Correct positioning of subfigure
This commit is contained in:
parent
f66f06a43f
commit
f0df63cfdf
@ -73,16 +73,6 @@
|
|||||||
(add-to-list 'org-export-filter-headline-functions
|
(add-to-list 'org-export-filter-headline-functions
|
||||||
'my-latex-filter-removeOrgAutoLabels)
|
'my-latex-filter-removeOrgAutoLabels)
|
||||||
|
|
||||||
;; Remove all org comments in the output LaTeX file
|
|
||||||
(defun delete-org-comments (backend)
|
|
||||||
(loop for comment in (reverse (org-element-map (org-element-parse-buffer)
|
|
||||||
'comment 'identity))
|
|
||||||
do
|
|
||||||
(setf (buffer-substring (org-element-property :begin comment)
|
|
||||||
(org-element-property :end comment))
|
|
||||||
"")))
|
|
||||||
(add-hook 'org-export-before-processing-hook 'delete-org-comments)
|
|
||||||
|
|
||||||
;; Use no package by default
|
;; Use no package by default
|
||||||
(setq org-latex-packages-alist nil)
|
(setq org-latex-packages-alist nil)
|
||||||
(setq org-latex-default-packages-alist nil)
|
(setq org-latex-default-packages-alist nil)
|
||||||
@ -488,6 +478,7 @@ From the forces applied by the instrumented hammer and the responses of the geop
|
|||||||
|
|
||||||
#+name: fig:micro_station_uniaxial_model
|
#+name: fig:micro_station_uniaxial_model
|
||||||
#+caption: Schematic of the Micro-Station measurement setup and uniaxial model.
|
#+caption: Schematic of the Micro-Station measurement setup and uniaxial model.
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_ustation_meas_dynamics_schematic}Measurement setup - Schematic}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_ustation_meas_dynamics_schematic}Measurement setup - Schematic}
|
||||||
#+attr_latex: :options {0.69\textwidth}
|
#+attr_latex: :options {0.69\textwidth}
|
||||||
@ -3639,6 +3630,7 @@ When applied on the uniaxial model with IFF used as the Low Authority Control, t
|
|||||||
|
|
||||||
#+name: fig:uniaxial_hac_lac
|
#+name: fig:uniaxial_hac_lac
|
||||||
#+caption: High Authority Control - Low Authority Control (HAC-LAC)
|
#+caption: High Authority Control - Low Authority Control (HAC-LAC)
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_hac_lac_architecture}Typical HAC-LAC Architecture}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_hac_lac_architecture}Typical HAC-LAC Architecture}
|
||||||
#+attr_latex: :options {0.54\textwidth}
|
#+attr_latex: :options {0.54\textwidth}
|
||||||
@ -4408,6 +4400,7 @@ In order to study this, two models are used (Figure ref:fig:uniaxial_support_com
|
|||||||
|
|
||||||
#+name: fig:uniaxial_support_compliance_models
|
#+name: fig:uniaxial_support_compliance_models
|
||||||
#+caption: Models used to study the effect of limited support compliance
|
#+caption: Models used to study the effect of limited support compliance
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_support_compliance_nano_hexapod_only}Nano-Hexapod fixed directly on the Granite}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_support_compliance_nano_hexapod_only}Nano-Hexapod fixed directly on the Granite}
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
@ -4851,6 +4844,7 @@ To study the effect of the sample dynamics, models shown in Figure ref:fig:uniax
|
|||||||
|
|
||||||
#+name: fig:uniaxial_payload_dynamics_models
|
#+name: fig:uniaxial_payload_dynamics_models
|
||||||
#+caption: Models used to study the effect of payload dynamics
|
#+caption: Models used to study the effect of payload dynamics
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_paylaod_dynamics_rigid_schematic}Rigid payload}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_paylaod_dynamics_rigid_schematic}Rigid payload}
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
@ -5566,6 +5560,7 @@ exportFig('figs/uniaxial_sample_flexibility_noise_budget_y.pdf', 'width', 'full'
|
|||||||
|
|
||||||
#+name: fig:uniaxial_sample_flexibility_noise_budget
|
#+name: fig:uniaxial_sample_flexibility_noise_budget
|
||||||
#+caption: Cumulative Amplitude Spectrum of the distances $d$ and $y$. The effect of the sample's flexibility does not affects much $d$ but is detrimental to the stability of $y$. A sample mass $m_s = 1\,\text{kg}$ is used for the simulations.
|
#+caption: Cumulative Amplitude Spectrum of the distances $d$ and $y$. The effect of the sample's flexibility does not affects much $d$ but is detrimental to the stability of $y$. A sample mass $m_s = 1\,\text{kg}$ is used for the simulations.
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
#+begin_figure
|
#+begin_figure
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_sample_flexibility_noise_budget_d}Cumulative Amplitude Spectrum of $d$}
|
#+attr_latex: :caption \subcaption{\label{fig:uniaxial_sample_flexibility_noise_budget_d}Cumulative Amplitude Spectrum of $d$}
|
||||||
#+attr_latex: :options {0.95\textwidth}
|
#+attr_latex: :options {0.95\textwidth}
|
||||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
|||||||
% Created 2024-03-21 Thu 18:24
|
% Created 2024-03-27 Wed 14:33
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
@ -12,7 +12,7 @@
|
|||||||
pdftitle={Nano Active Stabilization System - Uniaxial Model},
|
pdftitle={Nano Active Stabilization System - Uniaxial Model},
|
||||||
pdfkeywords={},
|
pdfkeywords={},
|
||||||
pdfsubject={},
|
pdfsubject={},
|
||||||
pdfcreator={Emacs 29.2 (Org mode 9.7)},
|
pdfcreator={Emacs 29.3 (Org mode 9.7)},
|
||||||
pdflang={English}}
|
pdflang={English}}
|
||||||
\usepackage{biblatex}
|
\usepackage{biblatex}
|
||||||
|
|
||||||
@ -94,7 +94,7 @@ From the forces applied by the instrumented hammer and the responses of the geop
|
|||||||
\item from \(F_g\) to \(d_g\)
|
\item from \(F_g\) to \(d_g\)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.69\textwidth}
|
\begin{subfigure}{0.69\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=1]{figs/uniaxial_ustation_meas_dynamics_schematic.png}
|
\includegraphics[scale=1,scale=1]{figs/uniaxial_ustation_meas_dynamics_schematic.png}
|
||||||
@ -541,7 +541,7 @@ It allows to reduce the vibration level, and it also makes the damped plant (tra
|
|||||||
|
|
||||||
When applied on the uniaxial model with IFF used as the Low Authority Control, the schematic shown in Figure \ref{fig:uniaxial_hac_lac_model} is obtained.
|
When applied on the uniaxial model with IFF used as the Low Authority Control, the schematic shown in Figure \ref{fig:uniaxial_hac_lac_model} is obtained.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.54\textwidth}
|
\begin{subfigure}{0.54\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,width=1.0\linewidth]{figs/uniaxial_hac_lac_architecture.png}
|
\includegraphics[scale=1,width=1.0\linewidth]{figs/uniaxial_hac_lac_architecture.png}
|
||||||
@ -701,7 +701,7 @@ In order to study this, two models are used (Figure \ref{fig:uniaxial_support_co
|
|||||||
\item the nano-hexapod fixed on top of the micro-station having some limited compliance (Figure \ref{fig:uniaxial_support_compliance_test_system})
|
\item the nano-hexapod fixed on top of the micro-station having some limited compliance (Figure \ref{fig:uniaxial_support_compliance_test_system})
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.49\textwidth}
|
\begin{subfigure}{0.49\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=1]{figs/uniaxial_support_compliance_nano_hexapod_only.png}
|
\includegraphics[scale=1,scale=1]{figs/uniaxial_support_compliance_nano_hexapod_only.png}
|
||||||
@ -740,6 +740,7 @@ When the relative displacement of the nano-hexapod \(L\) is to be controlled (dy
|
|||||||
|
|
||||||
This is why it is very common to have stiff piezoelectric stages fixed at the very top of positioning stages.
|
This is why it is very common to have stiff piezoelectric stages fixed at the very top of positioning stages.
|
||||||
In such case, the control of the piezoelectric stage using its integrated metrology (typically capacitive sensors) is quite simple as the plant is not much affected by the dynamics of the support on which is it fixed.
|
In such case, the control of the piezoelectric stage using its integrated metrology (typically capacitive sensors) is quite simple as the plant is not much affected by the dynamics of the support on which is it fixed.
|
||||||
|
|
||||||
If a soft nano-hexapod is used, the support dynamics appears in the dynamics between \(F\) and \(L\) (see Figure \ref{fig:uniaxial_effect_support_compliance_dynamics}, left) which will impact the control robustness and performance.
|
If a soft nano-hexapod is used, the support dynamics appears in the dynamics between \(F\) and \(L\) (see Figure \ref{fig:uniaxial_effect_support_compliance_dynamics}, left) which will impact the control robustness and performance.
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
\begin{figure}[htbp]
|
||||||
@ -789,7 +790,7 @@ However, such sample may present internal dynamics and its fixation to the nano-
|
|||||||
|
|
||||||
To study the effect of the sample dynamics, models shown in Figure \ref{fig:uniaxial_paylaod_dynamics_schematic} are used is this Section.
|
To study the effect of the sample dynamics, models shown in Figure \ref{fig:uniaxial_paylaod_dynamics_schematic} are used is this Section.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.49\textwidth}
|
\begin{subfigure}{0.49\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=1]{figs/uniaxial_paylaod_dynamics_rigid_schematic.png}
|
\includegraphics[scale=1,scale=1]{figs/uniaxial_paylaod_dynamics_rigid_schematic.png}
|
||||||
@ -875,7 +876,7 @@ However, the cumulative amplitude spectrum of the distance \(y\) (Figure \ref{fi
|
|||||||
|
|
||||||
What happens is that above \(\omega_s\), even though the motion \(d\) can be controlled perfectly, the sample's mass is ``isolated'' from the motion of the nano-hexapod and the control on \(y\) is not effective.
|
What happens is that above \(\omega_s\), even though the motion \(d\) can be controlled perfectly, the sample's mass is ``isolated'' from the motion of the nano-hexapod and the control on \(y\) is not effective.
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}[htbp]
|
||||||
\begin{subfigure}{0.95\textwidth}
|
\begin{subfigure}{0.95\textwidth}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[scale=1,scale=1]{figs/uniaxial_sample_flexibility_noise_budget_d.png}
|
\includegraphics[scale=1,scale=1]{figs/uniaxial_sample_flexibility_noise_budget_d.png}
|
||||||
|
Loading…
Reference in New Issue
Block a user