Rework part of experimental results

This commit is contained in:
Thomas Dehaeze 2025-02-03 16:48:28 +01:00
parent 301f4b51fc
commit 3300634d82
9 changed files with 1409 additions and 1019 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 31 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2025-02-01 Sat 18:34
% Created 2025-02-03 Mon 14:43
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -216,6 +216,7 @@ Results are summarized in Table \ref{tab:test_id31_metrology_acceptance}.
The obtained lateral acceptance for pure displacements in any direction is estimated to be around \(+/-0.5\,mm\), which is enough for the current application as it is well above the micro-station errors to be actively corrected by the NASS.
\begin{table}[htbp]
\caption{\label{tab:test_id31_metrology_acceptance}Estimated measurement range for each interferometer, and for three different directions.}
\centering
\begin{tabularx}{0.45\linewidth}{Xccc}
\toprule
@ -228,8 +229,6 @@ The obtained lateral acceptance for pure displacements in any direction is estim
\(d_5\) (z) & \(1.33\, mm\) & \(1.06\,mm\) & \(>2\,mm\)\\
\bottomrule
\end{tabularx}
\caption{\label{tab:test_id31_metrology_acceptance}Estimated measurement range for each interferometer, and for three different directions.}
\end{table}
@ -746,19 +745,39 @@ These results demonstrate both the effectiveness and limitations of implementing
\chapter{Validation with Scientific experiments}
\label{sec:test_id31_experiments}
The online metrology prototype does not allow samples to be placed on top of the nano-hexapod while being illuminated by the x-ray beam.
However, in order to fully validate the NASS, typical motion performed during scientific experiments can be mimicked, and the positioning performances can be evaluated.
In this section, the goal is to evaluate the performances of the NASS and validate its use for real work scientific experiments.
For tomography scans, performances were already evaluated in Section \ref{ssec:test_id31_iff_hac_perf}.
Here, other typical experiments are performed:
However, the online metrology prototype (presented in Section \ref{sec:test_id31_metrology}) does not allow samples to be placed on top of the nano-hexapod while being illuminated by the x-ray beam.
Nevertheless, in order to fully validate the NASS, typical motion performed during scientific experiments can be mimicked, and the positioning performances can be evaluated.
Several scientific experiments are mimicked, such as:
\begin{itemize}
\item \emph{Lateral scans}: the \(T_y\) translations stage performs \(D_y\) scans and the errors are corrected by the NASS in real time (Section \ref{ssec:test_id31_scans_dy})
\item \emph{Vertical layer scans}: the nano-hexapod is used to perform \(D_z\) step motion or ramp scans (Section \ref{ssec:test_id31_scans_dz})
\item \emph{Reflectivity scans}: the tilt stage is doing \(R_y\) rotations and the errors are corrected by the NASS in real time (Section \ref{ssec:test_id31_scans_reflectivity})
\item \emph{Diffraction Tomography}: the Spindle is performing continuous \(R_z\) rotation while the translation stage is performing lateral \(D_y\) scans at the same time.
\item Tomography scans: continuous rotation of the Spindle along the vertical axis (Section \ref{ssec:test_id31_scans_tomography})
\item Reflectivity scans: \(R_y\) rotations using the tilt-stage (Section \ref{ssec:test_id31_scans_reflectivity})
\item Vertical layer scans: the nano-hexapod is used to perform \(D_z\) step motion or ramp scans (Section \ref{ssec:test_id31_scans_dz})
\item Lateral scans: \(D_y\) scans using the \(T_y\) translation stage (Section \ref{ssec:test_id31_scans_dy})
\item Diffraction Tomography: the Spindle is performing continuous \(R_z\) rotation while the translation stage is performing lateral \(D_y\) scans at the same time.
This is the experiment with the most stringent requirements (Section \ref{ssec:test_id31_scans_diffraction_tomo})
\end{itemize}
\section{\(R_z\) scans: Tomography}
For each experiment, the obtained performances are compared to the specifications for the most depending case in which nano-focusing optics are used to focus the beam down to \(200\,nm\times 100\,nm\).
In that case the goal is to keep the sample's point of interested in the beam, and therefore the \(D_y\) and \(D_z\) positioning errors should be less than \(200\,nm\) and \(100\,nm\) peak-to-peak respectively.
The \(R_y\) error should be less than \(1.7\,\mu\text{rad}\) peak-to-peak.
In terms of RMS errors, this corresponds to \(30\,nm\) in \(D_y\), \(15\,nm\) in \(D_z\) and \(250\,\text{nrad}\) in \(R_y\).
\begin{table}[htbp]
\caption{\label{tab:test_id31_experiments_specifications}Specifications for the Nano-Active-Stabilization-System}
\centering
\begin{tabularx}{0.5\linewidth}{Xccc}
\toprule
& \(D_y\) & \(D_z\) & \(R_y\)\\
\midrule
peak 2 peak & 200nm & 100nm & \(1.7\,\mu\text{rad}\)\\
RMS & 30nm & 15nm & \(250\,\text{nrad}\)\\
\bottomrule
\end{tabularx}
\end{table}
\section{Tomography Scans}
\label{ssec:test_id31_scans_tomography}
\textbf{Issue with this control architecture (or controller?)}:
\begin{itemize}
@ -770,51 +789,6 @@ This is the experiment with the most stringent requirements (Section \ref{ssec:t
\item 1rpm, 6rpm, 30rpm
\item at 1rpm: m0, m1, m2, m3 (same robust controller!)
\end{itemize}
\paragraph{Previous results at 30rpm}
Then the same tomography experiment (i.e. constant spindle rotation at 30rpm, and no payload) was performed experimentally.
The measured position of the ``point of interest'' during the experiment are shown in Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}.
\begin{figure}[htbp]
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy.png}
\end{center}
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}XY plane}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz.png}
\end{center}
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}YZ plane}
\end{subfigure}
\caption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}Experimental results of a tomography experiment at 30RPM without payload. Position error of the sample is shown in the XY (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}) and YZ (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}) planes.}
\end{figure}
Even though the simulation (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_sim}) and the experimental results (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}) are looking similar, the most important metric to compare is the RMS values of the positioning errors in closed-loop.
These are computed for both the simulation and the experimental results and are compared in Table \ref{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}.
The lateral and vertical errors are similar, however the tilt (\(R_y\)) errors are underestimated by the model, which is reasonable as disturbances in \(R_y\) were not modeled.
Results obtained with this conservative HAC are already close to the specifications.
\begin{table}[htbp]
\centering
\begin{tabularx}{0.7\linewidth}{Xccc}
\toprule
& \(D_y\) & \(D_z\) & \(R_y\)\\
\midrule
Experiment (OL) & \(1.8\,\mu\text{mRMS}\) & \(24\,\text{nmRMS}\) & \(10\,\mu\text{radRMS}\)\\
\midrule
Simulation (CL) & \(30\,\text{nmRMS}\) & \(8\,\text{nmRMS}\) & \(73\,\text{nradRMS}\)\\
Experiment (CL) & \(39\,\text{nmRMS}\) & \(11\,\text{nmRMS}\) & \(130\,\text{nradRMS}\)\\
\midrule
Specifications & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
\bottomrule
\end{tabularx}
\caption{\label{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}RMS values of the errors for a tomography experiment at 30RPM and without payload. Experimental results and simulation are compared.}
\end{table}
\paragraph{Previous results at 1rpm}
The tomography experiments that were simulated were then experimentally conducted.
@ -850,6 +824,7 @@ The RMS values of the open-loop and closed-loop errors for all masses are summar
The obtained closed-loop errors are fulfilling the requirements, except for the \(39\,\text{kg}\) payload in the lateral (\(D_y\)) direction.
\begin{table}[htbp]
\caption{\label{tab:test_id31_tomo_1rpm_robust_ol_cl_errors}RMS values of the measured errors during open-loop and closed-loop tomography scans (1rpm) for all considered payloads. Measured closed-Loop errors are indicated by ``bold'' font.}
\centering
\begin{tabularx}{0.9\linewidth}{Xccc}
\toprule
@ -863,11 +838,286 @@ The obtained closed-loop errors are fulfilling the requirements, except for the
\textbf{Specifications} & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
\bottomrule
\end{tabularx}
\caption{\label{tab:test_id31_tomo_1rpm_robust_ol_cl_errors}RMS values of the measured errors during open-loop and closed-loop tomography scans (1rpm) for all considered payloads. Measured closed-Loop errors are indicated by ``bold'' font.}
\end{table}
\section{\(D_y\) - Lateral Scans}
\paragraph{Previous results at 30rpm}
Then the same tomography experiment (i.e. constant spindle rotation at 30rpm, and no payload) was performed experimentally.
The measured position of the ``point of interest'' during the experiment are shown in Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}.
\begin{figure}[htbp]
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy.png}
\end{center}
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}XY plane}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz.png}
\end{center}
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}YZ plane}
\end{subfigure}
\caption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}Experimental results of a tomography experiment at 30RPM without payload. Position error of the sample is shown in the XY (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}) and YZ (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}) planes.}
\end{figure}
Even though the simulation (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_sim}) and the experimental results (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}) are looking similar, the most important metric to compare is the RMS values of the positioning errors in closed-loop.
These are computed for both the simulation and the experimental results and are compared in Table \ref{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}.
The lateral and vertical errors are similar, however the tilt (\(R_y\)) errors are underestimated by the model, which is reasonable as disturbances in \(R_y\) were not modeled.
Results obtained with this conservative HAC are already close to the specifications.
\begin{table}[htbp]
\caption{\label{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}RMS values of the errors for a tomography experiment at 30RPM and without payload. Experimental results and simulation are compared.}
\centering
\begin{tabularx}{0.7\linewidth}{Xccc}
\toprule
& \(D_y\) & \(D_z\) & \(R_y\)\\
\midrule
Experiment (OL) & \(1.8\,\mu\text{mRMS}\) & \(24\,\text{nmRMS}\) & \(10\,\mu\text{radRMS}\)\\
\midrule
Simulation (CL) & \(30\,\text{nmRMS}\) & \(8\,\text{nmRMS}\) & \(73\,\text{nradRMS}\)\\
Experiment (CL) & \(39\,\text{nmRMS}\) & \(11\,\text{nmRMS}\) & \(130\,\text{nradRMS}\)\\
\midrule
Specifications & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
\bottomrule
\end{tabularx}
\end{table}
\paragraph{Dynamic Error Budgeting}
In this section, the noise budget is performed.
The vibrations of the sample is measured in different conditions using the external metrology.
\textbf{Tomography}:
\begin{itemize}
\item Beam size: 200nm x 100nm
\item Keep the PoI in the beam: peak to peak errors of 200nm in Dy and 100nm in Dz
\item RMS errors (/ by 6.6) gives 30nmRMS in Dy and 15nmRMS in Dz.
\item Ry error <1.7urad, 250nrad RMS
\end{itemize}
\begin{center}
\begin{tabular}{lllllll}
& Dx & Dy & Dz & Rx & Ry & Rz\\
\hline
peak 2 peak & & 200nm & 100nm & & 1.7 urad & \\
RMS & & 30nm & 15nm & & 250 nrad & \\
\end{tabular}
\end{center}
\begin{itemize}
\item Effect of rotation.
\item Comparison with measurement noise: should be higher
\item Maybe say that we then focus on the high rotation velocity
\item Also say that for the RMS errors, we don't take into account drifts (so we NASS we can correct drifts)
\item Focus on 30rpm case
\end{itemize}
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_ol_dy} $D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_ol_dz} $D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_ol_ry} $R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_hac_cas_ol}Cumulative Amplitude Spectrum of the measured positioning errors without any rotation, with \(\Omega_z = 36\,\text{deg}/s\) and with \(\Omega_z = 180\,\text{deg}/s\). Open-loop case. RMS values are indicated in the legend.}
\end{figure}
Effect of LAC:
\begin{itemize}
\item reduce amplitude around 80Hz
\item Inject some noise between 200 and 700Hz?
\end{itemize}
Effect of HAC:
\begin{itemize}
\item Bandwidth is approximately 10Hz
\end{itemize}
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_cl_dy} $D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_cl_dz} $D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_hac_cas_cl_ry} $R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_hac_cas_cl}Cumulative Amplitude Spectrum for tomography experiments at \(180\,\text{deg}/s\). Open-Loop case, IFF, and HAC-LAC are compared. Specifications are indicated by black dashed lines. RSM values are indicated in the legend.}
\end{figure}
\section{Reflectivity Scans}
\label{ssec:test_id31_scans_reflectivity}
X-ray reflectivity consists of scanning the \(R_y\) angle of thin structures (typically solid/liquid interfaces) through the beam.
Here, a \(R_y\) scan is performed with a rotational velocity of \(100\,\mu rad/s\) and the positioning errors in closed-loop are recorded (Figure \ref{fig:test_id31_reflectivity}).
It is shown that the NASS is able to keep the point of interest in the beam within specifications.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_reflectivity}Reflectivity scan (\(R_y\)) with a rotational velocity of \(100\,\mu \text{rad}/s\).}
\end{figure}
\section{Dirty Layer Scans}
\label{ssec:test_id31_scans_dz}
In some cases, samples are composed of several atomic ``layers'' that are first aligned in the horizontal plane with precise \(R_y\) positioning and that are then scanned vertically with precise \(D_z\) motion.
The vertical scan can be performed continuously of using step-by-step motion.
\paragraph{Step by Step \(D_z\) motion}
Vertical steps are here performed using the nano-hexapod only.
Step sizes from \(10\,nm\) to \(1\,\mu m\) are tested, and the results are shown in Figure \ref{fig:test_id31_dz_mim_steps}.
10nm steps can be resolved if detectors are integrating over 50ms (see red curve in Figure \ref{fig:test_id31_dz_mim_10nm_steps}), which is reasonable for many experiments.
When doing step-by-step scans, the time to reach the next value is quite critical as long settling time can render the total experiment excessively long.
The response time to reach the wanted value (to within \(\pm 20\,nm\)) is around \(70\,ms\) as shown with the \(1\,\mu m\) step response in Figure \ref{fig:test_id31_dz_mim_1000nm_steps}.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_10nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_10nm_steps}10nm steps}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_100nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_100nm_steps}100nm steps}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_1000nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_1000nm_steps}$1\,\mu$m step}
\end{subfigure}
\caption{\label{fig:test_id31_dz_mim_steps}Vertical steps performed with the nano-hexapod. 10nm steps are shown in (\subref{fig:test_id31_dz_mim_10nm_steps}) with the low pass filtered data corresponding to an integration time of \(50\,ms\). 100nm steps are shown in (\subref{fig:test_id31_dz_mim_100nm_steps}). The response time to reach a peak to peak error of \(\pm 20\,nm\) is \(\approx 70\,ms\) as shown in (\subref{fig:test_id31_dz_mim_1000nm_steps}) for a \(1\,\mu m\) step.}
\end{figure}
\paragraph{Continuous \(D_z\) motion: Dirty Layer Scans}
\begin{itemize}
\item[{$\square$}] In this section and the following experiments, the NASS performs ``ramp scans'' (i.e. constant velocity scans).
In order to have no tracking errors, two integrators needs to be present in the feedback loop.
As the plant present not integral action at low frequency, two integrators are included in the controller.
\end{itemize}
Instead of performing ``step-by-step'' scans, continuous scans can also be performed in the vertical direction.
At \(10\,\mu m/s\), the errors are well within the specifications (see Figure \ref{fig:test_id31_dz_scan_10ums}).
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_dz_scan_10ums}\(D_z\) scan with a velocity of \(10\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_10ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_10ums_dy}) and (\subref{fig:test_id31_dz_scan_10ums_ry})}
\end{figure}
The second tested velocity is \(100\,\mu m/s\), which is the fastest velocity for \(D_z\) scans when the ultimate performances is wanted (corresponding to a 1ms integration time and 100nm ``resolution'').
At this velocity, the positioning errors are also within the specifications except for the very start and very end of the motion (i.e. during acceleration/deceleration phases, see Figure \ref{fig:test_id31_dz_scan_100ums}).
However, the detectors are usually triggered only during the constant velocity phase, so this is not not an issue.
The performances during acceleration phase may also be improved by using a feedforward controller.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_dz_scan_100ums}\(D_z\) scan with a velocity of \(100\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_100ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_100ums_dy}) and (\subref{fig:test_id31_dz_scan_100ums_ry})}
\end{figure}
\paragraph{Summary}
\begin{center}
\begin{tabular}{lrrr}
& \(D_y\) & \(D_z\) & \(R_y\)\\
\hline
Specs & 100.0 & 50.0 & 0.85\\
10um/s & 82.35 & 17.94 & 0.41\\
100um/s & 98.72 & 41.45 & 0.48\\
\end{tabular}
\end{center}
\begin{center}
\begin{tabular}{lrrr}
& \(D_y\) & \(D_z\) & \(R_y\)\\
\hline
Specs & 30.0 & 15.0 & 0.25\\
10um/s & 25.11 & 5.04 & 0.11\\
100um/s & 34.84 & 9.08 & 0.13\\
\end{tabular}
\end{center}
\section{Lateral Scans}
\label{ssec:test_id31_scans_dy}
Lateral scans are performed with the \(T_y\) stage.
The stepper motor controller\footnote{The ``IcePAP'' \cite{janvier13_icepap} which is developed at the ESRF} outputs the setpoint which is received by the Speedgoat.
@ -958,7 +1208,6 @@ Specs & 30.0 & 15.0 & 0.25\\
100um/s (OL) & 1063.58 & 166.85 & 6.44\\
100um/s (CL) & 731.63 & 19.91 & 0.36\\
\end{tabular}
\end{center}
\begin{center}
@ -971,153 +1220,9 @@ Specs & 100.0 & 50.0 & 0.85\\
100um/s (OL) & 2687.67 & 328.45 & 11.26\\
100um/s (CL) & 1339.31 & 69.5 & 0.91\\
\end{tabular}
\end{center}
\section{\(D_z\) scans: Dirty Layer Scans}
\label{ssec:test_id31_scans_dz}
In some cases, samples are composed of several atomic ``layers'' that are first aligned in the horizontal plane with precise \(R_y\) positioning and that are then scanned vertically with precise \(D_z\) motion.
The vertical scan can be performed continuously of using step-by-step motion.
\paragraph{Step by Step \(D_z\) motion}
Vertical steps are here performed using the nano-hexapod only.
Step sizes from \(10\,nm\) to \(1\,\mu m\) are tested, and the results are shown in Figure \ref{fig:test_id31_dz_mim_steps}.
10nm steps can be resolved if detectors are integrating over 50ms (see red curve in Figure \ref{fig:test_id31_dz_mim_10nm_steps}), which is reasonable for many experiments.
When doing step-by-step scans, the time to reach the next value is quite critical as long settling time can render the total experiment excessively long.
The response time to reach the wanted value (to within \(\pm 20\,nm\)) is around \(70\,ms\) as shown with the \(1\,\mu m\) step response in Figure \ref{fig:test_id31_dz_mim_1000nm_steps}.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_10nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_10nm_steps}10nm steps}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_100nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_100nm_steps}100nm steps}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_1000nm_steps.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_mim_1000nm_steps}$1\,\mu$m step}
\end{subfigure}
\caption{\label{fig:test_id31_dz_mim_steps}Vertical steps performed with the nano-hexapod. 10nm steps are shown in (\subref{fig:test_id31_dz_mim_10nm_steps}) with the low pass filtered data corresponding to an integration time of \(50\,ms\). 100nm steps are shown in (\subref{fig:test_id31_dz_mim_100nm_steps}). The response time to reach a peak to peak error of \(\pm 20\,nm\) is \(\approx 70\,ms\) as shown in (\subref{fig:test_id31_dz_mim_1000nm_steps}) for a \(1\,\mu m\) step.}
\end{figure}
\paragraph{Continuous \(D_z\) motion: Dirty Layer Scans}
Instead of performing ``step-by-step'' scans, continuous scans can also be performed in the vertical direction.
At \(10\,\mu m/s\), the errors are well within the specifications (see Figure \ref{fig:test_id31_dz_scan_10ums}).
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_10ums_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_dz_scan_10ums}\(D_z\) scan with a velocity of \(10\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_10ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_10ums_dy}) and (\subref{fig:test_id31_dz_scan_10ums_ry})}
\end{figure}
The second tested velocity is \(100\,\mu m/s\), which is the fastest velocity for \(D_z\) scans when the ultimate performances is wanted (corresponding to a 1ms integration time and 100nm ``resolution'').
At this velocity, the positioning errors are also within the specifications except for the very start and very end of the motion (i.e. during acceleration/deceleration phases, see Figure \ref{fig:test_id31_dz_scan_100ums}).
However, the detectors are usually triggered only during the constant velocity phase, so this is not not an issue.
The performances during acceleration phase may also be improved by using a feedforward controller.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_dz_scan_100ums_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_dz_scan_100ums}\(D_z\) scan with a velocity of \(100\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_100ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_100ums_dy}) and (\subref{fig:test_id31_dz_scan_100ums_ry})}
\end{figure}
\paragraph{Summary}
\begin{center}
\begin{tabular}{lrrr}
& \(D_y\) & \(D_z\) & \(R_y\)\\
\hline
Specs & 100.0 & 50.0 & 0.85\\
10um/s & 82.35 & 17.94 & 0.41\\
100um/s & 98.72 & 41.45 & 0.48\\
\end{tabular}
\end{center}
\begin{center}
\begin{tabular}{lrrr}
& \(D_y\) & \(D_z\) & \(R_y\)\\
\hline
Specs & 30.0 & 15.0 & 0.25\\
10um/s & 25.11 & 5.04 & 0.11\\
100um/s & 34.84 & 9.08 & 0.13\\
\end{tabular}
\end{center}
\section{\(R_y\) scans: Reflectivity}
\label{ssec:test_id31_scans_reflectivity}
X-ray reflectivity consists of scanning the \(R_y\) angle of thin structures (typically solid/liquid interfaces) through the beam.
Here, a \(R_y\) scan is performed with a rotational velocity of \(100\,\mu rad/s\) and the positioning errors in closed-loop are recorded (Figure \ref{fig:test_id31_reflectivity}).
It is shown that the NASS is able to keep the point of interest in the beam within specifications.
\begin{figure}[htbp]
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dy.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_dy}$D_y$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dz.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_dz}$D_z$}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\begin{center}
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_ry.png}
\end{center}
\subcaption{\label{fig:test_id31_reflectivity_ry}$R_y$}
\end{subfigure}
\caption{\label{fig:test_id31_reflectivity}Reflectivity scan (\(R_y\)) with a rotational velocity of \(100\,\mu \text{rad}/s\).}
\end{figure}
\section{Combined \(R_z\) and \(D_y\): Diffraction Tomography}
\section{Diffraction Tomography}
\label{ssec:test_id31_scans_diffraction_tomo}
In diffraction tomography, the micro-station performs combined \(R_z\) rotation and \(D_y\) lateral scans.
@ -1169,7 +1274,6 @@ Specs & 100.0 & 50.0 & 0.85\\
0.5 mm/s & 117.94 & 28.03 & 0.27\\
1 mm/s & 186.88 & 33.02 & 0.53\\
\end{tabular}
\end{center}
\begin{center}
@ -1181,7 +1285,6 @@ Specs & 30.0 & 15.0 & 0.25\\
0.5 mm/s & 28.58 & 7.52 & 0.08\\
1 mm/s & 53.05 & 9.84 & 0.14\\
\end{tabular}
\end{center}
\section*{Conclusion}
@ -1190,6 +1293,7 @@ Specs & 30.0 & 15.0 & 0.25\\
For each conducted experiments, the \(D_y\), \(D_z\) and \(R_y\) errors are computed and summarized in Table \ref{tab:id31_experiments_results_summary}.
\begin{table}[htbp]
\caption{\label{tab:id31_experiments_results_summary}Table caption}
\centering
\begin{tabularx}{\linewidth}{Xccc}
\toprule
@ -1212,8 +1316,6 @@ Diffraction Tomography (\(R_z\) 1rpm, \(D_y\) 0.1mm/s) & 75 & 9 & 118\\
Diffraction Tomography (\(R_z\) 1rpm, \(D_y\) 1mm/s) & 428 & 11 & 169\\
\bottomrule
\end{tabularx}
\caption{\label{tab:id31_experiments_results_summary}Table caption}
\end{table}
\chapter*{Conclusion}