Remove one figure

This commit is contained in:
Thomas Dehaeze 2024-04-05 16:25:54 +02:00
parent 36c15418c9
commit 5498c5b8a3
3 changed files with 1 additions and 22 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@ -655,28 +655,7 @@ The computed bending stiffness will be eqref:eq:test_joints_stiffness_height_err
k_{R_y, \text{est}} \approx h_{\text{est}}^2 \frac{F_x}{d_x} \approx k_{R_y} \Bigl( 1 + \underbrace{2 \frac{\delta h}{h} + \frac{\delta h ^2}{h^2}}_{\epsilon_h} \Bigl) k_{R_y, \text{est}} \approx h_{\text{est}}^2 \frac{F_x}{d_x} \approx k_{R_y} \Bigl( 1 + \underbrace{2 \frac{\delta h}{h} + \frac{\delta h ^2}{h^2}}_{\epsilon_h} \Bigl)
\end{equation} \end{equation}
The bending stiffness error $\epsilon_h$ due to the height estimation error $\delta h$ is shown in Figure ref:fig:test_joints_effect_height_error. The height estimation is foreseen to be accurate to within $|\delta h| < 0.4\,mm$ which corresponds to a stiffness error $\epsilon_h < 3.5\,\%$.
The height estimation is foreseen to be reasonably accurate to within $\pm 0.4\,mm$ which should make the bending stiffness error $\epsilon_h < 3.5\,\%$.
#+begin_src matlab :exports none :results none
%% Measured stiffness error due to height estimation error
h_err = [0:0.1:1]*1e-3; % Height error [m]
epsilon = h_err/h; % Height error in %
figure;
plot(1e3*h_err, 100*abs(2*epsilon + epsilon.^2))
xlabel('Height Error $\delta h$ [mm]');
ylabel('Error $\epsilon_h$ [$\%$]');
ylim([0,10]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/test_joints_effect_height_error.pdf', 'width', 'normal', 'height', 400);
#+end_src
#+name: fig:test_joints_effect_height_error
#+caption: Measured stiffness error due to height estimation error
#+RESULTS:
[[file:figs/test_joints_effect_height_error.png]]
**** Estimation error due to force and displacement sensors accuracy **** Estimation error due to force and displacement sensors accuracy
The maximum error of the measured displacement due the encoder non-linearity is $40\,nm$. The maximum error of the measured displacement due the encoder non-linearity is $40\,nm$.