Add all data files

This commit is contained in:
2024-11-06 12:30:29 +01:00
parent 31d4dd5f24
commit 13a2e57322
70 changed files with 2991 additions and 707 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

21
matlab/src/circlefit.m Normal file
View File

@@ -0,0 +1,21 @@
function [xc,yc,R,a] = circlefit(x,y)
%
% [xc yx R] = circfit(x,y)
%
% fits a circle in x,y plane in a more accurate
% (less prone to ill condition )
% procedure than circfit2 but using more memory
% x,y are column vector where (x(i),y(i)) is a measured point
%
% result is center point (yc,xc) and radius R
% an optional output is the vector of coeficient a
% describing the circle's equation
%
% x^2+y^2+a(1)*x+a(2)*y+a(3)=0
%
% By: Izhak bucher 25/oct /1991,
x=x(:); y=y(:);
a=[x y ones(size(x))]\[-(x.^2+y.^2)];
xc = -.5*a(1);
yc = -.5*a(2);
R = sqrt((a(1)^2+a(2)^2)/4-a(3));

View File

@@ -10,15 +10,15 @@ arguments
% Global parameter to enable or disable the disturbances
args.enable logical {mustBeNumericOrLogical} = true
% Ground Motion - X direction
args.Dwx logical {mustBeNumericOrLogical} = true
args.Dw_x logical {mustBeNumericOrLogical} = true
% Ground Motion - Y direction
args.Dwy logical {mustBeNumericOrLogical} = true
args.Dw_y logical {mustBeNumericOrLogical} = true
% Ground Motion - Z direction
args.Dwz logical {mustBeNumericOrLogical} = true
args.Dw_z logical {mustBeNumericOrLogical} = true
% Translation Stage - X direction
args.Fty_x logical {mustBeNumericOrLogical} = true
args.Fdy_x logical {mustBeNumericOrLogical} = true
% Translation Stage - Z direction
args.Fty_z logical {mustBeNumericOrLogical} = true
args.Fdy_z logical {mustBeNumericOrLogical} = true
% Spindle - X direction
args.Frz_x logical {mustBeNumericOrLogical} = true
% Spindle - Y direction
@@ -31,175 +31,163 @@ end
rng("shuffle");
%% Ground Motion
load('dist_psd.mat', 'dist_f');
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'gm_dist')
% Frequency Data
Dw.f = dist_f.f(2:end);
Dw.psd_x = dist_f.psd_gm(2:end);
Dw.psd_y = dist_f.psd_gm(2:end);
Dw.psd_z = dist_f.psd_gm(2:end);
% Frequency Data
Dw.f = gm_dist.f;
Dw.psd_x = gm_dist.pxx_x;
Dw.psd_y = gm_dist.pxx_y;
Dw.psd_z = gm_dist.pxx_z;
% Time data
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
% Time data
Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dw.t = linspace(0, T0, N+1)'; % Time Vector [s]
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Dw.psd_x(i)/T0);
end
if args.Dwx && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dw.x = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dw.y = zeros(length(Dw.t), 1);
end
if args.Dwy && args.enable
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dw.z = zeros(length(Dw.t), 1);
end
load('dist_psd.mat', 'dist_f');
dist_f.f = dist_f.f(2:end);
dist_f.psd_gm = dist_f.psd_gm(2:end);
dist_f.psd_ty = dist_f.psd_ty(2:end);
dist_f.psd_rz = dist_f.psd_rz(2:end);
%% Translation Stage
load('dist_psd.mat', 'dist_f');
% Frequency Data
Ty.f = dist_f.f(2:end);
Ty.psd_x = dist_f.psd_ty(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Ty.psd_z = dist_f.psd_ty(2:end);
% Time data
Fs = 2*Ty.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Ty.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Ty.t = linspace(0, T0, N+1)'; % Time Vector [s]
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Ty.psd_x(i)/T0);
end
% Translation Stage - X
if args.Fty_x && args.enable
phi = Ty.psd_x;
% ASD representation of the ground motion
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
C(i) = sqrt(Dw.psd_x(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
Ty.x = u;
if args.Dw_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
Dw.x = zeros(length(Dw.t), 1);
end
if args.Dw_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
Dw.y = zeros(length(Dw.t), 1);
end
if args.Dw_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
Dw.z = zeros(length(Dw.t), 1);
end
else
Ty.x = zeros(length(Ty.t), 1);
Dw.t = [0,1]; % Time Vector [s]
Dw.x = [0,0]; % Ground Motion - X [m]
Dw.y = [0,0]; % Ground Motion - Y [m]
Dw.z = [0,0]; % Ground Motion - Z [m]
end
% Translation Stage - Z
if args.Fty_z && args.enable
phi = Ty.psd_z;
%% Translation stage
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'dy_dist')
% Frequency Data
Dy.f = dy_dist.f;
Dy.psd_x = dy_dist.pxx_fx;
Dy.psd_z = dy_dist.pxx_fz;
% Time data
Fs = 2*Dy.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Dy.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Dy.t = linspace(0, T0, N+1)'; % Time Vector [s]
% ASD representation of the disturbance voice
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
C(i) = sqrt(Dy.psd_x(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
Ty.z = u;
if args.Fdy_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dy.x = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - X direction [N]
else
Dy.x = zeros(length(Dy.t), 1);
end
if args.Fdy_z
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Dy.z = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - Z direction [N]
else
Dy.z = zeros(length(Dy.t), 1);
end
else
Ty.z = zeros(length(Ty.t), 1);
Dy.t = [0,1]; % Time Vector [s]
Dy.x = [0,0]; % Translation Stage disturbances - X [N]
Dy.z = [0,0]; % Translation Stage disturbances - Z [N]
end
%% Translation Stage
load('dist_psd.mat', 'dist_f');
%% Spindle
if args.enable
% Load the PSD of disturbance
load('ustation_disturbance_psd.mat', 'rz_dist')
% Frequency Data
Rz.f = dist_f.f(2:end);
Rz.psd_x = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_y = dist_f.psd_rz(2:end); % TODO - we take here the vertical direction which is wrong but approximate
Rz.psd_z = dist_f.psd_rz(2:end);
% Frequency Data
Rz.f = rz_dist.f;
Rz.psd_x = rz_dist.pxx_fx;
Rz.psd_y = rz_dist.pxx_fy;
Rz.psd_z = rz_dist.pxx_fz;
% Time data
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
% Time data
Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD
T0 = N/Fs; % Signal Duration [s]
Rz.t = linspace(0, T0, N+1)'; % Time Vector [s]
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(Rz.psd_x(i)/T0);
end
% Translation Stage - X
if args.Frz_x && args.enable
phi = Rz.psd_x;
% ASD representation of the disturbance voice
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
C(i) = sqrt(Rz.psd_x(i)/T0);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz x [N]
Rz.x = u;
else
Rz.x = zeros(length(Rz.t), 1);
end
% Translation Stage - Y
if args.Frz_y && args.enable
phi = Rz.psd_y;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
if args.Frz_x
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.x = N/sqrt(2)*ifft(Cx); % spindle disturbances - X direction [N]
else
Rz.x = zeros(length(Rz.t), 1);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz y [N]
Rz.y = u;
else
Rz.y = zeros(length(Rz.t), 1);
end
% Translation Stage - Z
if args.Frz_z && args.enable
phi = Rz.psd_z;
C = zeros(N/2,1);
for i = 1:N/2
C(i) = sqrt(phi(i)/T0);
if args.Frz_y
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.y = N/sqrt(2)*ifft(Cx); % spindle disturbances - Y direction [N]
else
Rz.y = zeros(length(Rz.t), 1);
end
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
Rz.z = u;
if args.Frz_z
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
Cx = [Cx; flipud(conj(Cx(2:end)))];;
Rz.z = N/sqrt(2)*ifft(Cx); % spindle disturbances - Z direction [N]
else
Rz.z = zeros(length(Rz.t), 1);
end
else
Rz.z = zeros(length(Rz.t), 1);
Rz.t = [0,1]; % Time Vector [s]
Rz.x = [0,0]; % Spindle disturbances - X [N]
Rz.y = [0,0]; % Spindle disturbances - X [N]
Rz.z = [0,0]; % Spindle disturbances - Z [N]
end
u = zeros(100, 6);
@@ -208,22 +196,16 @@ Fd = u;
Dw.x = Dw.x - Dw.x(1);
Dw.y = Dw.y - Dw.y(1);
Dw.z = Dw.z - Dw.z(1);
Ty.x = Ty.x - Ty.x(1);
Ty.z = Ty.z - Ty.z(1);
Dy.x = Dy.x - Dy.x(1);
Dy.z = Dy.z - Dy.z(1);
Rz.x = Rz.x - Rz.x(1);
Rz.y = Rz.y - Rz.y(1);
Rz.z = Rz.z - Rz.z(1);
if exist('./mat', 'dir')
if exist('./mat/nass_disturbances.mat', 'file')
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
save('mat/nass_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
elseif exist('./matlab', 'dir')
if exist('./matlab/mat/nass_disturbances.mat', 'file')
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args', '-append');
else
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Ty', 'Rz', 'Fd', 'args');
end
save('matlab/mat/nass_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args');
end

Binary file not shown.