).
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="encoder-test-bench/test-bench-encoder.html">Encoder in parallel with an Amplified Piezoelectric Actuator</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
An encoder is fixed in parallel with an amplified piezoelectric actuator.
|
||
The transfer function from the actuator to the motions measured by the encoder is identified.
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="test-bench-force-sensor/index.html">Piezoelectric Stack as Force Sensor</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A part of a piezoelectric stack can be used as a force sensor.
|
||
Then, the force sensors is collocated with the part of the stack used as an actuator and Integral Force Feedback control strategy can be used to add damping in the system.
|
||
This is performed on an Amplified Piezoelectric Actuator
|
||
</p>
|
||
</blockquote>
|
||
|
||
<p>
|
||
<a href="sensor-fusion-test-bench/index.html">Sensor Fusion of Inertial Sensors</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A geophone and a accelerometer are experimentally fused together using complementary filters.
|
||
The goal is to form a <i>super sensor</i> that has better noise characteristics than the individual sensors.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org2660fa1" class="outline-3">
|
||
<h3 id="org2660fa1"><span class="section-number-3">5.3.</span> Vibration Table</h3>
|
||
<div class="outline-text-3" id="text-5-3">
|
||
<p>
|
||
<a href="vibration-table/index.html">Instrumented Vibration Table used for Modal Testing</a>
|
||
</p>
|
||
<blockquote>
|
||
<p>
|
||
A vibration table is developed to perform controlled modal tests.
|
||
</p>
|
||
</blockquote>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-orgc3e10b1" class="outline-2">
|
||
<h2 id="orgc3e10b1"><span class="section-number-2">6.</span> Notes</h2>
|
||
<div class="outline-text-2" id="text-6">
|
||
<ul class="org-ul">
|
||
<li><a href="euspen_2020_notes/notes.html">EUSPEN - 2020 - Notes</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="outline-container-org58f9fe0" class="outline-2">
|
||
<h2 id="org58f9fe0"><span class="section-number-2">7.</span> Lectures</h2>
|
||
<div class="outline-text-2" id="text-7">
|
||
<ul class="org-ul">
|
||
<li><a href="lecture-h-infinity/index.html">H-Infinity - Robust Control</a></li>
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</body>
|
||
</html>
|