Simulation of tomography experiments
This commit is contained in:
parent
c81cd4fbb6
commit
b9a5308fa3
BIN
figs/nass_tomography_hac_iff_m1.pdf
Normal file
BIN
figs/nass_tomography_hac_iff_m1.pdf
Normal file
Binary file not shown.
BIN
figs/nass_tomography_hac_iff_m1.png
Normal file
BIN
figs/nass_tomography_hac_iff_m1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
BIN
figs/nass_tomography_hac_iff_m25.pdf
Normal file
BIN
figs/nass_tomography_hac_iff_m25.pdf
Normal file
Binary file not shown.
BIN
figs/nass_tomography_hac_iff_m25.png
Normal file
BIN
figs/nass_tomography_hac_iff_m25.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 19 KiB |
BIN
figs/nass_tomography_hac_iff_m50.pdf
Normal file
BIN
figs/nass_tomography_hac_iff_m50.pdf
Normal file
Binary file not shown.
BIN
figs/nass_tomography_hac_iff_m50.png
Normal file
BIN
figs/nass_tomography_hac_iff_m50.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
BIN
matlab/mat/ustation_disturbance_psd.mat
Normal file
BIN
matlab/mat/ustation_disturbance_psd.mat
Normal file
Binary file not shown.
Binary file not shown.
@ -15,7 +15,7 @@ function [nano_hexapod] = initializeSimplifiedNanoHexapod(args)
|
|||||||
%% Actuators
|
%% Actuators
|
||||||
args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof'
|
args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof'
|
||||||
args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6
|
args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6
|
||||||
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e4
|
args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e4
|
||||||
args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605
|
args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605
|
||||||
args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302
|
args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302
|
||||||
args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50
|
args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50
|
||||||
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -1,4 +1,4 @@
|
|||||||
% Created 2025-02-12 Wed 15:35
|
% Created 2025-02-12 Wed 17:40
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
@ -97,13 +97,12 @@ Explain how to compute the errors in the frame of the struts (rotating):
|
|||||||
\item Say that there are many control strategies.
|
\item Say that there are many control strategies.
|
||||||
It will be the topic of chapter 2.3.
|
It will be the topic of chapter 2.3.
|
||||||
Here, we start with something simple: control in the frame of the struts
|
Here, we start with something simple: control in the frame of the struts
|
||||||
\item[{$\square$}] block diagram of the complete control architecture
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
\begin{figure}[htbp]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[scale=1,width=\linewidth]{figs/nass_control_architecture.png}
|
\includegraphics[scale=1,width=\linewidth]{figs/nass_control_architecture.png}
|
||||||
\caption{\label{fig:nass_control_architecture}Figure caption}
|
\caption{\label{fig:nass_control_architecture}The physical systems are shown in blue, the control kinematics in red, the decentralized Integral Force Feedback in yellow and the centralized High Authority Controller in green.}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\chapter{Decentralized Active Damping}
|
\chapter{Decentralized Active Damping}
|
||||||
@ -113,6 +112,7 @@ Here, we start with something simple: control in the frame of the struts
|
|||||||
\item Robustness to payload mass
|
\item Robustness to payload mass
|
||||||
\item Root Locus
|
\item Root Locus
|
||||||
\item Damping optimization
|
\item Damping optimization
|
||||||
|
\item \textbf{Parallel stiffness?}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
Explain which samples are tested:
|
Explain which samples are tested:
|
||||||
@ -132,17 +132,37 @@ Explain which samples are tested:
|
|||||||
\item[{$\square$}] Added parallel stiffness
|
\item[{$\square$}] Added parallel stiffness
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
Coupling
|
||||||
|
|
||||||
|
Effect of rotation
|
||||||
|
|
||||||
|
Effect of payload mass
|
||||||
|
|
||||||
\section{Controller Design}
|
\section{Controller Design}
|
||||||
|
|
||||||
|
Low pass filter needs to be added (because now: DC gain)
|
||||||
|
|
||||||
|
\begin{equation}\label{eq:nass_kiff}
|
||||||
|
\bm{K}_{\text{IFF}}(s) = g \cdot \begin{bmatrix}
|
||||||
|
K_{\text{IFF}}(s) & & 0 \\
|
||||||
|
& \ddots & \\
|
||||||
|
0 & & K_{\text{IFF}}(s)
|
||||||
|
\end{bmatrix}, \quad K_{\text{IFF}}(s) = \frac{1}{s}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Loop Gain:
|
||||||
|
Root Locus => Stability
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Use Integral controller (with parallel stiffness)
|
\item Use Integral controller (with parallel stiffness)
|
||||||
\item Show Root Locus (show that without parallel stiffness => unstable?)
|
\item Show Root Locus (show that without parallel stiffness => unstable?)
|
||||||
\item Choose optimal gain.
|
\item Choose optimal gain.
|
||||||
Here in MIMO, cannot have optimal damping for all modes. (there is a paper that tries to optimize that)
|
Here in MIMO, cannot have optimal damping for all modes. (there is a paper that tries to optimize that)
|
||||||
\item Show robustness to change of payload (loci?) / Change of rotating velocity ?
|
\item[{$\square$}] Show robustness to change of payload (loci?) / Change of rotating velocity ?
|
||||||
\item Reference to paper showing stability in MIMO for decentralized IFF
|
\item Reference to paper showing stability in MIMO for decentralized IFF
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
\section{Sensitivity to disturbances}
|
\section{Sensitivity to disturbances}
|
||||||
|
|
||||||
Disturbances:
|
Disturbances:
|
||||||
@ -181,6 +201,13 @@ From control kinematics:
|
|||||||
\item[{$\square$}] Compare with undamped plants
|
\item[{$\square$}] Compare with undamped plants
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
Effect of rotation:
|
||||||
|
|
||||||
|
Effect of IFF:
|
||||||
|
|
||||||
|
Effect of payload mass
|
||||||
|
|
||||||
|
Advantage of using IFF:
|
||||||
\section{Controller design}
|
\section{Controller design}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -188,6 +215,12 @@ From control kinematics:
|
|||||||
\item[{$\square$}] Show robustness with Loci for all masses
|
\item[{$\square$}] Show robustness with Loci for all masses
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{equation}\label{eq:nass_robust_hac}
|
||||||
|
K_{\text{HAC}}(s) = g_0 \cdot \underbrace{\frac{\omega_c}{s}}_{\text{int}} \cdot \underbrace{\frac{1}{\sqrt{\alpha}}\frac{1 + \frac{s}{\omega_c/\sqrt{\alpha}}}{1 + \frac{s}{\omega_c\sqrt{\alpha}}}}_{\text{lead}} \cdot \underbrace{\frac{1}{1 + \frac{s}{\omega_0}}}_{\text{LPF}}, \quad \left( \omega_c = 2\pi5\,\text{rad/s},\ \alpha = 2,\ \omega_0 = 2\pi30\,\text{rad/s} \right)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
``Decentralized'' Loop Gain:
|
||||||
|
Characteristic Loci for three masses:
|
||||||
\section{Sensitivity to disturbances}
|
\section{Sensitivity to disturbances}
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -206,6 +239,28 @@ Compare without the NASS, and with just IFF
|
|||||||
\item Validation of concept
|
\item Validation of concept
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\begin{figure}[htbp]
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m1.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:nass_tomography_hac_iff_m1} $m = 1\,kg$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m25.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:nass_tomography_hac_iff_m25} $m = 25\,kg$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.33\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1,scale=1]{figs/nass_tomography_hac_iff_m50.png}
|
||||||
|
\end{center}
|
||||||
|
\subcaption{\label{fig:nass_tomography_hac_iff_m50} $m = 50\,kg$}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{\label{fig:nass_tomography_hac_iff}Simulation of tomography experiments}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\chapter{Conclusion}
|
\chapter{Conclusion}
|
||||||
\label{sec:nass_conclusion}
|
\label{sec:nass_conclusion}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user