Add inkscape directory
							
								
								
									
										18
									
								
								figs/inkscape/convert_svg.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						| @@ -0,0 +1,18 @@ | ||||
| #!/bin/bash | ||||
|  | ||||
| # Directory containing SVG files | ||||
| INPUT_DIR="." | ||||
|  | ||||
| # Loop through all SVG files in the directory | ||||
| for svg_file in "$INPUT_DIR"/*.svg; do | ||||
|     # Check if there are SVG files in the directory | ||||
|     if [ -f "$svg_file" ]; then | ||||
|         # Output PDF file name | ||||
|         pdf_file="../${svg_file%.svg}.pdf" | ||||
|         png_file="../${svg_file%.svg}" | ||||
|          | ||||
|         # Convert SVG to PDF using Inkscape | ||||
|         inkscape "$svg_file" --export-filename="$pdf_file" && \ | ||||
|             pdftocairo -png -singlefile -cropbox "$pdf_file" "$png_file" | ||||
|     fi | ||||
| done | ||||
| Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB | 
| Before Width: | Height: | Size: 80 KiB After Width: | Height: | Size: 80 KiB | 
| Before Width: | Height: | Size: 264 KiB After Width: | Height: | Size: 264 KiB | 
| Before Width: | Height: | Size: 254 KiB After Width: | Height: | Size: 254 KiB | 
| Before Width: | Height: | Size: 254 KiB After Width: | Height: | Size: 254 KiB | 
| Before Width: | Height: | Size: 2.5 MiB After Width: | Height: | Size: 2.5 MiB | 
| @@ -266,7 +266,7 @@ end | ||||
| data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', 'APA 7'}, {'*Flatness* $[\mu m]$'}, ' %.1f '); | ||||
| #+end_src | ||||
|  | ||||
| #+attr_latex: :options [b]{0.49\linewidth} | ||||
| #+attr_latex: :options [b]{0.48\linewidth} | ||||
| #+begin_minipage | ||||
| #+name: fig:test_apa_flatness_setup | ||||
| #+attr_latex: :width 0.7\linewidth :float nil | ||||
| @@ -274,7 +274,7 @@ data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', | ||||
| [[file:figs/test_apa_flatness_setup.png]] | ||||
| #+end_minipage | ||||
| \hfill | ||||
| #+attr_latex: :options [b]{0.49\linewidth} | ||||
| #+attr_latex: :options [b]{0.48\linewidth} | ||||
| #+begin_minipage | ||||
| #+name: tab:test_apa_flatness_meas | ||||
| #+attr_latex: :environment tabularx :width 0.6\linewidth :align Xc | ||||
|   | ||||
| @@ -1,4 +1,4 @@ | ||||
| % Created 2025-02-12 Wed 09:53 | ||||
| % Created 2025-04-03 Thu 22:11 | ||||
| % Intended LaTeX compiler: pdflatex | ||||
| \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} | ||||
|  | ||||
| @@ -27,13 +27,6 @@ | ||||
| \author{Dehaeze Thomas} | ||||
| \date{\today} | ||||
| \title{Test Bench - Amplified Piezoelectric Actuator} | ||||
| \hypersetup{ | ||||
|  pdfauthor={Dehaeze Thomas}, | ||||
|  pdftitle={Test Bench - Amplified Piezoelectric Actuator}, | ||||
|  pdfkeywords={}, | ||||
|  pdfsubject={}, | ||||
|  pdfcreator={Emacs 29.4 (Org mode 9.6)},  | ||||
|  pdflang={English}} | ||||
| \usepackage{biblatex} | ||||
|  | ||||
| \begin{document} | ||||
| @@ -42,7 +35,6 @@ | ||||
| \tableofcontents | ||||
|  | ||||
| \clearpage | ||||
|  | ||||
| In this chapter, the goal is to ensure that the received APA300ML (shown in Figure \ref{fig:test_apa_received}) are complying with the requirements and that the dynamical models of the actuator accurately represent its dynamics. | ||||
|  | ||||
| In section \ref{sec:test_apa_basic_meas}, the mechanical tolerances of the APA300ML interfaces are checked together with the electrical properties of the piezoelectric stacks and the achievable stroke. | ||||
| @@ -64,16 +56,14 @@ This more complex model also captures well capture the axial dynamics of the APA | ||||
| \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_received.jpg} | ||||
| \caption{\label{fig:test_apa_received}Picture of 5 out of the 7 received APA300ML} | ||||
| \end{figure} | ||||
|  | ||||
|  | ||||
| \chapter{First Basic Measurements} | ||||
| \label{sec:test_apa_basic_meas} | ||||
|  | ||||
| Before measuring the dynamical characteristics of the APA300ML, simple measurements are performed. | ||||
| First, the tolerances (especially flatness) of the mechanical interfaces are checked in Section \ref{ssec:test_apa_geometrical_measurements}. | ||||
| Then, the capacitance of the piezoelectric stacks is measured in Section \ref{ssec:test_apa_electrical_measurements}. | ||||
| The achievable stroke of the APA300ML is measured using a displacement probe in Section \ref{ssec:test_apa_stroke_measurements}. | ||||
| Finally, in Section \ref{ssec:test_apa_spurious_resonances}, the flexible modes of the APA are measured and compared with a finite element model. | ||||
|  | ||||
| \section{Geometrical Measurements} | ||||
| \label{ssec:test_apa_geometrical_measurements} | ||||
|  | ||||
| @@ -82,14 +72,14 @@ As shown in Figure \ref{fig:test_apa_flatness_setup}, the APA is fixed to a clam | ||||
| From the X-Y-Z coordinates of the measured eight points, the flatness is estimated by best fitting\footnote{The Matlab \texttt{fminsearch} command is used to fit the plane} a plane through all the points. | ||||
| The measured flatness values, summarized in Table \ref{tab:test_apa_flatness_meas}, are within the specifications. | ||||
|  | ||||
| \begin{minipage}[b]{0.49\linewidth} | ||||
| \begin{minipage}[b]{0.48\linewidth} | ||||
| \begin{center} | ||||
| \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_flatness_setup.png} | ||||
| \captionof{figure}{\label{fig:test_apa_flatness_setup}Measurement setup for flatness estimation} | ||||
| \end{center} | ||||
| \end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}[b]{0.49\linewidth} | ||||
| \begin{minipage}[b]{0.48\linewidth} | ||||
| \begin{center} | ||||
| \begin{tabularx}{0.6\linewidth}{Xc} | ||||
| \toprule | ||||
| @@ -108,7 +98,6 @@ APA 7 & 18.7\\ | ||||
|  | ||||
| \end{center} | ||||
| \end{minipage} | ||||
|  | ||||
| \section{Electrical Measurements} | ||||
| \label{ssec:test_apa_electrical_measurements} | ||||
|  | ||||
| @@ -149,7 +138,6 @@ APA 7 & 4.85 & 9.85\\ | ||||
|  | ||||
| \end{center} | ||||
| \end{minipage} | ||||
|  | ||||
| \section{Stroke and Hysteresis Measurement} | ||||
| \label{ssec:test_apa_stroke_measurements} | ||||
|  | ||||
| @@ -190,7 +178,6 @@ From now on, only the six remaining amplified piezoelectric actuators that behav | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_stroke}Generated voltage across the two piezoelectric stack actuators to estimate the stroke of the APA300ML (\subref{fig:test_apa_stroke_voltage}). Measured displacement as a function of applied voltage (\subref{fig:test_apa_stroke_hysteresis})} | ||||
| \end{figure} | ||||
|  | ||||
| \section{Flexible Mode Measurement} | ||||
| \label{ssec:test_apa_spurious_resonances} | ||||
|  | ||||
| @@ -251,7 +238,6 @@ Another explanation is the shape difference between the manufactured APA300ML an | ||||
| \includegraphics[scale=1]{figs/test_apa_meas_freq_compare.png} | ||||
| \caption{\label{fig:test_apa_meas_freq_compare}Frequency response functions for the two tests using the instrumented hammer and the laser vibrometer. The Y-bending mode is measured at \(280\,\text{Hz}\) and the X-bending mode at \(412\,\text{Hz}\)} | ||||
| \end{figure} | ||||
|  | ||||
| \chapter{Dynamical measurements} | ||||
| \label{sec:test_apa_dynamics} | ||||
| After the measurements on the APA were performed in Section \ref{sec:test_apa_basic_meas}, a new test bench was used to better characterize the dynamics of the APA300ML. | ||||
| @@ -300,7 +286,6 @@ This is the typical behavior expected from a PZT stack actuator, where the hyste | ||||
| \includegraphics[scale=1]{figs/test_apa_meas_hysteresis.png} | ||||
| \caption{\label{fig:test_apa_meas_hysteresis}Displacement as a function of applied voltage for multiple excitation amplitudes} | ||||
| \end{figure} | ||||
|  | ||||
| \section{Axial stiffness} | ||||
| \label{ssec:test_apa_stiffness} | ||||
|  | ||||
| @@ -362,7 +347,6 @@ To estimate this effect for the APA300ML, its stiffness is estimated using the ` | ||||
| \end{itemize} | ||||
|  | ||||
| The open-circuit stiffness is estimated at \(k_{\text{oc}} \approx 2.3\,N/\mu m\) while the closed-circuit stiffness \(k_{\text{sc}} \approx 1.7\,N/\mu m\). | ||||
|  | ||||
| \section{Dynamics} | ||||
| \label{ssec:test_apa_meas_dynamics} | ||||
|  | ||||
| @@ -408,7 +392,6 @@ All the identified dynamics of the six APA300ML (both when looking at the encode | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_frf_dynamics}Measured frequency response function from generated voltage \(u\) to the encoder displacement \(d_e\) (\subref{fig:test_apa_frf_encoder}) and to the force sensor voltage \(V_s\) (\subref{fig:test_apa_frf_force}) for the six APA300ML} | ||||
| \end{figure} | ||||
|  | ||||
| \section{Non Minimum Phase Zero?} | ||||
| \label{ssec:test_apa_non_minimum_phase} | ||||
|  | ||||
| @@ -437,8 +420,6 @@ However, this is not so important here because the zero is lightly damped (i.e. | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_non_minimum_phase}Measurement of the anti-resonance found in the transfer function from \(u\) to \(V_s\). The coherence (\subref{fig:test_apa_non_minimum_phase_coherence}) is quite good around the anti-resonance frequency. The phase (\subref{fig:test_apa_non_minimum_phase_zoom}) shoes a non-minimum phase behavior.} | ||||
| \end{figure} | ||||
|  | ||||
|  | ||||
| \section{Effect of the resistor on the IFF Plant} | ||||
| \label{ssec:test_apa_resistance_sensor_stack} | ||||
|  | ||||
| @@ -454,7 +435,6 @@ It is confirmed that the added resistor has the effect of adding a high-pass fil | ||||
| \includegraphics[scale=1]{figs/test_apa_effect_resistance.png} | ||||
| \caption{\label{fig:test_apa_effect_resistance}Transfer function from \(u\) to \(V_s\) with and without the resistor \(R\) in parallel with the piezoelectric stack used as the force sensor} | ||||
| \end{figure} | ||||
|  | ||||
| \section{Integral Force Feedback} | ||||
| \label{ssec:test_apa_iff_locus} | ||||
|  | ||||
| @@ -513,10 +493,9 @@ The two obtained root loci are compared in Figure \ref{fig:test_apa_iff_root_loc | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_iff}Experimental results of applying Integral Force Feedback to the APA300ML. Obtained damped plant (\subref{fig:test_apa_identified_damped_plants}) and Root Locus (\subref{fig:test_apa_iff_root_locus}) corresponding to the implemented IFF controller \eqref{eq:test_apa_Kiff_formula}} | ||||
| \end{figure} | ||||
|  | ||||
|  | ||||
| \chapter{APA300ML - 2 degrees-of-freedom Model} | ||||
| \label{sec:test_apa_model_2dof} | ||||
|  | ||||
| In this section, a multi-body model (Figure \ref{fig:test_apa_bench_model}) of the measurement bench is used to tune the two degrees-of-freedom model of the APA using the measured frequency response functions. | ||||
|  | ||||
| This two degrees-of-freedom model is developed to accurately represent the APA300ML dynamics while having low complexity and a low number of associated states. | ||||
| @@ -527,8 +506,7 @@ After the model is presented, the procedure for tuning the model is described, a | ||||
| \includegraphics[scale=1,width=0.8\linewidth]{figs/test_apa_bench_model.png} | ||||
| \caption{\label{fig:test_apa_bench_model}Screenshot of the multi-body model} | ||||
| \end{figure} | ||||
|  | ||||
| \paragraph{Two degrees-of-freedom APA Model} | ||||
| \subsubsection{Two degrees-of-freedom APA Model} | ||||
|  | ||||
| The model of the amplified piezoelectric actuator is shown in Figure \ref{fig:test_apa_2dof_model}. | ||||
| It can be decomposed into three components: | ||||
| @@ -553,7 +531,6 @@ Such a simple model has some limitations: | ||||
| \includegraphics[scale=1]{figs/test_apa_2dof_model.png} | ||||
| \caption{\label{fig:test_apa_2dof_model}Schematic of the two degrees-of-freedom model of the APA300ML, adapted from \cite{souleille18_concep_activ_mount_space_applic}} | ||||
| \end{figure} | ||||
|  | ||||
| 9 parameters (\(m\), \(k_1\), \(c_1\), \(k_e\), \(c_e\), \(k_a\), \(c_a\), \(g_s\) and \(g_a\)) have to be tuned such that the dynamics of the model (Figure \ref{fig:test_apa_2dof_model_simscape}) well represents the identified dynamics in Section \ref{sec:test_apa_dynamics}. | ||||
|  | ||||
| \begin{figure}[htbp] | ||||
| @@ -609,7 +586,6 @@ The obtained parameters of the model shown in Figure \ref{fig:test_apa_2dof_mode | ||||
| \caption{\label{tab:test_apa_2dof_parameters}Summary of the obtained parameters for the 2 DoF APA300ML model} | ||||
|  | ||||
| \end{table} | ||||
|  | ||||
| The dynamics of the two degrees-of-freedom model of the APA300ML are extracted using optimized parameters (listed in Table \ref{tab:test_apa_2dof_parameters}) from the multi-body model. | ||||
| This is compared with the experimental data in Figure \ref{fig:test_apa_2dof_comp_frf}. | ||||
| A good match can be observed between the model and the experimental data, both for the encoder (Figure \ref{fig:test_apa_2dof_comp_frf_enc}) and for the force sensor (Figure \ref{fig:test_apa_2dof_comp_frf_force}). | ||||
| @@ -630,9 +606,9 @@ This indicates that this model represents well the axial dynamics of the APA300M | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_2dof_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the 2DoF model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_2dof_comp_frf_enc}) (\subref{fig:test_apa_2dof_comp_frf_force}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_2dof_comp_frf_force})} | ||||
| \end{figure} | ||||
|  | ||||
| \chapter{APA300ML - Super Element} | ||||
| \label{sec:test_apa_model_flexible} | ||||
|  | ||||
| In this section, a \emph{super element} of the APA300ML is computed using a finite element software\footnote{Ansys\textsuperscript{\textregistered} was used}. | ||||
| It is then imported into multi-body (in the form of a stiffness matrix and a mass matrix) and included in the same model that was used in \ref{sec:test_apa_model_2dof}. | ||||
| This procedure is illustrated in Figure \ref{fig:test_apa_super_element_simscape}. | ||||
| @@ -648,50 +624,12 @@ Finally, two \emph{remote points} (\texttt{4} and \texttt{5}) are located across | ||||
| \includegraphics[scale=1,width=1.0\linewidth]{figs/test_apa_super_element_simscape.png} | ||||
| \caption{\label{fig:test_apa_super_element_simscape}Finite Element Model of the APA300ML with ``remotes points'' on the left. Simscape model with included ``Reduced Order Flexible Solid'' on the right.} | ||||
| \end{figure} | ||||
|  | ||||
| \paragraph{Identification of the Actuator and Sensor constants} | ||||
| \subsubsection{Identification of the Actuator and Sensor constants} | ||||
|  | ||||
| Once the APA300ML \emph{super element} is included in the multi-body model, the transfer function from \(F_a\) to \(d_L\) and \(d_e\) can be extracted. | ||||
| The gains \(g_a\) and \(g_s\) are then tuned such that the gains of the transfer functions match the identified ones. | ||||
| By doing so, \(g_s = 4.9\,V/\mu m\) and \(g_a = 23.2\,N/V\) are obtained. | ||||
|  | ||||
| To ensure that the sensitivities \(g_a\) and \(g_s\) are physically valid, it is possible to estimate them from the physical properties of the piezoelectric stack material. | ||||
|  | ||||
| From \cite[p. 123]{fleming14_desig_model_contr_nanop_system}, the relation between relative displacement \(d_L\) of the sensor stack and generated voltage \(V_s\) is given by \eqref{eq:test_apa_piezo_strain_to_voltage} and from \cite{fleming10_integ_strain_force_feedb_high} the relation between the force \(F_a\) and the applied voltage \(V_a\) is given by \eqref{eq:test_apa_piezo_voltage_to_force}. | ||||
|  | ||||
| \begin{subequations} | ||||
| \begin{align} | ||||
|   V_s &= \underbrace{\frac{d_{33}}{\epsilon^T s^D n}}_{g_s} d_L \label{eq:test_apa_piezo_strain_to_voltage} \\ | ||||
|   F_a &= \underbrace{d_{33} n k_a}_{g_a} \cdot V_a, \quad k_a = \frac{c^{E} A}{L} \label{eq:test_apa_piezo_voltage_to_force} | ||||
| \end{align} | ||||
| \end{subequations} | ||||
|  | ||||
| Unfortunately, the manufacturer of the stack was not willing to share the piezoelectric material properties of the stack used in the APA300ML. | ||||
| However, based on the available properties of the APA300ML stacks in the data-sheet, the soft Lead Zirconate Titanate ``THP5H'' from Thorlabs seemed to match quite well the observed properties. | ||||
| The properties of this ``THP5H'' material used to compute \(g_a\) and \(g_s\) are listed in Table \ref{tab:test_apa_piezo_properties}. | ||||
|  | ||||
| From these parameters, \(g_s = 5.1\,V/\mu m\) and \(g_a = 26\,N/V\) were obtained, which are close to the constants identified using the experimentally identified transfer functions. | ||||
|  | ||||
| \begin{table}[htbp] | ||||
| \centering | ||||
| \begin{tabularx}{1\linewidth}{ccX} | ||||
| \toprule | ||||
| \textbf{Parameter} & \textbf{Value} & \textbf{Description}\\ | ||||
| \midrule | ||||
| \(d_{33}\) & \(680 \cdot 10^{-12}\,m/V\) & Piezoelectric constant\\ | ||||
| \(\epsilon^{T}\) & \(4.0 \cdot 10^{-8}\,F/m\) & Permittivity under constant stress\\ | ||||
| \(s^{D}\) & \(21 \cdot 10^{-12}\,m^2/N\) & Elastic compliance understand constant electric displacement\\ | ||||
| \(c^{E}\) & \(48 \cdot 10^{9}\,N/m^2\) & Young's modulus of elasticity\\ | ||||
| \(L\) & \(20\,mm\) per stack & Length of the stack\\ | ||||
| \(A\) & \(10^{-4}\,m^2\) & Area of the piezoelectric stack\\ | ||||
| \(n\) & \(160\) per stack & Number of layers in the piezoelectric stack\\ | ||||
| \bottomrule | ||||
| \end{tabularx} | ||||
| \caption{\label{tab:test_apa_piezo_properties}Piezoelectric properties used for the estimation of the sensor and actuators sensitivities} | ||||
|  | ||||
| \end{table} | ||||
|  | ||||
| \paragraph{Comparison of the obtained dynamics} | ||||
| \subsubsection{Comparison of the obtained dynamics} | ||||
|  | ||||
| The obtained dynamics using the \emph{super element} with the tuned ``sensor sensitivity'' and ``actuator sensitivity'' are compared with the experimentally identified frequency response functions in Figure \ref{fig:test_apa_super_element_comp_frf}. | ||||
| A good match between the model and the experimental results was observed. | ||||
| @@ -714,7 +652,6 @@ Using this simple test bench, it can be concluded that the \emph{super element} | ||||
| \end{subfigure} | ||||
| \caption{\label{fig:test_apa_super_element_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_super_element_comp_frf_enc}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_super_element_comp_frf_force})} | ||||
| \end{figure} | ||||
|  | ||||
| \chapter{Conclusion} | ||||
| \label{sec:test_apa_conclusion} | ||||
|  | ||||
| @@ -737,8 +674,6 @@ Here, the \emph{super element} represents the dynamics of the APA300ML in all di | ||||
| However, only the axial dynamics could be compared with the experimental results, yielding a good match. | ||||
| The benefit of employing this model over the two degrees-of-freedom model is not immediately apparent due to its increased complexity and the larger number of model states involved. | ||||
| Nonetheless, the \emph{super element} model's value will become clear in subsequent sections, when its capacity to accurately model the APA300ML's flexibility across various directions will be important. | ||||
|  | ||||
| \printbibliography[heading=bibintoc,title={Bibliography}] | ||||
|  | ||||
| \printglossaries | ||||
| \end{document} | ||||
|   | ||||