phd-nass-rotating-3dof-model/matlab/identification.m
2019-03-26 14:47:27 +01:00

47 lines
970 B
Matlab

%% Open Simulink file
open rotating_frame.slx
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'rotating_frame';
%% Input/Output definition
io(1) = linio([mdl, '/fu'], 1, 'input');
io(2) = linio([mdl, '/fv'], 1, 'input');
io(3) = linio([mdl, '/du'], 1, 'output');
io(4) = linio([mdl, '/dv'], 1, 'output');
%% Run the linearization
rot_speed = 0;
G = linearize(mdl, io, 0.0);
%% Input/Output names
G.InputName = {'Fu', 'Fv'};
G.OutputName = {'Du', 'Dv'};
%% Run the linearization
rot_speed = 2*pi/60;
G1 = linearize(mdl, io, 0.0);
%% Input/Output names
G1.InputName = {'Fu', 'Fv'};
G1.OutputName = {'Du', 'Dv'};
%% Run the linearization
rot_speed = 2*pi;
G2 = linearize(mdl, io, 0.0);
%% Input/Output names
G2.InputName = {'Fu', 'Fv'};
G2.OutputName = {'Du', 'Dv'};
figure;
bode(G, G1, G2);
legend({'$\omega = 0$', '$\omega = 2pi/60$', '$\omega = 2pi$'})
exportFig('G_u_v', 'normal-normal');