Rework part of experimental results
This commit is contained in:
parent
301f4b51fc
commit
3300634d82
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 52 KiB |
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 27 KiB |
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 31 KiB |
1906
test-bench-id31.org
1906
test-bench-id31.org
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -1,4 +1,4 @@
|
|||||||
% Created 2025-02-01 Sat 18:34
|
% Created 2025-02-03 Mon 14:43
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
@ -216,6 +216,7 @@ Results are summarized in Table \ref{tab:test_id31_metrology_acceptance}.
|
|||||||
The obtained lateral acceptance for pure displacements in any direction is estimated to be around \(+/-0.5\,mm\), which is enough for the current application as it is well above the micro-station errors to be actively corrected by the NASS.
|
The obtained lateral acceptance for pure displacements in any direction is estimated to be around \(+/-0.5\,mm\), which is enough for the current application as it is well above the micro-station errors to be actively corrected by the NASS.
|
||||||
|
|
||||||
\begin{table}[htbp]
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:test_id31_metrology_acceptance}Estimated measurement range for each interferometer, and for three different directions.}
|
||||||
\centering
|
\centering
|
||||||
\begin{tabularx}{0.45\linewidth}{Xccc}
|
\begin{tabularx}{0.45\linewidth}{Xccc}
|
||||||
\toprule
|
\toprule
|
||||||
@ -228,8 +229,6 @@ The obtained lateral acceptance for pure displacements in any direction is estim
|
|||||||
\(d_5\) (z) & \(1.33\, mm\) & \(1.06\,mm\) & \(>2\,mm\)\\
|
\(d_5\) (z) & \(1.33\, mm\) & \(1.06\,mm\) & \(>2\,mm\)\\
|
||||||
\bottomrule
|
\bottomrule
|
||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\caption{\label{tab:test_id31_metrology_acceptance}Estimated measurement range for each interferometer, and for three different directions.}
|
|
||||||
|
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
@ -746,19 +745,39 @@ These results demonstrate both the effectiveness and limitations of implementing
|
|||||||
|
|
||||||
\chapter{Validation with Scientific experiments}
|
\chapter{Validation with Scientific experiments}
|
||||||
\label{sec:test_id31_experiments}
|
\label{sec:test_id31_experiments}
|
||||||
The online metrology prototype does not allow samples to be placed on top of the nano-hexapod while being illuminated by the x-ray beam.
|
In this section, the goal is to evaluate the performances of the NASS and validate its use for real work scientific experiments.
|
||||||
However, in order to fully validate the NASS, typical motion performed during scientific experiments can be mimicked, and the positioning performances can be evaluated.
|
|
||||||
|
|
||||||
For tomography scans, performances were already evaluated in Section \ref{ssec:test_id31_iff_hac_perf}.
|
However, the online metrology prototype (presented in Section \ref{sec:test_id31_metrology}) does not allow samples to be placed on top of the nano-hexapod while being illuminated by the x-ray beam.
|
||||||
Here, other typical experiments are performed:
|
Nevertheless, in order to fully validate the NASS, typical motion performed during scientific experiments can be mimicked, and the positioning performances can be evaluated.
|
||||||
|
|
||||||
|
Several scientific experiments are mimicked, such as:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item \emph{Lateral scans}: the \(T_y\) translations stage performs \(D_y\) scans and the errors are corrected by the NASS in real time (Section \ref{ssec:test_id31_scans_dy})
|
\item Tomography scans: continuous rotation of the Spindle along the vertical axis (Section \ref{ssec:test_id31_scans_tomography})
|
||||||
\item \emph{Vertical layer scans}: the nano-hexapod is used to perform \(D_z\) step motion or ramp scans (Section \ref{ssec:test_id31_scans_dz})
|
\item Reflectivity scans: \(R_y\) rotations using the tilt-stage (Section \ref{ssec:test_id31_scans_reflectivity})
|
||||||
\item \emph{Reflectivity scans}: the tilt stage is doing \(R_y\) rotations and the errors are corrected by the NASS in real time (Section \ref{ssec:test_id31_scans_reflectivity})
|
\item Vertical layer scans: the nano-hexapod is used to perform \(D_z\) step motion or ramp scans (Section \ref{ssec:test_id31_scans_dz})
|
||||||
\item \emph{Diffraction Tomography}: the Spindle is performing continuous \(R_z\) rotation while the translation stage is performing lateral \(D_y\) scans at the same time.
|
\item Lateral scans: \(D_y\) scans using the \(T_y\) translation stage (Section \ref{ssec:test_id31_scans_dy})
|
||||||
|
\item Diffraction Tomography: the Spindle is performing continuous \(R_z\) rotation while the translation stage is performing lateral \(D_y\) scans at the same time.
|
||||||
This is the experiment with the most stringent requirements (Section \ref{ssec:test_id31_scans_diffraction_tomo})
|
This is the experiment with the most stringent requirements (Section \ref{ssec:test_id31_scans_diffraction_tomo})
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\section{\(R_z\) scans: Tomography}
|
|
||||||
|
For each experiment, the obtained performances are compared to the specifications for the most depending case in which nano-focusing optics are used to focus the beam down to \(200\,nm\times 100\,nm\).
|
||||||
|
In that case the goal is to keep the sample's point of interested in the beam, and therefore the \(D_y\) and \(D_z\) positioning errors should be less than \(200\,nm\) and \(100\,nm\) peak-to-peak respectively.
|
||||||
|
The \(R_y\) error should be less than \(1.7\,\mu\text{rad}\) peak-to-peak.
|
||||||
|
In terms of RMS errors, this corresponds to \(30\,nm\) in \(D_y\), \(15\,nm\) in \(D_z\) and \(250\,\text{nrad}\) in \(R_y\).
|
||||||
|
|
||||||
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:test_id31_experiments_specifications}Specifications for the Nano-Active-Stabilization-System}
|
||||||
|
\centering
|
||||||
|
\begin{tabularx}{0.5\linewidth}{Xccc}
|
||||||
|
\toprule
|
||||||
|
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
||||||
|
\midrule
|
||||||
|
peak 2 peak & 200nm & 100nm & \(1.7\,\mu\text{rad}\)\\
|
||||||
|
RMS & 30nm & 15nm & \(250\,\text{nrad}\)\\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabularx}
|
||||||
|
\end{table}
|
||||||
|
\section{Tomography Scans}
|
||||||
\label{ssec:test_id31_scans_tomography}
|
\label{ssec:test_id31_scans_tomography}
|
||||||
\textbf{Issue with this control architecture (or controller?)}:
|
\textbf{Issue with this control architecture (or controller?)}:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -770,51 +789,6 @@ This is the experiment with the most stringent requirements (Section \ref{ssec:t
|
|||||||
\item 1rpm, 6rpm, 30rpm
|
\item 1rpm, 6rpm, 30rpm
|
||||||
\item at 1rpm: m0, m1, m2, m3 (same robust controller!)
|
\item at 1rpm: m0, m1, m2, m3 (same robust controller!)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\paragraph{Previous results at 30rpm}
|
|
||||||
|
|
||||||
Then the same tomography experiment (i.e. constant spindle rotation at 30rpm, and no payload) was performed experimentally.
|
|
||||||
The measured position of the ``point of interest'' during the experiment are shown in Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}.
|
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
|
||||||
\begin{subfigure}{0.49\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}XY plane}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.49\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}YZ plane}
|
|
||||||
\end{subfigure}
|
|
||||||
\caption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}Experimental results of a tomography experiment at 30RPM without payload. Position error of the sample is shown in the XY (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}) and YZ (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}) planes.}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
Even though the simulation (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_sim}) and the experimental results (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}) are looking similar, the most important metric to compare is the RMS values of the positioning errors in closed-loop.
|
|
||||||
These are computed for both the simulation and the experimental results and are compared in Table \ref{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}.
|
|
||||||
The lateral and vertical errors are similar, however the tilt (\(R_y\)) errors are underestimated by the model, which is reasonable as disturbances in \(R_y\) were not modeled.
|
|
||||||
|
|
||||||
Results obtained with this conservative HAC are already close to the specifications.
|
|
||||||
|
|
||||||
\begin{table}[htbp]
|
|
||||||
\centering
|
|
||||||
\begin{tabularx}{0.7\linewidth}{Xccc}
|
|
||||||
\toprule
|
|
||||||
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
|
||||||
\midrule
|
|
||||||
Experiment (OL) & \(1.8\,\mu\text{mRMS}\) & \(24\,\text{nmRMS}\) & \(10\,\mu\text{radRMS}\)\\
|
|
||||||
\midrule
|
|
||||||
Simulation (CL) & \(30\,\text{nmRMS}\) & \(8\,\text{nmRMS}\) & \(73\,\text{nradRMS}\)\\
|
|
||||||
Experiment (CL) & \(39\,\text{nmRMS}\) & \(11\,\text{nmRMS}\) & \(130\,\text{nradRMS}\)\\
|
|
||||||
\midrule
|
|
||||||
Specifications & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
|
|
||||||
\bottomrule
|
|
||||||
\end{tabularx}
|
|
||||||
\caption{\label{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}RMS values of the errors for a tomography experiment at 30RPM and without payload. Experimental results and simulation are compared.}
|
|
||||||
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
\paragraph{Previous results at 1rpm}
|
\paragraph{Previous results at 1rpm}
|
||||||
|
|
||||||
The tomography experiments that were simulated were then experimentally conducted.
|
The tomography experiments that were simulated were then experimentally conducted.
|
||||||
@ -850,6 +824,7 @@ The RMS values of the open-loop and closed-loop errors for all masses are summar
|
|||||||
The obtained closed-loop errors are fulfilling the requirements, except for the \(39\,\text{kg}\) payload in the lateral (\(D_y\)) direction.
|
The obtained closed-loop errors are fulfilling the requirements, except for the \(39\,\text{kg}\) payload in the lateral (\(D_y\)) direction.
|
||||||
|
|
||||||
\begin{table}[htbp]
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:test_id31_tomo_1rpm_robust_ol_cl_errors}RMS values of the measured errors during open-loop and closed-loop tomography scans (1rpm) for all considered payloads. Measured closed-Loop errors are indicated by ``bold'' font.}
|
||||||
\centering
|
\centering
|
||||||
\begin{tabularx}{0.9\linewidth}{Xccc}
|
\begin{tabularx}{0.9\linewidth}{Xccc}
|
||||||
\toprule
|
\toprule
|
||||||
@ -863,11 +838,286 @@ The obtained closed-loop errors are fulfilling the requirements, except for the
|
|||||||
\textbf{Specifications} & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
|
\textbf{Specifications} & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
|
||||||
\bottomrule
|
\bottomrule
|
||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\caption{\label{tab:test_id31_tomo_1rpm_robust_ol_cl_errors}RMS values of the measured errors during open-loop and closed-loop tomography scans (1rpm) for all considered payloads. Measured closed-Loop errors are indicated by ``bold'' font.}
|
|
||||||
|
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\section{\(D_y\) - Lateral Scans}
|
\paragraph{Previous results at 30rpm}
|
||||||
|
|
||||||
|
Then the same tomography experiment (i.e. constant spindle rotation at 30rpm, and no payload) was performed experimentally.
|
||||||
|
The measured position of the ``point of interest'' during the experiment are shown in Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}.
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}XY plane}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=0.9]{figs/test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}YZ plane}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}Experimental results of a tomography experiment at 30RPM without payload. Position error of the sample is shown in the XY (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_xy}) and YZ (\subref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp_yz}) planes.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Even though the simulation (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_sim}) and the experimental results (Figure \ref{fig:test_id31_tomo_m0_30rpm_robust_hac_iff_exp}) are looking similar, the most important metric to compare is the RMS values of the positioning errors in closed-loop.
|
||||||
|
These are computed for both the simulation and the experimental results and are compared in Table \ref{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}.
|
||||||
|
The lateral and vertical errors are similar, however the tilt (\(R_y\)) errors are underestimated by the model, which is reasonable as disturbances in \(R_y\) were not modeled.
|
||||||
|
|
||||||
|
Results obtained with this conservative HAC are already close to the specifications.
|
||||||
|
|
||||||
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:test_id31_tomo_m0_30rpm_robust_hac_iff_rms}RMS values of the errors for a tomography experiment at 30RPM and without payload. Experimental results and simulation are compared.}
|
||||||
|
\centering
|
||||||
|
\begin{tabularx}{0.7\linewidth}{Xccc}
|
||||||
|
\toprule
|
||||||
|
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
||||||
|
\midrule
|
||||||
|
Experiment (OL) & \(1.8\,\mu\text{mRMS}\) & \(24\,\text{nmRMS}\) & \(10\,\mu\text{radRMS}\)\\
|
||||||
|
\midrule
|
||||||
|
Simulation (CL) & \(30\,\text{nmRMS}\) & \(8\,\text{nmRMS}\) & \(73\,\text{nradRMS}\)\\
|
||||||
|
Experiment (CL) & \(39\,\text{nmRMS}\) & \(11\,\text{nmRMS}\) & \(130\,\text{nradRMS}\)\\
|
||||||
|
\midrule
|
||||||
|
Specifications & \(30\,\text{nmRMS}\) & \(15\,\text{nmRMS}\) & \(250\,\text{nradRMS}\)\\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabularx}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\paragraph{Dynamic Error Budgeting}
|
||||||
|
|
||||||
|
In this section, the noise budget is performed.
|
||||||
|
The vibrations of the sample is measured in different conditions using the external metrology.
|
||||||
|
|
||||||
|
\textbf{Tomography}:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Beam size: 200nm x 100nm
|
||||||
|
\item Keep the PoI in the beam: peak to peak errors of 200nm in Dy and 100nm in Dz
|
||||||
|
\item RMS errors (/ by 6.6) gives 30nmRMS in Dy and 15nmRMS in Dz.
|
||||||
|
\item Ry error <1.7urad, 250nrad RMS
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{lllllll}
|
||||||
|
& Dx & Dy & Dz & Rx & Ry & Rz\\
|
||||||
|
\hline
|
||||||
|
peak 2 peak & & 200nm & 100nm & & 1.7 urad & \\
|
||||||
|
RMS & & 30nm & 15nm & & 250 nrad & \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Effect of rotation.
|
||||||
|
\item Comparison with measurement noise: should be higher
|
||||||
|
\item Maybe say that we then focus on the high rotation velocity
|
||||||
|
\item Also say that for the RMS errors, we don't take into account drifts (so we NASS we can correct drifts)
|
||||||
|
\item Focus on 30rpm case
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_dy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_ol_dy} $D_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_dz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_ol_dz} $D_z$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_ol_ry.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_ol_ry} $R_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_hac_cas_ol}Cumulative Amplitude Spectrum of the measured positioning errors without any rotation, with \(\Omega_z = 36\,\text{deg}/s\) and with \(\Omega_z = 180\,\text{deg}/s\). Open-loop case. RMS values are indicated in the legend.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Effect of LAC:
|
||||||
|
\begin{itemize}
|
||||||
|
\item reduce amplitude around 80Hz
|
||||||
|
\item Inject some noise between 200 and 700Hz?
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Effect of HAC:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Bandwidth is approximately 10Hz
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_dy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_cl_dy} $D_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_dz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_cl_dz} $D_z$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_hac_cas_cl_ry.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_hac_cas_cl_ry} $R_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_hac_cas_cl}Cumulative Amplitude Spectrum for tomography experiments at \(180\,\text{deg}/s\). Open-Loop case, IFF, and HAC-LAC are compared. Specifications are indicated by black dashed lines. RSM values are indicated in the legend.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\section{Reflectivity Scans}
|
||||||
|
\label{ssec:test_id31_scans_reflectivity}
|
||||||
|
|
||||||
|
X-ray reflectivity consists of scanning the \(R_y\) angle of thin structures (typically solid/liquid interfaces) through the beam.
|
||||||
|
Here, a \(R_y\) scan is performed with a rotational velocity of \(100\,\mu rad/s\) and the positioning errors in closed-loop are recorded (Figure \ref{fig:test_id31_reflectivity}).
|
||||||
|
It is shown that the NASS is able to keep the point of interest in the beam within specifications.
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_reflectivity_dy}$D_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_reflectivity_dz}$D_z$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_ry.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_reflectivity_ry}$R_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_reflectivity}Reflectivity scan (\(R_y\)) with a rotational velocity of \(100\,\mu \text{rad}/s\).}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Dirty Layer Scans}
|
||||||
|
\label{ssec:test_id31_scans_dz}
|
||||||
|
In some cases, samples are composed of several atomic ``layers'' that are first aligned in the horizontal plane with precise \(R_y\) positioning and that are then scanned vertically with precise \(D_z\) motion.
|
||||||
|
The vertical scan can be performed continuously of using step-by-step motion.
|
||||||
|
\paragraph{Step by Step \(D_z\) motion}
|
||||||
|
|
||||||
|
Vertical steps are here performed using the nano-hexapod only.
|
||||||
|
Step sizes from \(10\,nm\) to \(1\,\mu m\) are tested, and the results are shown in Figure \ref{fig:test_id31_dz_mim_steps}.
|
||||||
|
10nm steps can be resolved if detectors are integrating over 50ms (see red curve in Figure \ref{fig:test_id31_dz_mim_10nm_steps}), which is reasonable for many experiments.
|
||||||
|
|
||||||
|
When doing step-by-step scans, the time to reach the next value is quite critical as long settling time can render the total experiment excessively long.
|
||||||
|
The response time to reach the wanted value (to within \(\pm 20\,nm\)) is around \(70\,ms\) as shown with the \(1\,\mu m\) step response in Figure \ref{fig:test_id31_dz_mim_1000nm_steps}.
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_10nm_steps.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_mim_10nm_steps}10nm steps}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_100nm_steps.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_mim_100nm_steps}100nm steps}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_1000nm_steps.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_mim_1000nm_steps}$1\,\mu$m step}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_dz_mim_steps}Vertical steps performed with the nano-hexapod. 10nm steps are shown in (\subref{fig:test_id31_dz_mim_10nm_steps}) with the low pass filtered data corresponding to an integration time of \(50\,ms\). 100nm steps are shown in (\subref{fig:test_id31_dz_mim_100nm_steps}). The response time to reach a peak to peak error of \(\pm 20\,nm\) is \(\approx 70\,ms\) as shown in (\subref{fig:test_id31_dz_mim_1000nm_steps}) for a \(1\,\mu m\) step.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\paragraph{Continuous \(D_z\) motion: Dirty Layer Scans}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item[{$\square$}] In this section and the following experiments, the NASS performs ``ramp scans'' (i.e. constant velocity scans).
|
||||||
|
In order to have no tracking errors, two integrators needs to be present in the feedback loop.
|
||||||
|
As the plant present not integral action at low frequency, two integrators are included in the controller.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Instead of performing ``step-by-step'' scans, continuous scans can also be performed in the vertical direction.
|
||||||
|
At \(10\,\mu m/s\), the errors are well within the specifications (see Figure \ref{fig:test_id31_dz_scan_10ums}).
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_10ums_dy}$D_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_10ums_dz}$D_z$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_ry.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_10ums_ry}$R_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_dz_scan_10ums}\(D_z\) scan with a velocity of \(10\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_10ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_10ums_dy}) and (\subref{fig:test_id31_dz_scan_10ums_ry})}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The second tested velocity is \(100\,\mu m/s\), which is the fastest velocity for \(D_z\) scans when the ultimate performances is wanted (corresponding to a 1ms integration time and 100nm ``resolution'').
|
||||||
|
At this velocity, the positioning errors are also within the specifications except for the very start and very end of the motion (i.e. during acceleration/deceleration phases, see Figure \ref{fig:test_id31_dz_scan_100ums}).
|
||||||
|
However, the detectors are usually triggered only during the constant velocity phase, so this is not not an issue.
|
||||||
|
The performances during acceleration phase may also be improved by using a feedforward controller.
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dy.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_100ums_dy}$D_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dz.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_100ums_dz}$D_z$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_ry.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:test_id31_dz_scan_100ums_ry}$R_y$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:test_id31_dz_scan_100ums}\(D_z\) scan with a velocity of \(100\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_100ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_100ums_dy}) and (\subref{fig:test_id31_dz_scan_100ums_ry})}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\paragraph{Summary}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{lrrr}
|
||||||
|
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
||||||
|
\hline
|
||||||
|
Specs & 100.0 & 50.0 & 0.85\\
|
||||||
|
10um/s & 82.35 & 17.94 & 0.41\\
|
||||||
|
100um/s & 98.72 & 41.45 & 0.48\\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{lrrr}
|
||||||
|
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
||||||
|
\hline
|
||||||
|
Specs & 30.0 & 15.0 & 0.25\\
|
||||||
|
10um/s & 25.11 & 5.04 & 0.11\\
|
||||||
|
100um/s & 34.84 & 9.08 & 0.13\\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\section{Lateral Scans}
|
||||||
\label{ssec:test_id31_scans_dy}
|
\label{ssec:test_id31_scans_dy}
|
||||||
Lateral scans are performed with the \(T_y\) stage.
|
Lateral scans are performed with the \(T_y\) stage.
|
||||||
The stepper motor controller\footnote{The ``IcePAP'' \cite{janvier13_icepap} which is developed at the ESRF} outputs the setpoint which is received by the Speedgoat.
|
The stepper motor controller\footnote{The ``IcePAP'' \cite{janvier13_icepap} which is developed at the ESRF} outputs the setpoint which is received by the Speedgoat.
|
||||||
@ -958,7 +1208,6 @@ Specs & 30.0 & 15.0 & 0.25\\
|
|||||||
100um/s (OL) & 1063.58 & 166.85 & 6.44\\
|
100um/s (OL) & 1063.58 & 166.85 & 6.44\\
|
||||||
100um/s (CL) & 731.63 & 19.91 & 0.36\\
|
100um/s (CL) & 731.63 & 19.91 & 0.36\\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -971,153 +1220,9 @@ Specs & 100.0 & 50.0 & 0.85\\
|
|||||||
100um/s (OL) & 2687.67 & 328.45 & 11.26\\
|
100um/s (OL) & 2687.67 & 328.45 & 11.26\\
|
||||||
100um/s (CL) & 1339.31 & 69.5 & 0.91\\
|
100um/s (CL) & 1339.31 & 69.5 & 0.91\\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\section{\(D_z\) scans: Dirty Layer Scans}
|
\section{Diffraction Tomography}
|
||||||
\label{ssec:test_id31_scans_dz}
|
|
||||||
In some cases, samples are composed of several atomic ``layers'' that are first aligned in the horizontal plane with precise \(R_y\) positioning and that are then scanned vertically with precise \(D_z\) motion.
|
|
||||||
The vertical scan can be performed continuously of using step-by-step motion.
|
|
||||||
\paragraph{Step by Step \(D_z\) motion}
|
|
||||||
|
|
||||||
Vertical steps are here performed using the nano-hexapod only.
|
|
||||||
Step sizes from \(10\,nm\) to \(1\,\mu m\) are tested, and the results are shown in Figure \ref{fig:test_id31_dz_mim_steps}.
|
|
||||||
10nm steps can be resolved if detectors are integrating over 50ms (see red curve in Figure \ref{fig:test_id31_dz_mim_10nm_steps}), which is reasonable for many experiments.
|
|
||||||
|
|
||||||
When doing step-by-step scans, the time to reach the next value is quite critical as long settling time can render the total experiment excessively long.
|
|
||||||
The response time to reach the wanted value (to within \(\pm 20\,nm\)) is around \(70\,ms\) as shown with the \(1\,\mu m\) step response in Figure \ref{fig:test_id31_dz_mim_1000nm_steps}.
|
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_10nm_steps.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_mim_10nm_steps}10nm steps}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_100nm_steps.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_mim_100nm_steps}100nm steps}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_mim_1000nm_steps.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_mim_1000nm_steps}$1\,\mu$m step}
|
|
||||||
\end{subfigure}
|
|
||||||
\caption{\label{fig:test_id31_dz_mim_steps}Vertical steps performed with the nano-hexapod. 10nm steps are shown in (\subref{fig:test_id31_dz_mim_10nm_steps}) with the low pass filtered data corresponding to an integration time of \(50\,ms\). 100nm steps are shown in (\subref{fig:test_id31_dz_mim_100nm_steps}). The response time to reach a peak to peak error of \(\pm 20\,nm\) is \(\approx 70\,ms\) as shown in (\subref{fig:test_id31_dz_mim_1000nm_steps}) for a \(1\,\mu m\) step.}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\paragraph{Continuous \(D_z\) motion: Dirty Layer Scans}
|
|
||||||
|
|
||||||
Instead of performing ``step-by-step'' scans, continuous scans can also be performed in the vertical direction.
|
|
||||||
At \(10\,\mu m/s\), the errors are well within the specifications (see Figure \ref{fig:test_id31_dz_scan_10ums}).
|
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dy.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_10ums_dy}$D_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_dz.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_10ums_dz}$D_z$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_10ums_ry.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_10ums_ry}$R_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\caption{\label{fig:test_id31_dz_scan_10ums}\(D_z\) scan with a velocity of \(10\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_10ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_10ums_dy}) and (\subref{fig:test_id31_dz_scan_10ums_ry})}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
The second tested velocity is \(100\,\mu m/s\), which is the fastest velocity for \(D_z\) scans when the ultimate performances is wanted (corresponding to a 1ms integration time and 100nm ``resolution'').
|
|
||||||
At this velocity, the positioning errors are also within the specifications except for the very start and very end of the motion (i.e. during acceleration/deceleration phases, see Figure \ref{fig:test_id31_dz_scan_100ums}).
|
|
||||||
However, the detectors are usually triggered only during the constant velocity phase, so this is not not an issue.
|
|
||||||
The performances during acceleration phase may also be improved by using a feedforward controller.
|
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dy.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_100ums_dy}$D_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_dz.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_100ums_dz}$D_z$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_dz_scan_100ums_ry.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_dz_scan_100ums_ry}$R_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\caption{\label{fig:test_id31_dz_scan_100ums}\(D_z\) scan with a velocity of \(100\,\mu m/s\). \(D_z\) setpoint, measured position and error are shown in (\subref{fig:test_id31_dz_scan_100ums_dz}). Errors in \(D_y\) and \(R_y\) are respectively shown in (\subref{fig:test_id31_dz_scan_100ums_dy}) and (\subref{fig:test_id31_dz_scan_100ums_ry})}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
\paragraph{Summary}
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\begin{tabular}{lrrr}
|
|
||||||
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
|
||||||
\hline
|
|
||||||
Specs & 100.0 & 50.0 & 0.85\\
|
|
||||||
10um/s & 82.35 & 17.94 & 0.41\\
|
|
||||||
100um/s & 98.72 & 41.45 & 0.48\\
|
|
||||||
\end{tabular}
|
|
||||||
|
|
||||||
\end{center}
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\begin{tabular}{lrrr}
|
|
||||||
& \(D_y\) & \(D_z\) & \(R_y\)\\
|
|
||||||
\hline
|
|
||||||
Specs & 30.0 & 15.0 & 0.25\\
|
|
||||||
10um/s & 25.11 & 5.04 & 0.11\\
|
|
||||||
100um/s & 34.84 & 9.08 & 0.13\\
|
|
||||||
\end{tabular}
|
|
||||||
|
|
||||||
\end{center}
|
|
||||||
|
|
||||||
\section{\(R_y\) scans: Reflectivity}
|
|
||||||
\label{ssec:test_id31_scans_reflectivity}
|
|
||||||
|
|
||||||
X-ray reflectivity consists of scanning the \(R_y\) angle of thin structures (typically solid/liquid interfaces) through the beam.
|
|
||||||
Here, a \(R_y\) scan is performed with a rotational velocity of \(100\,\mu rad/s\) and the positioning errors in closed-loop are recorded (Figure \ref{fig:test_id31_reflectivity}).
|
|
||||||
It is shown that the NASS is able to keep the point of interest in the beam within specifications.
|
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dy.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_reflectivity_dy}$D_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_dz.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_reflectivity_dz}$D_z$}
|
|
||||||
\end{subfigure}
|
|
||||||
\begin{subfigure}{0.33\textwidth}
|
|
||||||
\begin{center}
|
|
||||||
\includegraphics[scale=1,scale=1]{figs/test_id31_reflectivity_ry.png}
|
|
||||||
\end{center}
|
|
||||||
\subcaption{\label{fig:test_id31_reflectivity_ry}$R_y$}
|
|
||||||
\end{subfigure}
|
|
||||||
\caption{\label{fig:test_id31_reflectivity}Reflectivity scan (\(R_y\)) with a rotational velocity of \(100\,\mu \text{rad}/s\).}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
|
|
||||||
\section{Combined \(R_z\) and \(D_y\): Diffraction Tomography}
|
|
||||||
\label{ssec:test_id31_scans_diffraction_tomo}
|
\label{ssec:test_id31_scans_diffraction_tomo}
|
||||||
|
|
||||||
In diffraction tomography, the micro-station performs combined \(R_z\) rotation and \(D_y\) lateral scans.
|
In diffraction tomography, the micro-station performs combined \(R_z\) rotation and \(D_y\) lateral scans.
|
||||||
@ -1169,7 +1274,6 @@ Specs & 100.0 & 50.0 & 0.85\\
|
|||||||
0.5 mm/s & 117.94 & 28.03 & 0.27\\
|
0.5 mm/s & 117.94 & 28.03 & 0.27\\
|
||||||
1 mm/s & 186.88 & 33.02 & 0.53\\
|
1 mm/s & 186.88 & 33.02 & 0.53\\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
@ -1181,7 +1285,6 @@ Specs & 30.0 & 15.0 & 0.25\\
|
|||||||
0.5 mm/s & 28.58 & 7.52 & 0.08\\
|
0.5 mm/s & 28.58 & 7.52 & 0.08\\
|
||||||
1 mm/s & 53.05 & 9.84 & 0.14\\
|
1 mm/s & 53.05 & 9.84 & 0.14\\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\section*{Conclusion}
|
\section*{Conclusion}
|
||||||
@ -1190,6 +1293,7 @@ Specs & 30.0 & 15.0 & 0.25\\
|
|||||||
For each conducted experiments, the \(D_y\), \(D_z\) and \(R_y\) errors are computed and summarized in Table \ref{tab:id31_experiments_results_summary}.
|
For each conducted experiments, the \(D_y\), \(D_z\) and \(R_y\) errors are computed and summarized in Table \ref{tab:id31_experiments_results_summary}.
|
||||||
|
|
||||||
\begin{table}[htbp]
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:id31_experiments_results_summary}Table caption}
|
||||||
\centering
|
\centering
|
||||||
\begin{tabularx}{\linewidth}{Xccc}
|
\begin{tabularx}{\linewidth}{Xccc}
|
||||||
\toprule
|
\toprule
|
||||||
@ -1212,8 +1316,6 @@ Diffraction Tomography (\(R_z\) 1rpm, \(D_y\) 0.1mm/s) & 75 & 9 & 118\\
|
|||||||
Diffraction Tomography (\(R_z\) 1rpm, \(D_y\) 1mm/s) & 428 & 11 & 169\\
|
Diffraction Tomography (\(R_z\) 1rpm, \(D_y\) 1mm/s) & 428 & 11 & 169\\
|
||||||
\bottomrule
|
\bottomrule
|
||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\caption{\label{tab:id31_experiments_results_summary}Table caption}
|
|
||||||
|
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\chapter*{Conclusion}
|
\chapter*{Conclusion}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user