340 lines
12 KiB
Matlab
340 lines
12 KiB
Matlab
%% Clear Workspace and Close figures
|
|
clear; close all; clc;
|
|
|
|
%% Intialize Laplace variable
|
|
s = zpk('s');
|
|
|
|
%% Path for functions, data and scripts
|
|
addpath('./mat/'); % Path for data
|
|
addpath('./src/'); % Path for Functions
|
|
|
|
%% Colors for the figures
|
|
colors = colororder;
|
|
|
|
%% Simscape model name
|
|
mdl = 'rotating_model';
|
|
|
|
%% Load "Generic" system dynamics
|
|
load('rotating_generic_plants.mat', 'Gs', 'Wzs');
|
|
|
|
%% Tuv Stage
|
|
mn = 0.5; % Tuv mass [kg]
|
|
|
|
%% Sample
|
|
ms = 0.5; % Sample mass [kg]
|
|
|
|
%% General Configuration
|
|
model_config = struct();
|
|
model_config.controller = "open_loop"; % Default: Open-Loop
|
|
model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/controller'], 1, 'openinput'); io_i = io_i + 1; % [Fu, Fv]
|
|
io(io_i) = linio([mdl, '/fd'], 1, 'openinput'); io_i = io_i + 1; % [Fdu, Fdv]
|
|
io(io_i) = linio([mdl, '/translation_stage'], 1, 'openoutput'); io_i = io_i + 1; % [Fmu, Fmv]
|
|
io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv]
|
|
io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy]
|
|
|
|
Wz = 0.1; % The rotation speed [rad/s]
|
|
|
|
%% No parallel Stiffness
|
|
kp = 0; % Parallel Stiffness [N/m]
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
G_no_kp = linearize(mdl, io, 0);
|
|
G_no_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G_no_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
%% Small parallel Stiffness
|
|
kp = 0.5*(mn+ms)*Wz^2; % Parallel Stiffness [N/m]
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
G_low_kp = linearize(mdl, io, 0);
|
|
G_low_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G_low_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
%% Large parallel Stiffness
|
|
kp = 1.5*(mn+ms)*Wz^2; % Parallel Stiffness [N/m]
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
G_high_kp = linearize(mdl, io, 0);
|
|
G_high_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G_high_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
%% Effect of the parallel stiffness on the IFF plant
|
|
freqs = logspace(-2, 1, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
% Magnitude
|
|
ax1 = nexttile([2, 1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G_no_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-', ...
|
|
'DisplayName', '$k_p = 0$')
|
|
plot(freqs, abs(squeeze(freqresp(G_low_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-', ...
|
|
'DisplayName', '$k_p < m\Omega^2$')
|
|
plot(freqs, abs(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s'))), '-', ...
|
|
'DisplayName', '$k_p > m\Omega^2$')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]');
|
|
ylim([1e-4, 5e1]);
|
|
legend('location', 'southeast', 'FontSize', 8);
|
|
|
|
% Phase
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_no_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-')
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_low_kp( 'fu', 'Fu'), freqs, 'rad/s'))), '-')
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s'))), '-')
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
|
|
yticks(-180:90:180);
|
|
ylim([0 180]);
|
|
hold off;
|
|
xticks([1e-2,1e-1,1,1e1])
|
|
xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|
|
|
|
%% Root Locus for IFF without parallel spring, with small parallel spring and with large parallel spring
|
|
gains = logspace(-2, 2, 200);
|
|
|
|
figure;
|
|
hold on;
|
|
plot(real(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(1,:), ...
|
|
'DisplayName', '$k_p = 0$','MarkerSize',8);
|
|
plot(real(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',8);
|
|
for g = gains
|
|
cl_poles = pole(feedback(G_no_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
|
|
plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(1,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',4);
|
|
end
|
|
|
|
plot(real(pole(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(2,:), ...
|
|
'DisplayName', '$k_p < m\Omega^2$','MarkerSize',8);
|
|
plot(real(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',8);
|
|
for g = gains
|
|
cl_poles = pole(feedback(G_low_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
|
|
plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(2,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',4);
|
|
end
|
|
|
|
plot(real(pole(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(3,:), ...
|
|
'DisplayName', '$k_p > m\Omega^2$','MarkerSize',8);
|
|
plot(real(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(3,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',8);
|
|
for g = gains
|
|
cl_poles = pole(feedback(G_high_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2)));
|
|
plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(3,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',4);
|
|
end
|
|
hold off;
|
|
axis square;
|
|
xlim([-2.25, 0.25]); ylim([-1.25, 1.25]);
|
|
xticks([-2, -1, 0])
|
|
xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'})
|
|
yticks([-1, 0, 1])
|
|
yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'})
|
|
|
|
xlabel('Real Part'); ylabel('Imaginary Part');
|
|
leg = legend('location', 'northwest', 'FontSize', 8);
|
|
leg.ItemTokenSize(1) = 8;
|
|
|
|
%% Tested parallel stiffnesses
|
|
kps = [2, 20, 40]*(mn + ms)*Wz^2;
|
|
|
|
%% Root Locus: Effect of the parallel stiffness on the attainable damping
|
|
gains = logspace(-2, 4, 500);
|
|
|
|
figure;
|
|
hold on;
|
|
for kp_i = 1:length(kps)
|
|
kp = kps(kp_i); % Parallel Stiffness [N/m]
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
% Identify dynamics
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
plot(real(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), imag(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), 'x', 'color', colors(kp_i,:), ...
|
|
'DisplayName', sprintf('$k_p = %.1f m \\Omega^2$', kp/((mn+ms)*Wz^2)),'MarkerSize',8);
|
|
plot(real(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), imag(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*(1/s*eye(2)))), 'o', 'color', colors(kp_i,:), ...
|
|
'HandleVisibility', 'off','MarkerSize',8);
|
|
for g = gains
|
|
cl_poles = pole(feedback(G({'fu', 'fv'}, {'Fu', 'Fv'}), (g/s)*eye(2)));
|
|
plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(kp_i,:),'MarkerSize',4, ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
end
|
|
hold off;
|
|
axis square;
|
|
% xlim([-1.15, 0.05]); ylim([0, 1.2]);
|
|
xlim([-2.25, 0.25]); ylim([-1.25, 1.25]);
|
|
xticks([-2, -1, 0])
|
|
xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'})
|
|
yticks([-1, 0, 1])
|
|
yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'})
|
|
|
|
xlabel('Real Part'); ylabel('Imaginary Part');
|
|
leg = legend('location', 'northwest', 'FontSize', 8);
|
|
leg.ItemTokenSize(1) = 12;
|
|
|
|
%% Computes the optimal parameters and attainable simultaneous damping
|
|
alphas = logspace(-2, 0, 100);
|
|
alphas(end) = []; % Remove last point
|
|
|
|
opt_xi = zeros(1, length(alphas)); % Optimal simultaneous damping
|
|
opt_gain = zeros(1, length(alphas)); % Corresponding optimal gain
|
|
|
|
Kiff = 1/s*eye(2);
|
|
|
|
for alpha_i = 1:length(alphas)
|
|
kp = alphas(alpha_i);
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
% Identify dynamics
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
fun = @(g)computeSimultaneousDamping(g, G({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff);
|
|
|
|
[g_opt, xi_opt] = fminsearch(fun, 2);
|
|
opt_xi(alpha_i) = 1/xi_opt;
|
|
opt_gain(alpha_i) = g_opt;
|
|
end
|
|
|
|
%% Attainable damping as a function of the stiffness ratio
|
|
figure;
|
|
yyaxis left
|
|
plot(alphas, opt_xi, '-', 'DisplayName', '$\xi_{cl}$');
|
|
set(gca, 'YScale', 'lin');
|
|
ylim([0,1]);
|
|
ylabel('Damping Ratio $\xi$');
|
|
|
|
yyaxis right
|
|
hold on;
|
|
plot(alphas, opt_gain, '-', 'DisplayName', '$g_{opt}$');
|
|
set(gca, 'YScale', 'lin');
|
|
ylim([0,2.5]);
|
|
ylabel('Controller gain $g$');
|
|
|
|
set(gca, 'XScale', 'log');
|
|
legend('location', 'northeast', 'FontSize', 8);
|
|
|
|
xlabel('$k_p$');
|
|
xlim([0.01, 1]);
|
|
xticks([0.01, 0.1, 1])
|
|
xticklabels({'$m\Omega^2$', '$10m\Omega^2$', '$100m\Omega^2$'})
|
|
|
|
%% Identify dynamics with parallel stiffness = 2mW^2
|
|
Wz = 0.1; % [rad/s]
|
|
kp = 2*(mn + ms)*Wz^2; % Parallel Stiffness [N/m]
|
|
cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)]
|
|
kn = 1 - kp; % Stiffness [N/m]
|
|
cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)]
|
|
|
|
% Identify dynamics
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'};
|
|
G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'};
|
|
|
|
%% IFF controller with pure integrator
|
|
Kiff_kp = (2.2/s)*eye(2);
|
|
Kiff_kp.InputName = {'fu', 'fv'};
|
|
Kiff_kp.OutputName = {'Fu', 'Fv'};
|
|
|
|
%% Compute the damped plant
|
|
G_cl_iff_kp = feedback(G, Kiff_kp, 'name');
|
|
|
|
w0 = sqrt((kn+kp)/(mn+ms)); % Resonance frequency [rad/s]
|
|
wis = w0*logspace(-2, 0, 100); % LPF cut-off [rad/s]
|
|
|
|
%% Computes the obtained damping as a function of the HPF cut-off frequency
|
|
opt_xi = zeros(1, length(wis)); % Optimal simultaneous damping
|
|
|
|
for wi_i = 1:length(wis)
|
|
Kiff_kp_hpf = (2.2/(s + wis(wi_i)))*eye(2);
|
|
Kiff_kp_hpf.InputName = {'fu', 'fv'};
|
|
Kiff_kp_hpf.OutputName = {'Fu', 'Fv'};
|
|
|
|
[~, xi] = damp(feedback(G, Kiff_kp_hpf, 'name'));
|
|
opt_xi(wi_i) = min(xi);
|
|
end
|
|
|
|
%% Effect of the high-pass filter cut-off frequency on the obtained damping
|
|
figure;
|
|
plot(wis, opt_xi, '-');
|
|
set(gca, 'XScale', 'log');
|
|
set(gca, 'YScale', 'lin');
|
|
ylim([0,1]);
|
|
ylabel('Damping Ratio $\xi$');
|
|
xlabel('$\omega_i/\omega_0$');
|
|
|
|
%% Compute the damped plant with added High-Pass Filter
|
|
Kiff_kp_hpf = (2.2/(s + 0.1*w0))*eye(2);
|
|
Kiff_kp_hpf.InputName = {'fu', 'fv'};
|
|
Kiff_kp_hpf.OutputName = {'Fu', 'Fv'};
|
|
|
|
G_cl_iff_hpf_kp = feedback(G, Kiff_kp_hpf, 'name');
|
|
|
|
%% Bode plot of the direct and coupling terms for several rotating velocities
|
|
freqs = logspace(-3, 1, 1000);
|
|
|
|
figure;
|
|
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
|
|
|
|
% Magnitude
|
|
ax1 = nexttile([2, 1]);
|
|
hold on;
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros( 1,3), ...
|
|
'DisplayName', '$d_u/F_u$ - OL')
|
|
plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ...
|
|
'DisplayName', '$d_u/F_u$ - IFF + $k_p$')
|
|
plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ...
|
|
'DisplayName', '$d_u/F_u$ - IFF + $k_p$ + HPF')
|
|
plot(freqs, abs(squeeze(freqresp(G( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros( 1,3), 0.5], ...
|
|
'HandleVisibility', 'off')
|
|
plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ...
|
|
'HandleVisibility', 'off')
|
|
plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(2,:), 0.5], ...
|
|
'HandleVisibility', 'off')
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]');
|
|
ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1);
|
|
ldg.ItemTokenSize(1) = 10;
|
|
|
|
ax2 = nexttile;
|
|
hold on;
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros( 1,3))
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_kp( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:))
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_hpf_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:))
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
xlabel('Frequency [rad/s]'); ylabel('Phase [deg]');
|
|
yticks(-180:90:180);
|
|
ylim([-180 90]);
|
|
xticks([1e-3,1e-2,1e-1,1,1e1])
|
|
xticklabels({'$0.001 \omega_0$', '$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
xlim([freqs(1), freqs(end)]);
|