203 lines
8.6 KiB
Matlab
203 lines
8.6 KiB
Matlab
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
%% Path for functions, data and scripts
|
|
addpath('./src/'); % Path for scripts
|
|
addpath('./mat/'); % Path for data
|
|
|
|
addpath('./STEPS/'); % Path for Simscape Model
|
|
|
|
%% Linearization options
|
|
opts = linearizeOptions;
|
|
opts.SampleTime = 0;
|
|
|
|
%% Open Simscape Model
|
|
mdl = 'test_apa_simscape'; % Name of the Simulink File
|
|
open(mdl); % Open Simscape Model
|
|
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
|
|
%% Input/Output definition of the Model
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage
|
|
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage
|
|
io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder
|
|
|
|
% Identification of the Actuator and Sensor constants
|
|
% <<ssec:test_apa_flexible_ga_gs>>
|
|
|
|
% Once the APA300ML /super element/ is included in the Simscape model, the transfer function from $F_a$ to $d_L$ and $d_e$ can be identified.
|
|
% The gains $g_a$ and $g_s$ can then be tuned such that the gain of the transfer functions are matching the identified ones.
|
|
|
|
% By doing so, $g_s = 4.9\,V/\mu m$ and $g_a = 23.2\,N/V$ are obtained.
|
|
|
|
|
|
%% Identification of the actuator and sensor "constants"
|
|
% Initialize the APA as a flexible body with unity "constants"
|
|
n_hexapod.actuator = initializeAPA(...
|
|
'type', 'flexible', ...
|
|
'ga', 1, ...
|
|
'gs', 1);
|
|
|
|
c_granite = 100; % Rought estimation of the damping added by the air bearing
|
|
|
|
% Identify the dynamics
|
|
G_norm = linearize(mdl, io, 0.0, opts);
|
|
G_norm.InputName = {'u'};
|
|
G_norm.OutputName = {'Vs', 'de'};
|
|
|
|
% Load Identification Data to estimate the two gains
|
|
load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums');
|
|
|
|
% Actuator Constant in [N/V]
|
|
ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(G_norm('de', 'u'));
|
|
|
|
% Sensor Constant in [V/m]
|
|
gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(G_norm('Vs', 'u'), 1e3, 'Hz'))));
|
|
|
|
|
|
|
|
|
|
% To make sure these "gains" are physically valid, it is possible to estimate them from physical properties of the piezoelectric stack material.
|
|
|
|
% From [[cite:&fleming14_desig_model_contr_nanop_system p. 123]], the relation between relative displacement $d_L$ of the sensor stack and generated voltage $V_s$ is given by eqref:eq:test_apa_piezo_strain_to_voltage and from [[cite:&fleming10_integ_strain_force_feedb_high]] the relation between the force $F_a$ and the applied voltage $V_a$ is given by eqref:eq:test_apa_piezo_voltage_to_force.
|
|
|
|
% \begin{subequations}
|
|
% \begin{align}
|
|
% V_s &= \underbrace{\frac{d_{33}}{\epsilon^T s^D n}}_{g_s} d_L \label{eq:test_apa_piezo_strain_to_voltage} \\
|
|
% F_a &= \underbrace{d_{33} n k_a}_{g_a} \cdot V_a, \quad k_a = \frac{c^{E} A}{L} \label{eq:test_apa_piezo_voltage_to_force}
|
|
% \end{align}
|
|
% \end{subequations}
|
|
|
|
% Parameters used in equations eqref:eq:test_apa_piezo_strain_to_voltage and eqref:eq:test_apa_piezo_voltage_to_force are described in Table ref:tab:test_apa_piezo_properties.
|
|
|
|
% Unfortunately, the manufacturer of the stack was not willing to share the piezoelectric material properties of the stack used in the APA300ML.
|
|
% However, based on available properties of the APA300ML stacks in the data-sheet, the soft Lead Zirconate Titanate "THP5H" from Thorlabs seemed to match quite well the observed properties.
|
|
% The properties of this "THP5H" material used to compute $g_a$ and $g_s$ are listed in Table ref:tab:test_apa_piezo_properties.
|
|
|
|
% From these parameters, $g_s = 5.1\,V/\mu m$ and $g_a = 26\,N/V$ were obtained which are very close to the identified constants using the experimentally identified transfer functions.
|
|
|
|
% #+name: tab:test_apa_piezo_properties
|
|
% #+caption: Piezoelectric properties used for the estimation of the sensor and actuators "gains"
|
|
% #+attr_latex: :environment tabularx :width 1\linewidth :align ccX
|
|
% #+attr_latex: :center t :booktabs t
|
|
% | *Parameter* | *Value* | *Description* |
|
|
% |----------------+----------------------------+--------------------------------------------------------------|
|
|
% | $d_{33}$ | $680 \cdot 10^{-12}\,m/V$ | Piezoelectric constant |
|
|
% | $\epsilon^{T}$ | $4.0 \cdot 10^{-8}\,F/m$ | Permittivity under constant stress |
|
|
% | $s^{D}$ | $21 \cdot 10^{-12}\,m^2/N$ | Elastic compliance understand constant electric displacement |
|
|
% | $c^{E}$ | $48 \cdot 10^{9}\,N/m^2$ | Young's modulus of elasticity |
|
|
% | $L$ | $20\,mm$ per stack | Length of the stack |
|
|
% | $A$ | $10^{-4}\,m^2$ | Area of the piezoelectric stack |
|
|
% | $n$ | $160$ per stack | Number of layers in the piezoelectric stack |
|
|
|
|
|
|
%% Estimate "Sensor Constant" - (THP5H)
|
|
d33 = 680e-12; % Strain constant [m/V]
|
|
n = 160; % Number of layers per stack
|
|
eT = 4500*8.854e-12; % Permittivity under constant stress [F/m]
|
|
sD = 21e-12; % Compliance under constant electric displacement [m2/N]
|
|
|
|
gs = d33/(eT*sD*n); % Sensor Constant [V/m]
|
|
|
|
%% Estimate "Actuator Constant" - (THP5H)
|
|
d33 = 680e-12; % Strain constant [m/V]
|
|
n = 320; % Number of layers
|
|
|
|
cE = 1/sD; % Youngs modulus [N/m^2]
|
|
A = (10e-3)^2; % Area of the stacks [m^2]
|
|
L = 40e-3; % Length of the two stacks [m]
|
|
ka = cE*A/L; % Stiffness of the two stacks [N/m]
|
|
|
|
ga = d33*n*ka; % Actuator Constant [N/V]
|
|
|
|
% Comparison of the obtained dynamics
|
|
|
|
% The obtained dynamics using the /super element/ with the tuned "sensor gain" and "actuator gain" are compared with the experimentally identified frequency response functions in Figure ref:fig:test_apa_super_element_comp_frf.
|
|
|
|
% A good match between the model and the experimental results is observed.
|
|
% - the /super element/
|
|
|
|
% This model represents fairly
|
|
|
|
% The flexible model is a bit "soft" as compared with the experimental results.
|
|
|
|
% This method can be used to model piezoelectric stack actuators as well as amplified piezoelectric stack actuators.
|
|
|
|
|
|
%% Idenfify the dynamics of the Simscape model with correct actuator and sensor "constants"
|
|
% Initialize the APA
|
|
n_hexapod.actuator = initializeAPA(...
|
|
'type', 'flexible', ...
|
|
'ga', 23.2, ... % Actuator gain [N/V]
|
|
'gs', -4.9e6); % Sensor gain [V/m]
|
|
|
|
% Identify with updated constants
|
|
G_flex = exp(-Ts*s)*linearize(mdl, io, 0.0, opts);
|
|
G_flex.InputName = {'u'};
|
|
G_flex.OutputName = {'Vs', 'de'};
|
|
|
|
%% Comparison of the measured FRF and the "Flexible" model of the APA300ML
|
|
freqs = 5*logspace(0, 3, 1000);
|
|
figure;
|
|
tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified');
|
|
for i = 1:length(apa_nums)
|
|
plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(G_flex('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '"Flexible" Model')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-8, 1e-3]);
|
|
legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1);
|
|
|
|
ax1b = nexttile([2,1]);
|
|
hold on;
|
|
plot(f, abs(iff_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified');
|
|
for i = 2:length(apa_nums)
|
|
plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off');
|
|
end
|
|
plot(freqs, abs(squeeze(freqresp(G_flex('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '"Flexible" Model')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]);
|
|
hold off;
|
|
ylim([1e-2, 1e2]);
|
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
for i = 1:length(apa_nums)
|
|
plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:))
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
ax2b = nexttile;
|
|
hold on;
|
|
for i = 1:length(apa_nums)
|
|
plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]);
|
|
end
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:))
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360); ylim([-180, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax1b,ax2b],'x');
|
|
xlim([10, 2e3]);
|