Add inkscape directory
							
								
								
									
										18
									
								
								figs/inkscape/convert_svg.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						| @@ -0,0 +1,18 @@ | |||||||
|  | #!/bin/bash | ||||||
|  |  | ||||||
|  | # Directory containing SVG files | ||||||
|  | INPUT_DIR="." | ||||||
|  |  | ||||||
|  | # Loop through all SVG files in the directory | ||||||
|  | for svg_file in "$INPUT_DIR"/*.svg; do | ||||||
|  |     # Check if there are SVG files in the directory | ||||||
|  |     if [ -f "$svg_file" ]; then | ||||||
|  |         # Output PDF file name | ||||||
|  |         pdf_file="../${svg_file%.svg}.pdf" | ||||||
|  |         png_file="../${svg_file%.svg}" | ||||||
|  |          | ||||||
|  |         # Convert SVG to PDF using Inkscape | ||||||
|  |         inkscape "$svg_file" --export-filename="$pdf_file" && \ | ||||||
|  |             pdftocairo -png -singlefile -cropbox "$pdf_file" "$png_file" | ||||||
|  |     fi | ||||||
|  | done | ||||||
| Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB | 
| Before Width: | Height: | Size: 80 KiB After Width: | Height: | Size: 80 KiB | 
| Before Width: | Height: | Size: 264 KiB After Width: | Height: | Size: 264 KiB | 
| Before Width: | Height: | Size: 254 KiB After Width: | Height: | Size: 254 KiB | 
| Before Width: | Height: | Size: 254 KiB After Width: | Height: | Size: 254 KiB | 
| Before Width: | Height: | Size: 2.5 MiB After Width: | Height: | Size: 2.5 MiB | 
| @@ -266,7 +266,7 @@ end | |||||||
| data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', 'APA 7'}, {'*Flatness* $[\mu m]$'}, ' %.1f '); | data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', 'APA 7'}, {'*Flatness* $[\mu m]$'}, ' %.1f '); | ||||||
| #+end_src | #+end_src | ||||||
|  |  | ||||||
| #+attr_latex: :options [b]{0.49\linewidth} | #+attr_latex: :options [b]{0.48\linewidth} | ||||||
| #+begin_minipage | #+begin_minipage | ||||||
| #+name: fig:test_apa_flatness_setup | #+name: fig:test_apa_flatness_setup | ||||||
| #+attr_latex: :width 0.7\linewidth :float nil | #+attr_latex: :width 0.7\linewidth :float nil | ||||||
| @@ -274,7 +274,7 @@ data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', | |||||||
| [[file:figs/test_apa_flatness_setup.png]] | [[file:figs/test_apa_flatness_setup.png]] | ||||||
| #+end_minipage | #+end_minipage | ||||||
| \hfill | \hfill | ||||||
| #+attr_latex: :options [b]{0.49\linewidth} | #+attr_latex: :options [b]{0.48\linewidth} | ||||||
| #+begin_minipage | #+begin_minipage | ||||||
| #+name: tab:test_apa_flatness_meas | #+name: tab:test_apa_flatness_meas | ||||||
| #+attr_latex: :environment tabularx :width 0.6\linewidth :align Xc | #+attr_latex: :environment tabularx :width 0.6\linewidth :align Xc | ||||||
|   | |||||||
| @@ -1,4 +1,4 @@ | |||||||
| % Created 2025-02-12 Wed 09:53 | % Created 2025-04-03 Thu 22:11 | ||||||
| % Intended LaTeX compiler: pdflatex | % Intended LaTeX compiler: pdflatex | ||||||
| \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} | \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} | ||||||
|  |  | ||||||
| @@ -27,13 +27,6 @@ | |||||||
| \author{Dehaeze Thomas} | \author{Dehaeze Thomas} | ||||||
| \date{\today} | \date{\today} | ||||||
| \title{Test Bench - Amplified Piezoelectric Actuator} | \title{Test Bench - Amplified Piezoelectric Actuator} | ||||||
| \hypersetup{ |  | ||||||
|  pdfauthor={Dehaeze Thomas}, |  | ||||||
|  pdftitle={Test Bench - Amplified Piezoelectric Actuator}, |  | ||||||
|  pdfkeywords={}, |  | ||||||
|  pdfsubject={}, |  | ||||||
|  pdfcreator={Emacs 29.4 (Org mode 9.6)},  |  | ||||||
|  pdflang={English}} |  | ||||||
| \usepackage{biblatex} | \usepackage{biblatex} | ||||||
|  |  | ||||||
| \begin{document} | \begin{document} | ||||||
| @@ -42,7 +35,6 @@ | |||||||
| \tableofcontents | \tableofcontents | ||||||
|  |  | ||||||
| \clearpage | \clearpage | ||||||
|  |  | ||||||
| In this chapter, the goal is to ensure that the received APA300ML (shown in Figure \ref{fig:test_apa_received}) are complying with the requirements and that the dynamical models of the actuator accurately represent its dynamics. | In this chapter, the goal is to ensure that the received APA300ML (shown in Figure \ref{fig:test_apa_received}) are complying with the requirements and that the dynamical models of the actuator accurately represent its dynamics. | ||||||
|  |  | ||||||
| In section \ref{sec:test_apa_basic_meas}, the mechanical tolerances of the APA300ML interfaces are checked together with the electrical properties of the piezoelectric stacks and the achievable stroke. | In section \ref{sec:test_apa_basic_meas}, the mechanical tolerances of the APA300ML interfaces are checked together with the electrical properties of the piezoelectric stacks and the achievable stroke. | ||||||
| @@ -64,16 +56,14 @@ This more complex model also captures well capture the axial dynamics of the APA | |||||||
| \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_received.jpg} | \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_received.jpg} | ||||||
| \caption{\label{fig:test_apa_received}Picture of 5 out of the 7 received APA300ML} | \caption{\label{fig:test_apa_received}Picture of 5 out of the 7 received APA300ML} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
|  |  | ||||||
| \chapter{First Basic Measurements} | \chapter{First Basic Measurements} | ||||||
| \label{sec:test_apa_basic_meas} | \label{sec:test_apa_basic_meas} | ||||||
|  |  | ||||||
| Before measuring the dynamical characteristics of the APA300ML, simple measurements are performed. | Before measuring the dynamical characteristics of the APA300ML, simple measurements are performed. | ||||||
| First, the tolerances (especially flatness) of the mechanical interfaces are checked in Section \ref{ssec:test_apa_geometrical_measurements}. | First, the tolerances (especially flatness) of the mechanical interfaces are checked in Section \ref{ssec:test_apa_geometrical_measurements}. | ||||||
| Then, the capacitance of the piezoelectric stacks is measured in Section \ref{ssec:test_apa_electrical_measurements}. | Then, the capacitance of the piezoelectric stacks is measured in Section \ref{ssec:test_apa_electrical_measurements}. | ||||||
| The achievable stroke of the APA300ML is measured using a displacement probe in Section \ref{ssec:test_apa_stroke_measurements}. | The achievable stroke of the APA300ML is measured using a displacement probe in Section \ref{ssec:test_apa_stroke_measurements}. | ||||||
| Finally, in Section \ref{ssec:test_apa_spurious_resonances}, the flexible modes of the APA are measured and compared with a finite element model. | Finally, in Section \ref{ssec:test_apa_spurious_resonances}, the flexible modes of the APA are measured and compared with a finite element model. | ||||||
|  |  | ||||||
| \section{Geometrical Measurements} | \section{Geometrical Measurements} | ||||||
| \label{ssec:test_apa_geometrical_measurements} | \label{ssec:test_apa_geometrical_measurements} | ||||||
|  |  | ||||||
| @@ -82,14 +72,14 @@ As shown in Figure \ref{fig:test_apa_flatness_setup}, the APA is fixed to a clam | |||||||
| From the X-Y-Z coordinates of the measured eight points, the flatness is estimated by best fitting\footnote{The Matlab \texttt{fminsearch} command is used to fit the plane} a plane through all the points. | From the X-Y-Z coordinates of the measured eight points, the flatness is estimated by best fitting\footnote{The Matlab \texttt{fminsearch} command is used to fit the plane} a plane through all the points. | ||||||
| The measured flatness values, summarized in Table \ref{tab:test_apa_flatness_meas}, are within the specifications. | The measured flatness values, summarized in Table \ref{tab:test_apa_flatness_meas}, are within the specifications. | ||||||
|  |  | ||||||
| \begin{minipage}[b]{0.49\linewidth} | \begin{minipage}[b]{0.48\linewidth} | ||||||
| \begin{center} | \begin{center} | ||||||
| \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_flatness_setup.png} | \includegraphics[scale=1,width=0.7\linewidth]{figs/test_apa_flatness_setup.png} | ||||||
| \captionof{figure}{\label{fig:test_apa_flatness_setup}Measurement setup for flatness estimation} | \captionof{figure}{\label{fig:test_apa_flatness_setup}Measurement setup for flatness estimation} | ||||||
| \end{center} | \end{center} | ||||||
| \end{minipage} | \end{minipage} | ||||||
| \hfill | \hfill | ||||||
| \begin{minipage}[b]{0.49\linewidth} | \begin{minipage}[b]{0.48\linewidth} | ||||||
| \begin{center} | \begin{center} | ||||||
| \begin{tabularx}{0.6\linewidth}{Xc} | \begin{tabularx}{0.6\linewidth}{Xc} | ||||||
| \toprule | \toprule | ||||||
| @@ -108,7 +98,6 @@ APA 7 & 18.7\\ | |||||||
|  |  | ||||||
| \end{center} | \end{center} | ||||||
| \end{minipage} | \end{minipage} | ||||||
|  |  | ||||||
| \section{Electrical Measurements} | \section{Electrical Measurements} | ||||||
| \label{ssec:test_apa_electrical_measurements} | \label{ssec:test_apa_electrical_measurements} | ||||||
|  |  | ||||||
| @@ -149,7 +138,6 @@ APA 7 & 4.85 & 9.85\\ | |||||||
|  |  | ||||||
| \end{center} | \end{center} | ||||||
| \end{minipage} | \end{minipage} | ||||||
|  |  | ||||||
| \section{Stroke and Hysteresis Measurement} | \section{Stroke and Hysteresis Measurement} | ||||||
| \label{ssec:test_apa_stroke_measurements} | \label{ssec:test_apa_stroke_measurements} | ||||||
|  |  | ||||||
| @@ -190,7 +178,6 @@ From now on, only the six remaining amplified piezoelectric actuators that behav | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_stroke}Generated voltage across the two piezoelectric stack actuators to estimate the stroke of the APA300ML (\subref{fig:test_apa_stroke_voltage}). Measured displacement as a function of applied voltage (\subref{fig:test_apa_stroke_hysteresis})} | \caption{\label{fig:test_apa_stroke}Generated voltage across the two piezoelectric stack actuators to estimate the stroke of the APA300ML (\subref{fig:test_apa_stroke_voltage}). Measured displacement as a function of applied voltage (\subref{fig:test_apa_stroke_hysteresis})} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \section{Flexible Mode Measurement} | \section{Flexible Mode Measurement} | ||||||
| \label{ssec:test_apa_spurious_resonances} | \label{ssec:test_apa_spurious_resonances} | ||||||
|  |  | ||||||
| @@ -251,7 +238,6 @@ Another explanation is the shape difference between the manufactured APA300ML an | |||||||
| \includegraphics[scale=1]{figs/test_apa_meas_freq_compare.png} | \includegraphics[scale=1]{figs/test_apa_meas_freq_compare.png} | ||||||
| \caption{\label{fig:test_apa_meas_freq_compare}Frequency response functions for the two tests using the instrumented hammer and the laser vibrometer. The Y-bending mode is measured at \(280\,\text{Hz}\) and the X-bending mode at \(412\,\text{Hz}\)} | \caption{\label{fig:test_apa_meas_freq_compare}Frequency response functions for the two tests using the instrumented hammer and the laser vibrometer. The Y-bending mode is measured at \(280\,\text{Hz}\) and the X-bending mode at \(412\,\text{Hz}\)} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \chapter{Dynamical measurements} | \chapter{Dynamical measurements} | ||||||
| \label{sec:test_apa_dynamics} | \label{sec:test_apa_dynamics} | ||||||
| After the measurements on the APA were performed in Section \ref{sec:test_apa_basic_meas}, a new test bench was used to better characterize the dynamics of the APA300ML. | After the measurements on the APA were performed in Section \ref{sec:test_apa_basic_meas}, a new test bench was used to better characterize the dynamics of the APA300ML. | ||||||
| @@ -300,7 +286,6 @@ This is the typical behavior expected from a PZT stack actuator, where the hyste | |||||||
| \includegraphics[scale=1]{figs/test_apa_meas_hysteresis.png} | \includegraphics[scale=1]{figs/test_apa_meas_hysteresis.png} | ||||||
| \caption{\label{fig:test_apa_meas_hysteresis}Displacement as a function of applied voltage for multiple excitation amplitudes} | \caption{\label{fig:test_apa_meas_hysteresis}Displacement as a function of applied voltage for multiple excitation amplitudes} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \section{Axial stiffness} | \section{Axial stiffness} | ||||||
| \label{ssec:test_apa_stiffness} | \label{ssec:test_apa_stiffness} | ||||||
|  |  | ||||||
| @@ -362,7 +347,6 @@ To estimate this effect for the APA300ML, its stiffness is estimated using the ` | |||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| The open-circuit stiffness is estimated at \(k_{\text{oc}} \approx 2.3\,N/\mu m\) while the closed-circuit stiffness \(k_{\text{sc}} \approx 1.7\,N/\mu m\). | The open-circuit stiffness is estimated at \(k_{\text{oc}} \approx 2.3\,N/\mu m\) while the closed-circuit stiffness \(k_{\text{sc}} \approx 1.7\,N/\mu m\). | ||||||
|  |  | ||||||
| \section{Dynamics} | \section{Dynamics} | ||||||
| \label{ssec:test_apa_meas_dynamics} | \label{ssec:test_apa_meas_dynamics} | ||||||
|  |  | ||||||
| @@ -408,7 +392,6 @@ All the identified dynamics of the six APA300ML (both when looking at the encode | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_frf_dynamics}Measured frequency response function from generated voltage \(u\) to the encoder displacement \(d_e\) (\subref{fig:test_apa_frf_encoder}) and to the force sensor voltage \(V_s\) (\subref{fig:test_apa_frf_force}) for the six APA300ML} | \caption{\label{fig:test_apa_frf_dynamics}Measured frequency response function from generated voltage \(u\) to the encoder displacement \(d_e\) (\subref{fig:test_apa_frf_encoder}) and to the force sensor voltage \(V_s\) (\subref{fig:test_apa_frf_force}) for the six APA300ML} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \section{Non Minimum Phase Zero?} | \section{Non Minimum Phase Zero?} | ||||||
| \label{ssec:test_apa_non_minimum_phase} | \label{ssec:test_apa_non_minimum_phase} | ||||||
|  |  | ||||||
| @@ -437,8 +420,6 @@ However, this is not so important here because the zero is lightly damped (i.e. | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_non_minimum_phase}Measurement of the anti-resonance found in the transfer function from \(u\) to \(V_s\). The coherence (\subref{fig:test_apa_non_minimum_phase_coherence}) is quite good around the anti-resonance frequency. The phase (\subref{fig:test_apa_non_minimum_phase_zoom}) shoes a non-minimum phase behavior.} | \caption{\label{fig:test_apa_non_minimum_phase}Measurement of the anti-resonance found in the transfer function from \(u\) to \(V_s\). The coherence (\subref{fig:test_apa_non_minimum_phase_coherence}) is quite good around the anti-resonance frequency. The phase (\subref{fig:test_apa_non_minimum_phase_zoom}) shoes a non-minimum phase behavior.} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
|  |  | ||||||
| \section{Effect of the resistor on the IFF Plant} | \section{Effect of the resistor on the IFF Plant} | ||||||
| \label{ssec:test_apa_resistance_sensor_stack} | \label{ssec:test_apa_resistance_sensor_stack} | ||||||
|  |  | ||||||
| @@ -454,7 +435,6 @@ It is confirmed that the added resistor has the effect of adding a high-pass fil | |||||||
| \includegraphics[scale=1]{figs/test_apa_effect_resistance.png} | \includegraphics[scale=1]{figs/test_apa_effect_resistance.png} | ||||||
| \caption{\label{fig:test_apa_effect_resistance}Transfer function from \(u\) to \(V_s\) with and without the resistor \(R\) in parallel with the piezoelectric stack used as the force sensor} | \caption{\label{fig:test_apa_effect_resistance}Transfer function from \(u\) to \(V_s\) with and without the resistor \(R\) in parallel with the piezoelectric stack used as the force sensor} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \section{Integral Force Feedback} | \section{Integral Force Feedback} | ||||||
| \label{ssec:test_apa_iff_locus} | \label{ssec:test_apa_iff_locus} | ||||||
|  |  | ||||||
| @@ -513,10 +493,9 @@ The two obtained root loci are compared in Figure \ref{fig:test_apa_iff_root_loc | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_iff}Experimental results of applying Integral Force Feedback to the APA300ML. Obtained damped plant (\subref{fig:test_apa_identified_damped_plants}) and Root Locus (\subref{fig:test_apa_iff_root_locus}) corresponding to the implemented IFF controller \eqref{eq:test_apa_Kiff_formula}} | \caption{\label{fig:test_apa_iff}Experimental results of applying Integral Force Feedback to the APA300ML. Obtained damped plant (\subref{fig:test_apa_identified_damped_plants}) and Root Locus (\subref{fig:test_apa_iff_root_locus}) corresponding to the implemented IFF controller \eqref{eq:test_apa_Kiff_formula}} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
|  |  | ||||||
| \chapter{APA300ML - 2 degrees-of-freedom Model} | \chapter{APA300ML - 2 degrees-of-freedom Model} | ||||||
| \label{sec:test_apa_model_2dof} | \label{sec:test_apa_model_2dof} | ||||||
|  |  | ||||||
| In this section, a multi-body model (Figure \ref{fig:test_apa_bench_model}) of the measurement bench is used to tune the two degrees-of-freedom model of the APA using the measured frequency response functions. | In this section, a multi-body model (Figure \ref{fig:test_apa_bench_model}) of the measurement bench is used to tune the two degrees-of-freedom model of the APA using the measured frequency response functions. | ||||||
|  |  | ||||||
| This two degrees-of-freedom model is developed to accurately represent the APA300ML dynamics while having low complexity and a low number of associated states. | This two degrees-of-freedom model is developed to accurately represent the APA300ML dynamics while having low complexity and a low number of associated states. | ||||||
| @@ -527,8 +506,7 @@ After the model is presented, the procedure for tuning the model is described, a | |||||||
| \includegraphics[scale=1,width=0.8\linewidth]{figs/test_apa_bench_model.png} | \includegraphics[scale=1,width=0.8\linewidth]{figs/test_apa_bench_model.png} | ||||||
| \caption{\label{fig:test_apa_bench_model}Screenshot of the multi-body model} | \caption{\label{fig:test_apa_bench_model}Screenshot of the multi-body model} | ||||||
| \end{figure} | \end{figure} | ||||||
|  | \subsubsection{Two degrees-of-freedom APA Model} | ||||||
| \paragraph{Two degrees-of-freedom APA Model} |  | ||||||
|  |  | ||||||
| The model of the amplified piezoelectric actuator is shown in Figure \ref{fig:test_apa_2dof_model}. | The model of the amplified piezoelectric actuator is shown in Figure \ref{fig:test_apa_2dof_model}. | ||||||
| It can be decomposed into three components: | It can be decomposed into three components: | ||||||
| @@ -553,7 +531,6 @@ Such a simple model has some limitations: | |||||||
| \includegraphics[scale=1]{figs/test_apa_2dof_model.png} | \includegraphics[scale=1]{figs/test_apa_2dof_model.png} | ||||||
| \caption{\label{fig:test_apa_2dof_model}Schematic of the two degrees-of-freedom model of the APA300ML, adapted from \cite{souleille18_concep_activ_mount_space_applic}} | \caption{\label{fig:test_apa_2dof_model}Schematic of the two degrees-of-freedom model of the APA300ML, adapted from \cite{souleille18_concep_activ_mount_space_applic}} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| 9 parameters (\(m\), \(k_1\), \(c_1\), \(k_e\), \(c_e\), \(k_a\), \(c_a\), \(g_s\) and \(g_a\)) have to be tuned such that the dynamics of the model (Figure \ref{fig:test_apa_2dof_model_simscape}) well represents the identified dynamics in Section \ref{sec:test_apa_dynamics}. | 9 parameters (\(m\), \(k_1\), \(c_1\), \(k_e\), \(c_e\), \(k_a\), \(c_a\), \(g_s\) and \(g_a\)) have to be tuned such that the dynamics of the model (Figure \ref{fig:test_apa_2dof_model_simscape}) well represents the identified dynamics in Section \ref{sec:test_apa_dynamics}. | ||||||
|  |  | ||||||
| \begin{figure}[htbp] | \begin{figure}[htbp] | ||||||
| @@ -609,7 +586,6 @@ The obtained parameters of the model shown in Figure \ref{fig:test_apa_2dof_mode | |||||||
| \caption{\label{tab:test_apa_2dof_parameters}Summary of the obtained parameters for the 2 DoF APA300ML model} | \caption{\label{tab:test_apa_2dof_parameters}Summary of the obtained parameters for the 2 DoF APA300ML model} | ||||||
|  |  | ||||||
| \end{table} | \end{table} | ||||||
|  |  | ||||||
| The dynamics of the two degrees-of-freedom model of the APA300ML are extracted using optimized parameters (listed in Table \ref{tab:test_apa_2dof_parameters}) from the multi-body model. | The dynamics of the two degrees-of-freedom model of the APA300ML are extracted using optimized parameters (listed in Table \ref{tab:test_apa_2dof_parameters}) from the multi-body model. | ||||||
| This is compared with the experimental data in Figure \ref{fig:test_apa_2dof_comp_frf}. | This is compared with the experimental data in Figure \ref{fig:test_apa_2dof_comp_frf}. | ||||||
| A good match can be observed between the model and the experimental data, both for the encoder (Figure \ref{fig:test_apa_2dof_comp_frf_enc}) and for the force sensor (Figure \ref{fig:test_apa_2dof_comp_frf_force}). | A good match can be observed between the model and the experimental data, both for the encoder (Figure \ref{fig:test_apa_2dof_comp_frf_enc}) and for the force sensor (Figure \ref{fig:test_apa_2dof_comp_frf_force}). | ||||||
| @@ -630,9 +606,9 @@ This indicates that this model represents well the axial dynamics of the APA300M | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_2dof_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the 2DoF model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_2dof_comp_frf_enc}) (\subref{fig:test_apa_2dof_comp_frf_force}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_2dof_comp_frf_force})} | \caption{\label{fig:test_apa_2dof_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the 2DoF model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_2dof_comp_frf_enc}) (\subref{fig:test_apa_2dof_comp_frf_force}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_2dof_comp_frf_force})} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \chapter{APA300ML - Super Element} | \chapter{APA300ML - Super Element} | ||||||
| \label{sec:test_apa_model_flexible} | \label{sec:test_apa_model_flexible} | ||||||
|  |  | ||||||
| In this section, a \emph{super element} of the APA300ML is computed using a finite element software\footnote{Ansys\textsuperscript{\textregistered} was used}. | In this section, a \emph{super element} of the APA300ML is computed using a finite element software\footnote{Ansys\textsuperscript{\textregistered} was used}. | ||||||
| It is then imported into multi-body (in the form of a stiffness matrix and a mass matrix) and included in the same model that was used in \ref{sec:test_apa_model_2dof}. | It is then imported into multi-body (in the form of a stiffness matrix and a mass matrix) and included in the same model that was used in \ref{sec:test_apa_model_2dof}. | ||||||
| This procedure is illustrated in Figure \ref{fig:test_apa_super_element_simscape}. | This procedure is illustrated in Figure \ref{fig:test_apa_super_element_simscape}. | ||||||
| @@ -648,50 +624,12 @@ Finally, two \emph{remote points} (\texttt{4} and \texttt{5}) are located across | |||||||
| \includegraphics[scale=1,width=1.0\linewidth]{figs/test_apa_super_element_simscape.png} | \includegraphics[scale=1,width=1.0\linewidth]{figs/test_apa_super_element_simscape.png} | ||||||
| \caption{\label{fig:test_apa_super_element_simscape}Finite Element Model of the APA300ML with ``remotes points'' on the left. Simscape model with included ``Reduced Order Flexible Solid'' on the right.} | \caption{\label{fig:test_apa_super_element_simscape}Finite Element Model of the APA300ML with ``remotes points'' on the left. Simscape model with included ``Reduced Order Flexible Solid'' on the right.} | ||||||
| \end{figure} | \end{figure} | ||||||
|  | \subsubsection{Identification of the Actuator and Sensor constants} | ||||||
| \paragraph{Identification of the Actuator and Sensor constants} |  | ||||||
|  |  | ||||||
| Once the APA300ML \emph{super element} is included in the multi-body model, the transfer function from \(F_a\) to \(d_L\) and \(d_e\) can be extracted. | Once the APA300ML \emph{super element} is included in the multi-body model, the transfer function from \(F_a\) to \(d_L\) and \(d_e\) can be extracted. | ||||||
| The gains \(g_a\) and \(g_s\) are then tuned such that the gains of the transfer functions match the identified ones. | The gains \(g_a\) and \(g_s\) are then tuned such that the gains of the transfer functions match the identified ones. | ||||||
| By doing so, \(g_s = 4.9\,V/\mu m\) and \(g_a = 23.2\,N/V\) are obtained. | By doing so, \(g_s = 4.9\,V/\mu m\) and \(g_a = 23.2\,N/V\) are obtained. | ||||||
|  | \subsubsection{Comparison of the obtained dynamics} | ||||||
| To ensure that the sensitivities \(g_a\) and \(g_s\) are physically valid, it is possible to estimate them from the physical properties of the piezoelectric stack material. |  | ||||||
|  |  | ||||||
| From \cite[p. 123]{fleming14_desig_model_contr_nanop_system}, the relation between relative displacement \(d_L\) of the sensor stack and generated voltage \(V_s\) is given by \eqref{eq:test_apa_piezo_strain_to_voltage} and from \cite{fleming10_integ_strain_force_feedb_high} the relation between the force \(F_a\) and the applied voltage \(V_a\) is given by \eqref{eq:test_apa_piezo_voltage_to_force}. |  | ||||||
|  |  | ||||||
| \begin{subequations} |  | ||||||
| \begin{align} |  | ||||||
|   V_s &= \underbrace{\frac{d_{33}}{\epsilon^T s^D n}}_{g_s} d_L \label{eq:test_apa_piezo_strain_to_voltage} \\ |  | ||||||
|   F_a &= \underbrace{d_{33} n k_a}_{g_a} \cdot V_a, \quad k_a = \frac{c^{E} A}{L} \label{eq:test_apa_piezo_voltage_to_force} |  | ||||||
| \end{align} |  | ||||||
| \end{subequations} |  | ||||||
|  |  | ||||||
| Unfortunately, the manufacturer of the stack was not willing to share the piezoelectric material properties of the stack used in the APA300ML. |  | ||||||
| However, based on the available properties of the APA300ML stacks in the data-sheet, the soft Lead Zirconate Titanate ``THP5H'' from Thorlabs seemed to match quite well the observed properties. |  | ||||||
| The properties of this ``THP5H'' material used to compute \(g_a\) and \(g_s\) are listed in Table \ref{tab:test_apa_piezo_properties}. |  | ||||||
|  |  | ||||||
| From these parameters, \(g_s = 5.1\,V/\mu m\) and \(g_a = 26\,N/V\) were obtained, which are close to the constants identified using the experimentally identified transfer functions. |  | ||||||
|  |  | ||||||
| \begin{table}[htbp] |  | ||||||
| \centering |  | ||||||
| \begin{tabularx}{1\linewidth}{ccX} |  | ||||||
| \toprule |  | ||||||
| \textbf{Parameter} & \textbf{Value} & \textbf{Description}\\ |  | ||||||
| \midrule |  | ||||||
| \(d_{33}\) & \(680 \cdot 10^{-12}\,m/V\) & Piezoelectric constant\\ |  | ||||||
| \(\epsilon^{T}\) & \(4.0 \cdot 10^{-8}\,F/m\) & Permittivity under constant stress\\ |  | ||||||
| \(s^{D}\) & \(21 \cdot 10^{-12}\,m^2/N\) & Elastic compliance understand constant electric displacement\\ |  | ||||||
| \(c^{E}\) & \(48 \cdot 10^{9}\,N/m^2\) & Young's modulus of elasticity\\ |  | ||||||
| \(L\) & \(20\,mm\) per stack & Length of the stack\\ |  | ||||||
| \(A\) & \(10^{-4}\,m^2\) & Area of the piezoelectric stack\\ |  | ||||||
| \(n\) & \(160\) per stack & Number of layers in the piezoelectric stack\\ |  | ||||||
| \bottomrule |  | ||||||
| \end{tabularx} |  | ||||||
| \caption{\label{tab:test_apa_piezo_properties}Piezoelectric properties used for the estimation of the sensor and actuators sensitivities} |  | ||||||
|  |  | ||||||
| \end{table} |  | ||||||
|  |  | ||||||
| \paragraph{Comparison of the obtained dynamics} |  | ||||||
|  |  | ||||||
| The obtained dynamics using the \emph{super element} with the tuned ``sensor sensitivity'' and ``actuator sensitivity'' are compared with the experimentally identified frequency response functions in Figure \ref{fig:test_apa_super_element_comp_frf}. | The obtained dynamics using the \emph{super element} with the tuned ``sensor sensitivity'' and ``actuator sensitivity'' are compared with the experimentally identified frequency response functions in Figure \ref{fig:test_apa_super_element_comp_frf}. | ||||||
| A good match between the model and the experimental results was observed. | A good match between the model and the experimental results was observed. | ||||||
| @@ -714,7 +652,6 @@ Using this simple test bench, it can be concluded that the \emph{super element} | |||||||
| \end{subfigure} | \end{subfigure} | ||||||
| \caption{\label{fig:test_apa_super_element_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_super_element_comp_frf_enc}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_super_element_comp_frf_force})} | \caption{\label{fig:test_apa_super_element_comp_frf}Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA300ML. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_apa_super_element_comp_frf_enc}) and from \(u\) to \(V_s\) (\subref{fig:test_apa_super_element_comp_frf_force})} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| \chapter{Conclusion} | \chapter{Conclusion} | ||||||
| \label{sec:test_apa_conclusion} | \label{sec:test_apa_conclusion} | ||||||
|  |  | ||||||
| @@ -737,8 +674,6 @@ Here, the \emph{super element} represents the dynamics of the APA300ML in all di | |||||||
| However, only the axial dynamics could be compared with the experimental results, yielding a good match. | However, only the axial dynamics could be compared with the experimental results, yielding a good match. | ||||||
| The benefit of employing this model over the two degrees-of-freedom model is not immediately apparent due to its increased complexity and the larger number of model states involved. | The benefit of employing this model over the two degrees-of-freedom model is not immediately apparent due to its increased complexity and the larger number of model states involved. | ||||||
| Nonetheless, the \emph{super element} model's value will become clear in subsequent sections, when its capacity to accurately model the APA300ML's flexibility across various directions will be important. | Nonetheless, the \emph{super element} model's value will become clear in subsequent sections, when its capacity to accurately model the APA300ML's flexibility across various directions will be important. | ||||||
|  |  | ||||||
| \printbibliography[heading=bibintoc,title={Bibliography}] | \printbibliography[heading=bibintoc,title={Bibliography}] | ||||||
|  |  | ||||||
| \printglossaries | \printglossaries | ||||||
| \end{document} | \end{document} | ||||||
|   | |||||||