135 lines
4.9 KiB
Matlab
135 lines
4.9 KiB
Matlab
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
%% Path for functions, data and scripts
|
|
addpath('./mat/'); % Path for data
|
|
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
|
|
%% Uniaxial Simscape model name
|
|
mdl = 'nass_uniaxial_model';
|
|
|
|
%% Frequency Vector [Hz]
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
|
|
|
|
% #+name: fig:micro_station_uniaxial_model
|
|
% #+caption: Schematic of the Micro-Station measurement setup and uniaxial model.
|
|
% #+begin_figure
|
|
% #+attr_latex: :caption \subcaption{\label{fig:micro_station_meas_dynamics_schematic}Measurement setup - Schematic}
|
|
% #+attr_latex: :options {0.69\textwidth}
|
|
% #+begin_subfigure
|
|
% #+attr_latex: :scale 1
|
|
% [[file:figs/micro_station_meas_dynamics_schematic.png]]
|
|
% #+end_subfigure
|
|
% #+attr_latex: :caption \subcaption{\label{fig:uniaxial_model_micro_station}Uniaxial model of the micro-station}
|
|
% #+attr_latex: :options {0.29\textwidth}
|
|
% #+begin_subfigure
|
|
% #+attr_latex: :scale 1
|
|
% [[file:figs/uniaxial_model_micro_station.png]]
|
|
% #+end_subfigure
|
|
% #+end_figure
|
|
|
|
% Due to the bad coherence at low frequency, the frequency response functions will only be shown between 20 and 200Hz (solid lines in Figure ref:fig:uniaxial_comp_frf_meas_model).
|
|
|
|
|
|
%% Load measured FRF
|
|
load('meas_microstation_frf.mat');
|
|
|
|
|
|
|
|
% Masses are estimated from the CAD.
|
|
|
|
%% Parameters - Mass
|
|
mh = 15; % Micro Hexapod [kg]
|
|
mt = 1200; % Ty + Ry + Rz [kg]
|
|
mg = 2500; % Granite [kg]
|
|
|
|
|
|
|
|
% And stiffnesses from the data-sheet of stage manufacturers.
|
|
|
|
%% Parameters - Stiffnesses
|
|
kh = 6.11e+07; % [N/m]
|
|
kt = 5.19e+08; % [N/m]
|
|
kg = 9.50e+08; % [N/m]
|
|
|
|
|
|
|
|
% The damping coefficients are tuned to match the identified damping from the measurements.
|
|
|
|
%% Parameters - damping
|
|
ch = 2*0.05*sqrt(kh*mh); % [N/(m/s)]
|
|
ct = 2*0.05*sqrt(kt*mt); % [N/(m/s)]
|
|
cg = 2*0.08*sqrt(kg*mg); % [N/(m/s)]
|
|
|
|
%% Save model parameters
|
|
save('./mat/uniaxial_micro_station_parameters.mat', 'mh', 'mt', 'mg', 'ch', 'ct', 'cg', 'kh', 'kt', 'kg')
|
|
|
|
%% Disable the Nano-Hexpod for now
|
|
model_config = struct();
|
|
model_config.nhexa = "none";
|
|
model_config.controller = "open_loop";
|
|
|
|
%% Identify the transfer function from u to taum
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/micro_station/Fg'], 1, 'openinput'); io_i = io_i + 1; % Hammer on Granite
|
|
io(io_i) = linio([mdl, '/micro_station/Fh'], 1, 'openinput'); io_i = io_i + 1; % Hammer on Hexapod
|
|
io(io_i) = linio([mdl, '/micro_station/xg'], 1, 'openoutput'); io_i = io_i + 1; % Absolute motion of Granite
|
|
io(io_i) = linio([mdl, '/micro_station/xh'], 1, 'openoutput'); io_i = io_i + 1; % Absolute motion of Hexapod
|
|
|
|
%% Perform the model extraction
|
|
G_id = linearize(mdl, io, 0.0);
|
|
G_id.InputName = {'Fg', 'Fh'};
|
|
G_id.OutputName = {'Dg', 'Dh'};
|
|
|
|
% Comparison of the model and measurements
|
|
% The comparison between the measurements and the model is shown in Figure ref:fig:uniaxial_comp_frf_meas_model.
|
|
|
|
% Only three modes are modelled with frequencies at 70Hz, 140Hz and 320Hz.
|
|
|
|
% As the model is simplistic, the goal is not to match exactly the measurement but to have a first approximation.
|
|
% More accurate models will be used later on.
|
|
|
|
|
|
%% Comparison of the measured FRF and identified ones from the uni-axial model
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
ax1 = nexttile([2,1]);
|
|
hold on;
|
|
plot(f(f>20), abs(frf_Fhz_to_Dhz(f>20)), '-', 'color', colors(1,:), 'DisplayName', '$D_{h,z}/F_{h,z}$');
|
|
plot(f(f>20), abs(frf_Fgz_to_Dhz(f>20)), '-', 'color', colors(2,:), 'DisplayName', '$D_{h,z}/F_{g,z}$');
|
|
plot(f(f>20), abs(frf_Fgz_to_Dgz(f>20)), '-', 'color', colors(3,:), 'DisplayName', '$D_{g,z}/F_{g,z}$');
|
|
plot(freqs, abs(squeeze(freqresp(G_id('Dh', 'Fh'), freqs, 'Hz'))), '--', 'color', colors(1,:), 'DisplayName', '$D_{h,z}/F_{h,z}$ (model)');
|
|
plot(freqs, abs(squeeze(freqresp(G_id('Dh', 'Fg'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '$D_{h,z}/F_{g,z}$ (model)');
|
|
plot(freqs, abs(squeeze(freqresp(G_id('Dg', 'Fg'), freqs, 'Hz'))), '--', 'color', colors(3,:), 'DisplayName', '$D_{g,z}/F_{g,z}$ (model)');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
ylim([1e-10, 2e-7]);
|
|
legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2);
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_id('Dh', 'Fh'), freqs, 'Hz')))), '--', 'color', colors(1,:));
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_id('Dh', 'Fg'), freqs, 'Hz')))), '--', 'color', colors(2,:));
|
|
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_id('Dg', 'Fg'), freqs, 'Hz')))), '--', 'color', colors(3,:));
|
|
plot(f(f>20), 180/pi*unwrap(angle(frf_Fhx_to_Dhx(f>20))), '-', 'color', colors(1,:));
|
|
plot(f(f>30), 180/pi*unwrap(angle(frf_Fgx_to_Dhx(f>30))), '-', 'color', colors(2,:));
|
|
plot(f(f>20), 180/pi*unwrap(angle(frf_Fgx_to_Dgx(f>20))), '-', 'color', colors(3,:));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
hold off;
|
|
yticks(-360:90:360);
|
|
ylim([-360, 90]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([1, 500]);
|