60 lines
1.7 KiB
Mathematica
60 lines
1.7 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
%% Path for functions, data and scripts
|
||
|
addpath('./mat/'); % Path for data
|
||
|
|
||
|
%% Colors for the figures
|
||
|
colors = colororder;
|
||
|
|
||
|
% Flexible joint Geometry
|
||
|
% The flexible joint used for the Nano-Hexapod is shown in Figure ref:fig:test_joints_bend_geometry.
|
||
|
% Its bending stiffness is foreseen to be $k_{R_y}\approx 5\,\frac{Nm}{rad}$ and its stroke $\theta_{y,\text{max}}\approx 25\,mrad$.
|
||
|
|
||
|
% #+name: fig:test_joints_bend_geometry
|
||
|
% #+caption: Geometry of the flexible joint
|
||
|
% [[file:figs/test_joints_bend_geometry.png]]
|
||
|
|
||
|
% The height between the flexible point (center of the joint) and the point where external forces are applied is $h = 20\,mm$.
|
||
|
|
||
|
% Let's define the parameters on Matlab.
|
||
|
|
||
|
kRx = 5; % Bending Stiffness [Nm/rad]
|
||
|
Rxmax = 25e-3; % Bending Stroke [rad]
|
||
|
h = 20e-3; % Height [m]
|
||
|
|
||
|
% Required external applied force
|
||
|
|
||
|
% The bending $\theta_y$ of the flexible joint due to the force $F_x$ is:
|
||
|
% \begin{equation}
|
||
|
% \theta_y = \frac{M_y}{k_{R_y}} = \frac{F_x h}{k_{R_y}}
|
||
|
% \end{equation}
|
||
|
|
||
|
% Therefore, the applied force to test the full range of the flexible joint is:
|
||
|
% \begin{equation}
|
||
|
% F_{x,\text{max}} = \frac{k_{R_y} \theta_{y,\text{max}}}{h}
|
||
|
% \end{equation}
|
||
|
|
||
|
|
||
|
Fxmax = kRx*Rxmax/h; % Force to induce maximum stroke [N]
|
||
|
|
||
|
|
||
|
|
||
|
% And we obtain:
|
||
|
|
||
|
sprintf('\\begin{equation} F_{x,max} = %.1f\\, [N] \\end{equation}', Fxmax)
|
||
|
|
||
|
% Required actuator stroke and sensors range
|
||
|
|
||
|
% The flexible joint is designed to allow a bending motion of $\pm 25\,mrad$.
|
||
|
% The corresponding stroke at the location of the force sensor is:
|
||
|
% \[ d_{x,\text{max}} = h \tan(R_{x,\text{max}}) \]
|
||
|
|
||
|
|
||
|
dxmax = h*tan(Rxmax);
|
||
|
|
||
|
sprintf('\\begin{equation} d_{max} = %.1f\\, [mm] \\end{equation}', 1e3*dxmax)
|