Start to modify the way disturbances are configured

This commit is contained in:
Thomas Dehaeze 2024-11-05 23:34:34 +01:00
parent 825f626961
commit 31d4dd5f24
3 changed files with 338 additions and 263 deletions

View File

@ -27,157 +27,203 @@
args.Frz_z logical {mustBeNumericOrLogical} = true
end
% Initialization of random numbers
rng("shuffle");
%% Ground Motion
load('dist_psd.mat', 'dist_f');
% Frequency Data
Dw.f = dist_f.f(2:end);
Dw.psd_x = dist_f.psd_gm(2:end);
Dw.psd_y = dist_f.psd_gm(2:end);
Dw.psd_z = dist_f.psd_gm(2:end);
% Time data
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Dw.psd_x(i)/T0);
end
if args.Dwx && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dw.x = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dw.y = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dw.z = zeros(length(Dw.t), 1);
end
load('dist_psd.mat', 'dist_f');
dist_f.f = dist_f.f(2:end);
dist_f.psd_gm = dist_f.psd_gm(2:end);
dist_f.psd_ty = dist_f.psd_ty(2:end);
dist_f.psd_rz = dist_f.psd_rz(2:end);
Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD
%% Translation Stage
load('dist_psd.mat', 'dist_f');
% Frequency Data
Ty.f = dist_f.f(2:end);
Ty.psd_x = dist_f.psd_ty(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Ty.psd_z = dist_f.psd_ty(2:end);
% Time data
Fs = 2*Ty.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Ty.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
df = 1/T0; % Frequency resolution of the DFT [Hz]
% Also equal to (dist_f.f(2)-dist_f.f(1))
t = linspace(0, T0, N+1)'; % Time Vector [s]
Ts = 1/Fs; % Sampling Time [s]
Ty.t = linspace(0, T0, N+1)'; % Time Vector [s]
phi = dist_f.psd_gm;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
end
if args.Dwx && args.enable
rng(111);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwx = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dwx = zeros(length(t), 1);
end
if args.Dwy && args.enable
rng(112);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwy = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dwy = zeros(length(t), 1);
end
if args.Dwy && args.enable
rng(113);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwz = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dwz = zeros(length(t), 1);
C(i) = sqrt(Ty.psd_x(i)/T0);
end
% Translation Stage - X
if args.Fty_x && args.enable
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
phi = Ty.psd_x;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(phi(i)/T0);
end
rng(121);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
Fty_x = u;
Ty.x = u;
else
Fty_x = zeros(length(t), 1);
Ty.x = zeros(length(Ty.t), 1);
end
% Translation Stage - Z
if args.Fty_z && args.enable
phi = dist_f.psd_ty;
phi = Ty.psd_z;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(phi(i)/T0);
end
rng(122);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
Fty_z = u;
Ty.z = u;
else
Fty_z = zeros(length(t), 1);
Ty.z = zeros(length(Ty.t), 1);
end
% if args.Frz_x && args.enable
% phi = dist_f.psd_rz;
% C = zeros(N/2,1);
% for i = 1:N/2
% C(i) = sqrt(phi(i)*df);
% end
% rng(131);
% theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
% Cx = [0 ; C.*complex(cos(theta),sin(theta))];
% Cx = [Cx; flipud(conj(Cx(2:end)))];;
% u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
% Frz_x = u;
% else
Frz_x = zeros(length(t), 1);
% end
%% Translation Stage
load('dist_psd.mat', 'dist_f');
% if args.Frz_y && args.enable
% phi = dist_f.psd_rz;
% C = zeros(N/2,1);
% for i = 1:N/2
% C(i) = sqrt(phi(i)*df);
% end
% rng(131);
% theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
% Cx = [0 ; C.*complex(cos(theta),sin(theta))];
% Cx = [Cx; flipud(conj(Cx(2:end)))];;
% u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
% Frz_z = u;
% else
Frz_y = zeros(length(t), 1);
% end
% Frequency Data
Rz.f = dist_f.f(2:end);
Rz.psd_x = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_y = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_z = dist_f.psd_rz(2:end);
% Time data
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
if args.Frz_z && args.enable
phi = dist_f.psd_rz;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(Rz.psd_x(i)/T0);
end
% Translation Stage - X
if args.Frz_x && args.enable
phi = Rz.psd_x;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz x [N]
Rz.x = u;
else
Rz.x = zeros(length(Rz.t), 1);
end
% Translation Stage - Y
if args.Frz_y && args.enable
phi = Rz.psd_y;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz y [N]
Rz.y = u;
else
Rz.y = zeros(length(Rz.t), 1);
end
% Translation Stage - Z
if args.Frz_z && args.enable
phi = Rz.psd_z;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
rng(131);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
Frz_z = u;
Rz.z = u;
else
Frz_z = zeros(length(t), 1);
Rz.z = zeros(length(Rz.t), 1);
end
u = zeros(length(t), 6);
u = zeros(100, 6);
Fd = u;
Dwx = Dwx - Dwx(1);
Dwy = Dwy - Dwy(1);
Dwz = Dwz - Dwz(1);
Fty_x = Fty_x - Fty_x(1);
Fty_z = Fty_z - Fty_z(1);
Frz_z = Frz_z - Frz_z(1);
Dw.x = Dw.x - Dw.x(1);
Dw.y = Dw.y - Dw.y(1);
Dw.z = Dw.z - Dw.z(1);
Ty.x = Ty.x - Ty.x(1);
Ty.z = Ty.z - Ty.z(1);
Rz.x = Rz.x - Rz.x(1);
Rz.y = Rz.y - Rz.y(1);
Rz.z = Rz.z - Rz.z(1);
if exist('./mat', 'dir')
if exist('./mat/nass_disturbances.mat', 'file')
save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append');
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args');
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_disturbances.mat', 'file')
save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append');
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args');
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
end

Binary file not shown.

View File

@ -299,8 +299,11 @@ Procedure:
[[*=initializeDisturbances=: Initialize Disturbances][=initializeDisturbances=: Initialize Disturbances]]
- [ ] It is suppose in this script that all disturbances have the same frequency vectors, and therefore the same time vector...
- [ ] See how to deal with that
- [X] It is suppose in this script that all disturbances have the same frequency vectors, and therefore the same time vector...
It does not anymore
- [X] See how to deal with that
Be able to pass custom =.mat= files (one mat file per disturbance)?
- [ ] Ground motion, X, Y and Z
- [ ] Ty stage, X and Z
@ -2486,8 +2489,8 @@ initializeDisturbances(...
'Dwz', true, ... % Ground Motion - Z direction
'Fty_x', false, ... % Translation Stage - X direction
'Fty_z', false, ... % Translation Stage - Z direction
'Frz_x', false, ... % Spindle - X direction
'Frz_y', false, ... % Spindle - Y direction
'Frz_x', true, ... % Spindle - X direction
'Frz_y', true, ... % Spindle - Y direction
'Frz_z', true); % Spindle - Z direction
initializeReferences(...
@ -2501,9 +2504,9 @@ tomo_align_dist = simout;
#+begin_src matlab :exports none
figure;
hold on;
plot(tomo_align_dist.y.x.Time, tomo_align_dist.y.x.Data)
plot(tomo_align_dist.y.y.Time, tomo_align_dist.y.y.Data)
plot(tomo_align_dist.y.z.Time, tomo_align_dist.y.z.Data)
plot(tomo_align_dist.y.x.Time, 1e6*tomo_align_dist.y.x.Data)
plot(tomo_align_dist.y.y.Time, 1e6*tomo_align_dist.y.y.Data)
plot(tomo_align_dist.y.z.Time, 1e6*tomo_align_dist.y.z.Data)
hold off;
#+end_src
@ -2540,7 +2543,6 @@ hold off;
#+end_src
** Raster Scans with the translation stage
<<sec:ty_scans>>
#+begin_src matlab
initializeReferences('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
sim(mdl);
@ -2551,7 +2553,6 @@ hold off;
* Conclusion
<<sec:uniaxial_conclusion>>
* Bibliography :ignore:
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
@ -2979,200 +2980,228 @@ arguments
end
#+end_src
*** Load Data
#+begin_src matlab
load('dist_psd.mat', 'dist_f');
% Initialization of random numbers
rng("shuffle");
#+end_src
*** Ground Motion
#+begin_src matlab
%% Ground Motion
load('dist_psd.mat', 'dist_f');
% Frequency Data
Dw.f = dist_f.f(2:end);
Dw.psd_x = dist_f.psd_gm(2:end);
Dw.psd_y = dist_f.psd_gm(2:end);
Dw.psd_z = dist_f.psd_gm(2:end);
% Time data
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Dw.psd_x(i)/T0);
end
if args.Dwx && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dw.x = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dw.y = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dw.z = zeros(length(Dw.t), 1);
end
#+end_src
*** Translation Stage
We remove the first frequency point that usually is very large.
#+begin_src matlab :exports none
load('dist_psd.mat', 'dist_f');
dist_f.f = dist_f.f(2:end);
dist_f.psd_gm = dist_f.psd_gm(2:end);
dist_f.psd_ty = dist_f.psd_ty(2:end);
dist_f.psd_rz = dist_f.psd_rz(2:end);
#+end_src
*** Parameters
We define some parameters that will be used in the algorithm.
#+begin_src matlab
Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD
%% Translation Stage
load('dist_psd.mat', 'dist_f');
% Frequency Data
Ty.f = dist_f.f(2:end);
Ty.psd_x = dist_f.psd_ty(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Ty.psd_z = dist_f.psd_ty(2:end);
% Time data
Fs = 2*Ty.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Ty.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
df = 1/T0; % Frequency resolution of the DFT [Hz]
% Also equal to (dist_f.f(2)-dist_f.f(1))
t = linspace(0, T0, N+1)'; % Time Vector [s]
Ts = 1/Fs; % Sampling Time [s]
#+end_src
Ty.t = linspace(0, T0, N+1)'; % Time Vector [s]
*** Ground Motion
#+begin_src matlab
phi = dist_f.psd_gm;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(Ty.psd_x(i)/T0);
end
#+end_src
#+begin_src matlab
if args.Dwx && args.enable
rng(111);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwx = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dwx = zeros(length(t), 1);
end
#+end_src
#+begin_src matlab
if args.Dwy && args.enable
rng(112);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwy = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dwy = zeros(length(t), 1);
end
#+end_src
#+begin_src matlab
if args.Dwy && args.enable
rng(113);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dwz = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dwz = zeros(length(t), 1);
end
#+end_src
*** Translation Stage - X direction
#+begin_src matlab
% Translation Stage - X
if args.Fty_x && args.enable
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
phi = Ty.psd_x;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(phi(i)/T0);
end
rng(121);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
Fty_x = u;
Ty.x = u;
else
Fty_x = zeros(length(t), 1);
Ty.x = zeros(length(Ty.t), 1);
end
#+end_src
*** Translation Stage - Z direction
#+begin_src matlab
% Translation Stage - Z
if args.Fty_z && args.enable
phi = dist_f.psd_ty;
phi = Ty.psd_z;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(phi(i)/T0);
end
rng(122);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
Fty_z = u;
Ty.z = u;
else
Fty_z = zeros(length(t), 1);
Ty.z = zeros(length(Ty.t), 1);
end
#+end_src
*** Spindle - X direction
*** Spindle
#+begin_src matlab
% if args.Frz_x && args.enable
% phi = dist_f.psd_rz;
% C = zeros(N/2,1);
% for i = 1:N/2
% C(i) = sqrt(phi(i)*df);
% end
% rng(131);
% theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
% Cx = [0 ; C.*complex(cos(theta),sin(theta))];
% Cx = [Cx; flipud(conj(Cx(2:end)))];;
% u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
% Frz_x = u;
% else
Frz_x = zeros(length(t), 1);
% end
#+end_src
%% Translation Stage
load('dist_psd.mat', 'dist_f');
*** Spindle - Y direction
#+begin_src matlab
% if args.Frz_y && args.enable
% phi = dist_f.psd_rz;
% C = zeros(N/2,1);
% for i = 1:N/2
% C(i) = sqrt(phi(i)*df);
% end
% rng(131);
% theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
% Cx = [0 ; C.*complex(cos(theta),sin(theta))];
% Cx = [Cx; flipud(conj(Cx(2:end)))];;
% u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
% Frz_z = u;
% else
Frz_y = zeros(length(t), 1);
% end
#+end_src
% Frequency Data
Rz.f = dist_f.f(2:end);
Rz.psd_x = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_y = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_z = dist_f.psd_rz(2:end);
% Time data
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
*** Spindle - Z direction
#+begin_src matlab
if args.Frz_z && args.enable
phi = dist_f.psd_rz;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)*df);
C(i) = sqrt(Rz.psd_x(i)/T0);
end
% Translation Stage - X
if args.Frz_x && args.enable
phi = Rz.psd_x;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz x [N]
Rz.x = u;
else
Rz.x = zeros(length(Rz.t), 1);
end
% Translation Stage - Y
if args.Frz_y && args.enable
phi = Rz.psd_y;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz y [N]
Rz.y = u;
else
Rz.y = zeros(length(Rz.t), 1);
end
% Translation Stage - Z
if args.Frz_z && args.enable
phi = Rz.psd_z;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
end
rng(131);
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
Frz_z = u;
Rz.z = u;
else
Frz_z = zeros(length(t), 1);
Rz.z = zeros(length(Rz.t), 1);
end
#+end_src
*** Direct Forces
#+begin_src matlab
u = zeros(length(t), 6);
u = zeros(100, 6);
Fd = u;
#+end_src
*** Set initial value to zero
#+begin_src matlab
Dwx = Dwx - Dwx(1);
Dwy = Dwy - Dwy(1);
Dwz = Dwz - Dwz(1);
Fty_x = Fty_x - Fty_x(1);
Fty_z = Fty_z - Fty_z(1);
Frz_z = Frz_z - Frz_z(1);
Dw.x = Dw.x - Dw.x(1);
Dw.y = Dw.y - Dw.y(1);
Dw.z = Dw.z - Dw.z(1);
Ty.x = Ty.x - Ty.x(1);
Ty.z = Ty.z - Ty.z(1);
Rz.x = Rz.x - Rz.x(1);
Rz.y = Rz.y - Rz.y(1);
Rz.z = Rz.z - Rz.z(1);
#+end_src
*** Save the Structure
#+begin_src matlab
if exist('./mat', 'dir')
if exist('./mat/nass_disturbances.mat', 'file')
save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append');
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args');
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_disturbances.mat', 'file')
save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append');
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_x', 'Frz_y', 'Frz_z', 'Fd', 'Ts', 't', 'args');
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
end
#+end_src