150 lines
8.4 KiB
Mathematica
150 lines
8.4 KiB
Mathematica
|
%% Clear Workspace and Close figures
|
||
|
clear; close all; clc;
|
||
|
|
||
|
%% Intialize Laplace variable
|
||
|
s = zpk('s');
|
||
|
|
||
|
%% Path for functions, data and scripts
|
||
|
addpath('./mat/'); % Path for data
|
||
|
|
||
|
%% Colors for the figures
|
||
|
colors = colororder;
|
||
|
|
||
|
%% Frequency Vector [Hz]
|
||
|
freqs = logspace(0, 3, 1000);
|
||
|
|
||
|
%% Load the PSD of disturbances
|
||
|
load('uniaxial_disturbance_psd.mat', 'f', 'psd_ft', 'psd_xf');
|
||
|
|
||
|
%% Load Plants Dynamics
|
||
|
load('uniaxial_plants.mat', 'G_vc_light', 'G_md_light', 'G_pz_light', ...
|
||
|
'G_vc_mid', 'G_md_mid', 'G_pz_mid', ...
|
||
|
'G_vc_heavy', 'G_md_heavy', 'G_pz_heavy');
|
||
|
|
||
|
% Sensitivity to disturbances
|
||
|
% From the Uni-axial model, the transfer function from the disturbances ($f_s$, $x_f$ and $f_t$) to the displacement $d$ are computed.
|
||
|
|
||
|
% This is done for *two extreme sample masses* $m_s = 1\,\text{kg}$ and $m_s = 50\,\text{kg}$ and *three nano-hexapod stiffnesses*:
|
||
|
% - $k_n = 0.01\,N/\mu m$ that could represent a voice coil actuator with soft flexible guiding
|
||
|
% - $k_n = 1\,N/\mu m$ that could represent a voice coil actuator with a stiff flexible guiding or a mechanically amplified piezoelectric actuator
|
||
|
% - $k_n = 100\,N/\mu m$ that could represent a stiff piezoelectric stack actuator
|
||
|
|
||
|
% The obtained sensitivity to disturbances for the three nano-hexapod stiffnesses are shown in Figure ref:fig:uniaxial_sensitivity_disturbances_nano_hexapod_stiffnesses for the light sample (same conclusions can be drawn with the heavy one).
|
||
|
|
||
|
% #+begin_important
|
||
|
% From Figure ref:fig:uniaxial_sensitivity_disturbances_nano_hexapod_stiffnesses, following can be concluded for the *soft nano-hexapod*:
|
||
|
% - It is more sensitive to forces applied on the sample (cable forces for instance), which is expected due to the lower stiffness
|
||
|
% - Between the suspension mode of the nano-hexapod (here at 5Hz) and the first mode of the micro-station (here at 70Hz), the disturbances induced by the stage vibrations are filtered out.
|
||
|
% - Above the suspension mode of the nano-hexapod, the sample's motion is unaffected by the floor motion, and therefore the sensitivity to floor motion is almost $1$.
|
||
|
% #+end_important
|
||
|
|
||
|
|
||
|
%% Sensitivity to disturbances for three different nano-hexpod stiffnesses
|
||
|
figure;
|
||
|
tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||
|
|
||
|
ax1 = nexttile();
|
||
|
hold on;
|
||
|
plot(freqs, abs(squeeze(freqresp(G_vc_light('d', 'fs'), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G_md_light('d', 'fs'), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G_pz_light('d', 'fs'), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude $d/f_{s}$ [m/N]'); xlabel('Frequency [Hz]');
|
||
|
xticks([1e0, 1e1, 1e2]);
|
||
|
|
||
|
ax2 = nexttile();
|
||
|
hold on;
|
||
|
plot(freqs, abs(squeeze(freqresp(G_vc_light('d', 'ft'), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G_md_light('d', 'ft'), freqs, 'Hz'))));
|
||
|
plot(freqs, abs(squeeze(freqresp(G_pz_light('d', 'ft'), freqs, 'Hz'))));
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude $d/f_{t}$ [m/N]'); xlabel('Frequency [Hz]');
|
||
|
xticks([1e0, 1e1, 1e2]);
|
||
|
|
||
|
ax3 = nexttile();
|
||
|
hold on;
|
||
|
plot(freqs, abs(squeeze(freqresp(G_vc_light('d', 'xf'), freqs, 'Hz'))), 'DisplayName', '$k_n = 0.01\,N/\mu m$');
|
||
|
plot(freqs, abs(squeeze(freqresp(G_md_light('d', 'xf'), freqs, 'Hz'))), 'DisplayName', '$k_n = 1 \,N/\mu m$');
|
||
|
plot(freqs, abs(squeeze(freqresp(G_pz_light('d', 'xf'), freqs, 'Hz'))), 'DisplayName', '$k_n = 100 \,N/\mu m$');
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Amplitude $d/x_{f}$ [m/m]'); xlabel('Frequency [Hz]');
|
||
|
xticks([1e0, 1e1, 1e2]);
|
||
|
legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1);
|
||
|
|
||
|
linkaxes([ax1,ax2,ax3],'x');
|
||
|
xlim([1, 500]);
|
||
|
|
||
|
% Open-Loop Dynamic Noise Budgeting
|
||
|
% Now, the power spectral density of the disturbances is taken into account to estimate the residual motion $d$ in each case.
|
||
|
|
||
|
% The Cumulative Amplitude Spectrum of the relative motion $d$ due to both the floor motion $x_f$ and the stage vibrations $f_t$ are shown in Figure ref:fig:uniaxial_cas_d_disturbances_stiffnesses for the three nano-hexapod stiffnesses.
|
||
|
|
||
|
% It is shown that the effect of the floor motion is much less than the stage vibrations, except for the soft nano-hexapod below 5Hz.
|
||
|
|
||
|
|
||
|
%% Cumulative Amplitude Spectrum of the relative motion d, due to both the floor motion and the stage vibrations
|
||
|
figure;
|
||
|
tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||
|
|
||
|
ax1 = nexttile();
|
||
|
hold on;
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_vc_light('d', 'ft'), f, 'Hz'))).^2)))), '-', 'color', colors(1,:), 'DisplayName', '$f_t$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_md_light('d', 'ft'), f, 'Hz'))).^2)))), '-', 'color', colors(2,:), 'DisplayName', '$f_t$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_pz_light('d', 'ft'), f, 'Hz'))).^2)))), '-', 'color', colors(3,:), 'DisplayName', '$f_t$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_xf.*abs(squeeze(freqresp(G_vc_light('d', 'xf'), f, 'Hz'))).^2)))), '--', 'color', colors(1,:), 'DisplayName', '$x_f$ ($k_n = 0.01\,N/\mu m$)');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_xf.*abs(squeeze(freqresp(G_md_light('d', 'xf'), f, 'Hz'))).^2)))), '--', 'color', colors(2,:), 'DisplayName', '$x_f$ ($k_n = 1 \,N/\mu m$)');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_xf.*abs(squeeze(freqresp(G_pz_light('d', 'xf'), f, 'Hz'))).^2)))), '--', 'color', colors(3,:), 'DisplayName', '$x_f$ ($k_n = 100 \,N/\mu m$)');
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Cumulative Ampl. Spectrum [m]'); xlabel('Frequency [Hz]');
|
||
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
||
|
|
||
|
xlim([1, 500]);
|
||
|
ylim([1e-12, 1e-6])
|
||
|
|
||
|
|
||
|
|
||
|
% #+name: fig:uniaxial_cas_d_disturbances_stiffnesses
|
||
|
% #+caption: Cumulative Amplitude Spectrum of the relative motion d, due to both the floor motion and the stage vibrations (light sample)
|
||
|
% #+RESULTS:
|
||
|
% [[file:figs/uniaxial_cas_d_disturbances_stiffnesses.png]]
|
||
|
|
||
|
% The total cumulative amplitude spectrum for the three nano-hexapod stiffnesses and for the two sample's masses are shown in Figure ref:fig:uniaxial_cas_d_disturbances_payload_masses.
|
||
|
% The conclusion is that the sample's mass has little effect on the cumulative amplitude spectrum of the relative motion $d$.
|
||
|
|
||
|
|
||
|
%% Cumulative Amplitude Spectrum of the relative motion d due to all disturbances, for two sample masses
|
||
|
figure;
|
||
|
tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
||
|
|
||
|
ax1 = nexttile();
|
||
|
hold on;
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_vc_light('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_vc_light('d', 'xf'), f, 'Hz'))).^2)))), '-', ...
|
||
|
'color', colors(1,:), 'DisplayName', '$m_s = 1\,kg$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_md_light('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_md_light('d', 'xf'), f, 'Hz'))).^2)))), '-', ...
|
||
|
'color', colors(2,:), 'DisplayName', '$m_s = 1\,kg$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_pz_light('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_pz_light('d', 'xf'), f, 'Hz'))).^2)))), '-', ...
|
||
|
'color', colors(3,:), 'DisplayName', '$m_s = 1\,kg$');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_vc_heavy('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_vc_heavy('d', 'xf'), f, 'Hz'))).^2)))), '--', ...
|
||
|
'color', colors(1,:), 'DisplayName', '$m_s = 50\,kg$ ($k_n = 0.01\,N/\mu m$)');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_md_heavy('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_md_heavy('d', 'xf'), f, 'Hz'))).^2)))), '--', ...
|
||
|
'color', colors(2,:), 'DisplayName', '$m_s = 50\,kg$ ($k_n = 1\,N/\mu m$)');
|
||
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(psd_ft.*abs(squeeze(freqresp(G_pz_heavy('d', 'ft'), f, 'Hz'))).^2 + ...
|
||
|
psd_xf.*abs(squeeze(freqresp(G_pz_heavy('d', 'xf'), f, 'Hz'))).^2)))), '--', ...
|
||
|
'color', colors(3,:), 'DisplayName', '$m_s = 50\,kg$ ($k_n = 100\,N/\mu m$)');
|
||
|
hold off;
|
||
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||
|
ylabel('Cumulative Ampl. Spectrum [m]'); xlabel('Frequency [Hz]');
|
||
|
legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2);
|
||
|
|
||
|
xlim([1, 500]);
|
||
|
ylim([1e-11, 3e-6])
|