Compare commits

..

2 Commits

Author SHA1 Message Date
3ea609f7ce Correct Matlab script 2025-04-15 14:08:26 +02:00
6e9f050efe Remove use of tikz in the text 2025-04-15 11:49:09 +02:00
3 changed files with 11 additions and 17 deletions

View File

@@ -405,6 +405,11 @@ for kp_i = 1:length(kps_pz)
opt_iff_kp_gain_pz(kp_i) = g_opt;
end
%% Find result with wanted parallel stiffness
[~, i_kp_vc] = min(abs(kps_vc - 1e3));
[~, i_kp_md] = min(abs(kps_md - 1e4));
[~, i_kp_pz] = min(abs(kps_pz - 1e6));
%% Define the obtained controllers
Kiff_kp_vc = Kiff_vc*opt_iff_kp_gain_vc(i_kp_vc);
Kiff_kp_vc.InputName = {'fu', 'fv'};
@@ -418,11 +423,6 @@ Kiff_kp_pz = Kiff_pz*opt_iff_kp_gain_pz(i_kp_pz);
Kiff_kp_pz.InputName = {'fu', 'fv'};
Kiff_kp_pz.OutputName = {'Fu', 'Fv'};
%% Find result with wanted parallel stiffness
[~, i_kp_vc] = min(abs(kps_vc - 1e3));
[~, i_kp_md] = min(abs(kps_md - 1e4));
[~, i_kp_pz] = min(abs(kps_pz - 1e6));
%% Identify plants with choosen Parallel stiffnesses
model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage

View File

@@ -465,6 +465,4 @@ xticks([1e-1, 1e0, 1e1, 1e2, 1e3]);
xtickangle(0)
ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
ldg.ItemTokenSize = [20, 1];
linkaxes([ax1,ax2,ax3], 'y')
ylim([1e-8, 1e-2])

View File

@@ -899,7 +899,7 @@ The decentralized acrshort:iff controller $\bm{K}_F$ corresponds to a diagonal c
\end{equation}
To determine how the acrshort:iff controller affects the poles of the closed-loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously.
As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$.
As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by crosses) for $g = 0$ and coincide with the transmission zeros (shown by circles) as $g \to \infty$.
Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity becomes non-null.
This can be seen in the Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability.
@@ -3172,6 +3172,11 @@ end
#+end_src
#+begin_src matlab
%% Find result with wanted parallel stiffness
[~, i_kp_vc] = min(abs(kps_vc - 1e3));
[~, i_kp_md] = min(abs(kps_md - 1e4));
[~, i_kp_pz] = min(abs(kps_pz - 1e6));
%% Define the obtained controllers
Kiff_kp_vc = Kiff_vc*opt_iff_kp_gain_vc(i_kp_vc);
Kiff_kp_vc.InputName = {'fu', 'fv'};
@@ -3184,13 +3189,6 @@ Kiff_kp_md.OutputName = {'Fu', 'Fv'};
Kiff_kp_pz = Kiff_pz*opt_iff_kp_gain_pz(i_kp_pz);
Kiff_kp_pz.InputName = {'fu', 'fv'};
Kiff_kp_pz.OutputName = {'Fu', 'Fv'};
#+end_src
#+begin_src matlab
%% Find result with wanted parallel stiffness
[~, i_kp_vc] = min(abs(kps_vc - 1e3));
[~, i_kp_md] = min(abs(kps_md - 1e4));
[~, i_kp_pz] = min(abs(kps_pz - 1e6));
%% Identify plants with choosen Parallel stiffnesses
model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage
@@ -4276,8 +4274,6 @@ xticks([1e-1, 1e0, 1e1, 1e2, 1e3]);
xtickangle(0)
ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1);
ldg.ItemTokenSize = [20, 1];
linkaxes([ax1,ax2,ax3], 'y')
ylim([1e-8, 1e-2])
#+end_src