Add cambell plot. Add plot about simscape analysis
This commit is contained in:
		| @@ -3,7 +3,7 @@ | ||||
| "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> | ||||
| <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> | ||||
| <head> | ||||
| <!-- 2019-01-23 mer. 15:21 --> | ||||
| <!-- 2019-01-24 jeu. 14:05 --> | ||||
| <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1" /> | ||||
| <title>Control in a rotating frame</title> | ||||
| @@ -204,7 +204,7 @@ | ||||
| @licstart  The following is the entire license notice for the | ||||
| JavaScript code in this tag. | ||||
| 
 | ||||
| Copyright (C) 2012-2018 Free Software Foundation, Inc. | ||||
| Copyright (C) 2012-2019 Free Software Foundation, Inc. | ||||
| 
 | ||||
| The JavaScript code in this tag is free software: you can | ||||
| redistribute it and/or modify it under the terms of the GNU | ||||
| @@ -275,75 +275,86 @@ for the JavaScript code in this tag. | ||||
| <h2>Table of Contents</h2> | ||||
| <div id="text-table-of-contents"> | ||||
| <ul> | ||||
| <li><a href="#org9988e59">1. Introduction</a></li> | ||||
| <li><a href="#orgfd01695">2. System</a> | ||||
| <li><a href="#orgf151bb1">1. Introduction</a></li> | ||||
| <li><a href="#org268da4c">2. System Description and Analysis</a> | ||||
| <ul> | ||||
| <li><a href="#orged1d203">2.1. System description</a></li> | ||||
| <li><a href="#orgbcc53a3">2.2. Equations</a></li> | ||||
| <li><a href="#org28e82a2">2.3. Numerical Values for the NASS</a></li> | ||||
| <li><a href="#orgd1ccc62">2.4. Euler and Coriolis forces - Numerical Result</a></li> | ||||
| <li><a href="#org8db03ec">2.5. Negative Spring Effect - Numerical Result</a></li> | ||||
| <li><a href="#org7e45369">2.6. Limitations due to coupling</a> | ||||
| <li><a href="#orge7664a5">2.1. System description</a></li> | ||||
| <li><a href="#org60bfb2d">2.2. Equations</a></li> | ||||
| <li><a href="#orgf397277">2.3. Numerical Values for the NASS</a></li> | ||||
| <li><a href="#org7aa02cb">2.4. Euler and Coriolis forces - Numerical Result</a></li> | ||||
| <li><a href="#org9672480">2.5. Negative Spring Effect - Numerical Result</a></li> | ||||
| <li><a href="#org57a38eb">2.6. Limitations due to coupling</a> | ||||
| <ul> | ||||
| <li><a href="#orgc898fca">2.6.1. Numerical Analysis</a></li> | ||||
| <li><a href="#org6274181">2.6.1. Numerical Analysis</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org87cd267">2.7. Limitations due to negative stiffness effect</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org86cc8ca">3. Control Strategies</a> | ||||
| <li><a href="#org4030106">2.7. Limitations due to negative stiffness effect</a></li> | ||||
| <li><a href="#org7049dc3">2.8. Effect of rotation speed on the plant</a> | ||||
| <ul> | ||||
| <li><a href="#orga1abb2c">3.1. Measurement in the fixed reference frame</a></li> | ||||
| <li><a href="#org08a5499">3.2. Measurement in the rotating frame</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org5b0bef3">4. Multi Body Model - Simscape</a> | ||||
| <ul> | ||||
| <li><a href="#org13aaa95">4.1. Parameter for the Simscape simulations</a></li> | ||||
| <li><a href="#orgd334995">4.2. Identification in the rotating referenced frame</a> | ||||
| <ul> | ||||
| <li><a href="#org5cb3ac6">4.2.1. Low rotation speed and High rotation speed</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgb159f85">4.3. Identification in the fixed frame</a></li> | ||||
| <li><a href="#org6b50e4b">4.4. Identification from actuator forces to displacement in the fixed frame</a></li> | ||||
| <li><a href="#org6a8d002">4.5. Effect of the rotating Speed</a> | ||||
| <ul> | ||||
| <li><a href="#org4a07d2b">4.5.1. <span class="todo TODO">TODO</span> Use realistic parameters for the mass of the sample and stiffness of the X-Y stage</a></li> | ||||
| <li><a href="#org01d22ae">4.5.2. <span class="todo TODO">TODO</span> Check if the plant is changing a lot when we are not turning to when we are turning at the maximum speed (60rpm)</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org6cdc442">4.6. Effect of the X-Y stage stiffness</a> | ||||
| <ul> | ||||
| <li><a href="#org74a0c06">4.6.1. <span class="todo TODO">TODO</span> At full speed, check how the coupling changes with the stiffness of the actuators</a></li> | ||||
| <li><a href="#org755ed06">2.8.1. Voice coil actuator</a></li> | ||||
| <li><a href="#org53fec97">2.8.2. Piezoelectric actuator</a></li> | ||||
| <li><a href="#orgf6be1a4">2.8.3. Analysis</a></li> | ||||
| <li><a href="#org2262aaa">2.8.4. Campbell diagram</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orge84791a">5. Control Implementation</a> | ||||
| <li><a href="#orga07d0dd">3. Control Strategies</a> | ||||
| <ul> | ||||
| <li><a href="#org86d67af">5.1. Measurement in the fixed reference frame</a></li> | ||||
| <li><a href="#orgeb25ab0">3.1. Measurement in the fixed reference frame</a></li> | ||||
| <li><a href="#org9456905">3.2. Measurement in the rotating frame</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgab7ac9c">4. Multi Body Model - Simscape</a> | ||||
| <ul> | ||||
| <li><a href="#org123b2ae">4.1. Initialize</a></li> | ||||
| <li><a href="#orgc1906bb">4.2. Parameter for the Simscape simulations</a></li> | ||||
| <li><a href="#org255159f">4.3. Identification in the rotating referenced frame</a></li> | ||||
| <li><a href="#org5f1926d">4.4. Coupling ratio between \(f_{uv}\) and \(d_{uv}\)</a></li> | ||||
| <li><a href="#orge5f2b9f">4.5. Plant Control</a> | ||||
| <ul> | ||||
| <li><a href="#orgb9cef97">4.5.1. Low rotation speed and High rotation speed</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org09ff6ca">4.6. Identification in the fixed frame</a></li> | ||||
| <li><a href="#org588dae5">4.7. Identification from actuator forces to displacement in the fixed frame</a></li> | ||||
| <li><a href="#org53255e3">4.8. Effect of the rotating Speed</a> | ||||
| <ul> | ||||
| <li><a href="#org14c5fe5">4.8.1. <span class="todo TODO">TODO</span> Use realistic parameters for the mass of the sample and stiffness of the X-Y stage</a></li> | ||||
| <li><a href="#org5347efa">4.8.2. <span class="todo TODO">TODO</span> Check if the plant is changing a lot when we are not turning to when we are turning at the maximum speed (60rpm)</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#orgd2cb6ed">4.9. Effect of the X-Y stage stiffness</a> | ||||
| <ul> | ||||
| <li><a href="#org177c370">4.9.1. <span class="todo TODO">TODO</span> At full speed, check how the coupling changes with the stiffness of the actuators</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| </li> | ||||
| <li><a href="#org4965ab2">5. Control Implementation</a> | ||||
| <ul> | ||||
| <li><a href="#org9f42bc5">5.1. Measurement in the fixed reference frame</a></li> | ||||
| </ul> | ||||
| </li> | ||||
| </ul> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org9988e59" class="outline-2"> | ||||
| <h2 id="org9988e59"><span class="section-number-2">1</span> Introduction</h2> | ||||
| <div id="outline-container-orgf151bb1" class="outline-2"> | ||||
| <h2 id="orgf151bb1"><span class="section-number-2">1</span> Introduction</h2> | ||||
| <div class="outline-text-2" id="text-1"> | ||||
| <p> | ||||
| The objective of this note it to highlight some control problems that arises when controlling the position of an object using actuators that are rotating with respect to a fixed reference frame. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| In section <a href="#org4f1fd4b">2</a>, a simple system composed of a spindle and a translation stage is defined and the equations of motion are written. | ||||
| In section <a href="#org3669843">2</a>, a simple system composed of a spindle and a translation stage is defined and the equations of motion are written. | ||||
| The rotation induces some coupling between the actuators and their displacement, and modifies the dynamics of the system. | ||||
| This is studied using the equations, and some numerical computations are used to compare the use of voice coil and piezoelectric actuators. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Then, in section <a href="#orgdb88326">3</a>, two different control approach are compared where: | ||||
| Then, in section <a href="#org3747048">3</a>, two different control approach are compared where: | ||||
| </p> | ||||
| <ul class="org-ul"> | ||||
| <li>the measurement is made in the fixed frame</li> | ||||
| @@ -351,27 +362,27 @@ Then, in section <a href="#orgdb88326">3</a>, two different control approach are | ||||
| </ul> | ||||
| 
 | ||||
| <p> | ||||
| In section <a href="#org8ef210c">4</a>, the analytical study will be validated using a multi body model of the studied system. | ||||
| In section <a href="#org149db50">4</a>, the analytical study will be validated using a multi body model of the studied system. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Finally, in section <a href="#orgd9942b8">5</a>, the control strategies are implemented using Simulink and Simscape and compared. | ||||
| Finally, in section <a href="#org9e7daf4">5</a>, the control strategies are implemented using Simulink and Simscape and compared. | ||||
| </p> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgfd01695" class="outline-2"> | ||||
| <h2 id="orgfd01695"><span class="section-number-2">2</span> System</h2> | ||||
| <div id="outline-container-org268da4c" class="outline-2"> | ||||
| <h2 id="org268da4c"><span class="section-number-2">2</span> System Description and Analysis</h2> | ||||
| <div class="outline-text-2" id="text-2"> | ||||
| <p> | ||||
| <a id="org4f1fd4b"></a> | ||||
| <a id="org3669843"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-orged1d203" class="outline-3"> | ||||
| <h3 id="orged1d203"><span class="section-number-3">2.1</span> System description</h3> | ||||
| <div id="outline-container-orge7664a5" class="outline-3"> | ||||
| <h3 id="orge7664a5"><span class="section-number-3">2.1</span> System description</h3> | ||||
| <div class="outline-text-3" id="text-2-1"> | ||||
| <p> | ||||
| The system consists of one 2 degree of freedom translation stage on top of a spindle (figure <a href="#orgce6c963">1</a>). | ||||
| The system consists of one 2 degree of freedom translation stage on top of a spindle (figure <a href="#org5ddd11b">1</a>). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| @@ -384,7 +395,7 @@ The measurement is either the \(x-y\) displacement of the object located on top | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| <div id="orgce6c963" class="figure"> | ||||
| <div id="org5ddd11b" class="figure"> | ||||
| <p><img src="./Figures/rotating_frame_2dof.png" alt="rotating_frame_2dof.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 1: </span>Schematic of the mecanical system</p> | ||||
| @@ -418,19 +429,19 @@ Indices \(u\) and \(v\) corresponds to signals in the rotating reference frame ( | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgbcc53a3" class="outline-3"> | ||||
| <h3 id="orgbcc53a3"><span class="section-number-3">2.2</span> Equations</h3> | ||||
| <div id="outline-container-org60bfb2d" class="outline-3"> | ||||
| <h3 id="org60bfb2d"><span class="section-number-3">2.2</span> Equations</h3> | ||||
| <div class="outline-text-3" id="text-2-2"> | ||||
| <p> | ||||
|   <a id="org2f020df"></a> | ||||
| Based on the figure <a href="#orgce6c963">1</a>, we can write the equations of motion of the system. | ||||
|   <a id="orgc4fe841"></a> | ||||
| Based on the figure <a href="#org5ddd11b">1</a>, we can write the equations of motion of the system. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Let's express the kinetic energy \(T\) and the potential energy \(V\) of the mass \(m\): | ||||
| </p> | ||||
| \begin{align} | ||||
| \label{org93a4d45} | ||||
| \label{org7c77780} | ||||
| T & = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) \\ | ||||
| V & = \frac{1}{2} k \left( x^2 + y^2 \right) | ||||
| \end{align} | ||||
| @@ -439,7 +450,7 @@ V & = \frac{1}{2} k \left( x^2 + y^2 \right) | ||||
| The Lagrangian is the kinetic energy minus the potential energy. | ||||
| </p> | ||||
| \begin{equation} | ||||
| \label{org19136da} | ||||
| \label{orgc4495ac} | ||||
| L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \left( x^2 + y^2 \right) | ||||
| \end{equation} | ||||
| 
 | ||||
| @@ -448,7 +459,7 @@ L = T-V = \frac{1}{2} m \left( \dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} k \le | ||||
| The partial derivatives of the Lagrangian with respect to the variables \((x, y)\) are: | ||||
| </p> | ||||
| \begin{align*} | ||||
| \label{org4fc9f2b} | ||||
| \label{org5e103d6} | ||||
| \frac{\partial L}{\partial x} & = -kx \\ | ||||
| \frac{\partial L}{\partial y} & = -ky \\ | ||||
| \frac{d}{dt}\frac{\partial L}{\partial \dot{x}} & = m\ddot{x} \\ | ||||
| @@ -518,11 +529,11 @@ We can then subtract and add the previous equations to obtain the following equa | ||||
| </p> | ||||
| <div class="important"> | ||||
| \begin{equation} | ||||
| \label{orgf3ca0ca} | ||||
| \label{orgb342505} | ||||
|  m \ddot{d_u} + (k - m\dot{\theta}^2) d_u = F_u + 2 m\dot{d_v}\dot{\theta} + m d_v\ddot{\theta} | ||||
| \end{equation} | ||||
| \begin{equation} | ||||
| \label{org5e2eb96} | ||||
| \label{org97a2349} | ||||
|  m \ddot{d_v} + (k - m\dot{\theta}^2) d_v = F_v - 2 m\dot{d_u}\dot{\theta} - m d_u\ddot{\theta} | ||||
| \end{equation} | ||||
| 
 | ||||
| @@ -548,8 +559,8 @@ The resulting effect of those forces should then be higher when using softer act | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org28e82a2" class="outline-3"> | ||||
| <h3 id="org28e82a2"><span class="section-number-3">2.3</span> Numerical Values for the NASS</h3> | ||||
| <div id="outline-container-orgf397277" class="outline-3"> | ||||
| <h3 id="orgf397277"><span class="section-number-3">2.3</span> Numerical Values for the NASS</h3> | ||||
| <div class="outline-text-3" id="text-2-3"> | ||||
| <p> | ||||
| Let's define the parameters for the NASS. | ||||
| @@ -612,8 +623,8 @@ Let's define the parameters for the NASS. | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgd1ccc62" class="outline-3"> | ||||
| <h3 id="orgd1ccc62"><span class="section-number-3">2.4</span> Euler and Coriolis forces - Numerical Result</h3> | ||||
| <div id="outline-container-org7aa02cb" class="outline-3"> | ||||
| <h3 id="org7aa02cb"><span class="section-number-3">2.4</span> Euler and Coriolis forces - Numerical Result</h3> | ||||
| <div class="outline-text-3" id="text-2-4"> | ||||
| <p> | ||||
| First we will determine the value for Euler and Coriolis forces during regular experiment. | ||||
| @@ -624,10 +635,10 @@ First we will determine the value for Euler and Coriolis forces during regular e | ||||
| </ul> | ||||
| 
 | ||||
| <p> | ||||
| The obtained values are displayed in table <a href="#orga16401f">1</a>. | ||||
| The obtained values are displayed in table <a href="#org3e40f1c">1</a>. | ||||
| </p> | ||||
| 
 | ||||
| <table id="orga16401f" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <table id="org3e40f1c" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <caption class="t-above"><span class="table-number">Table 1:</span> Euler and Coriolis forces for the NASS</caption> | ||||
| 
 | ||||
| <colgroup> | ||||
| @@ -661,22 +672,22 @@ The obtained values are displayed in table <a href="#orga16401f">1</a>. | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org8db03ec" class="outline-3"> | ||||
| <h3 id="org8db03ec"><span class="section-number-3">2.5</span> Negative Spring Effect - Numerical Result</h3> | ||||
| <div id="outline-container-org9672480" class="outline-3"> | ||||
| <h3 id="org9672480"><span class="section-number-3">2.5</span> Negative Spring Effect - Numerical Result</h3> | ||||
| <div class="outline-text-3" id="text-2-5"> | ||||
| <p> | ||||
| The negative stiffness due to the rotation is equal to \(-m{\omega_0}^2\). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| The values for the negative spring effect are displayed in table <a href="#org8cad235">2</a>. | ||||
| The values for the negative spring effect are displayed in table <a href="#org7b1aaf6">2</a>. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| This is definitely negligible when using piezoelectric actuators. It may not be the case when using voice coil actuators. | ||||
| </p> | ||||
| 
 | ||||
| <table id="org8cad235" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <table id="org7b1aaf6" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <caption class="t-above"><span class="table-number">Table 2:</span> Negative Spring effect</caption> | ||||
| 
 | ||||
| <colgroup> | ||||
| @@ -704,15 +715,15 @@ This is definitely negligible when using piezoelectric actuators. It may not be | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org7e45369" class="outline-3"> | ||||
| <h3 id="org7e45369"><span class="section-number-3">2.6</span> Limitations due to coupling</h3> | ||||
| <div id="outline-container-org57a38eb" class="outline-3"> | ||||
| <h3 id="org57a38eb"><span class="section-number-3">2.6</span> Limitations due to coupling</h3> | ||||
| <div class="outline-text-3" id="text-2-6"> | ||||
| <p> | ||||
| To simplify, we consider a constant rotating speed \(\dot{\theta} = {\omega_0}\) and thus \(\ddot{\theta} = 0\). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| From equations \eqref{orgf3ca0ca} and \eqref{org5e2eb96}, we obtain: | ||||
| From equations \eqref{orgb342505} and \eqref{org97a2349}, we obtain: | ||||
| </p> | ||||
|  \begin{align*} | ||||
|  (m s^2 + (k - m{\omega_0}^2)) d_u &= F_u + 2 m {\omega_0} s d_v \\ | ||||
| @@ -750,6 +761,7 @@ The two previous equations can be written in a matrix form: | ||||
| </p> | ||||
| <div class="important"> | ||||
| \begin{equation} | ||||
| \label{orga4820eb} | ||||
| \begin{bmatrix} d_u \\ d_v \end{bmatrix} = | ||||
| \frac{1}{(m s^2 + (k - m{\omega_0}^2))^2 + (2 m {\omega_0} s)^2} | ||||
| \begin{bmatrix} | ||||
| @@ -766,26 +778,26 @@ Then, coupling is negligible if \(|-m \omega^2 + (k - m{\omega_0}^2)| \gg |2 m { | ||||
| </p> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgc898fca" class="outline-4"> | ||||
| <h4 id="orgc898fca"><span class="section-number-4">2.6.1</span> Numerical Analysis</h4> | ||||
| <div id="outline-container-org6274181" class="outline-4"> | ||||
| <h4 id="org6274181"><span class="section-number-4">2.6.1</span> Numerical Analysis</h4> | ||||
| <div class="outline-text-4" id="text-2-6-1"> | ||||
| <p> | ||||
| We plot on the same graph \(\frac{|-m \omega^2 + (k - m {\omega_0}^2)|}{|2 m \omega_0 \omega|}\) for the voice coil and the piezo: | ||||
| </p> | ||||
| <ul class="org-ul"> | ||||
| <li>with the light sample (figure <a href="#org2b9a0e8">2</a>).</li> | ||||
| <li>with the heavy sample (figure <a href="#org24d5dc4">3</a>).</li> | ||||
| <li>with the light sample (figure <a href="#orgeb8c982">2</a>).</li> | ||||
| <li>with the heavy sample (figure <a href="#orga3125c6">3</a>).</li> | ||||
| </ul> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org2b9a0e8" class="figure"> | ||||
| <div id="orgeb8c982" class="figure"> | ||||
| <p><img src="Figures/coupling_light.png" alt="coupling_light.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 2: </span>Relative Coupling for light mass and high rotation speed</p> | ||||
| </div> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org24d5dc4" class="figure"> | ||||
| <div id="orga3125c6" class="figure"> | ||||
| <p><img src="Figures/coupling_heavy.png" alt="coupling_heavy.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 3: </span>Relative Coupling for heavy mass and low rotation speed</p> | ||||
| @@ -801,17 +813,17 @@ Coupling is higher for actuators with small stiffness. | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org87cd267" class="outline-3"> | ||||
| <h3 id="org87cd267"><span class="section-number-3">2.7</span> Limitations due to negative stiffness effect</h3> | ||||
| <div id="outline-container-org4030106" class="outline-3"> | ||||
| <h3 id="org4030106"><span class="section-number-3">2.7</span> Limitations due to negative stiffness effect</h3> | ||||
| <div class="outline-text-3" id="text-2-7"> | ||||
| <p> | ||||
| If \(\max{\dot{\theta}} \ll \sqrt{\frac{k}{m}}\), then the negative spring effect is negligible and \(k - m\dot{\theta}^2 \approx k\). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Let's estimate what is the maximum rotation speed for which the negative stiffness effect is still negligible (\(\omega_\text{max} = 0.1 \sqrt{\frac{k}{m}}\)). Results are shown table <a href="#org84660ee">3</a>. | ||||
| Let's estimate what is the maximum rotation speed for which the negative stiffness effect is still negligible (\(\omega_\text{max} = 0.1 \sqrt{\frac{k}{m}}\)). Results are shown table <a href="#org7eddfba">3</a>. | ||||
| </p> | ||||
| <table id="org84660ee" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <table id="org7eddfba" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <caption class="t-above"><span class="table-number">Table 3:</span> Maximum rotation speed at which negative stiffness is negligible (\(0.1\sqrt{\frac{k}{m}}\))</caption> | ||||
| 
 | ||||
| <colgroup> | ||||
| @@ -860,10 +872,10 @@ The system can even goes unstable when \(m \omega^2 > k\), that is when the cent | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| From this analysis, we can determine the lowest practical stiffness that is possible to use: \(k_\text{min} = 10 m \omega^2\) (table <a href="#orgbea17e3">4</a>) | ||||
| From this analysis, we can determine the lowest practical stiffness that is possible to use: \(k_\text{min} = 10 m \omega^2\) (table <a href="#org63d2716">4</a>) | ||||
| </p> | ||||
| 
 | ||||
| <table id="orgbea17e3" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <table id="org63d2716" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides"> | ||||
| <caption class="t-above"><span class="table-number">Table 4:</span> Minimum possible stiffness</caption> | ||||
| 
 | ||||
| <colgroup> | ||||
| @@ -890,17 +902,166 @@ From this analysis, we can determine the lowest practical stiffness that is poss | ||||
| </table> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org86cc8ca" class="outline-2"> | ||||
| <h2 id="org86cc8ca"><span class="section-number-2">3</span> Control Strategies</h2> | ||||
| <div class="outline-text-2" id="text-3"> | ||||
| <div id="outline-container-org7049dc3" class="outline-3"> | ||||
| <h3 id="org7049dc3"><span class="section-number-3">2.8</span> Effect of rotation speed on the plant</h3> | ||||
| <div class="outline-text-3" id="text-2-8"> | ||||
| <p> | ||||
| <a id="orgdb88326"></a> | ||||
| As shown in equation \eqref{orga4820eb}, the plant changes with the rotation speed \(\omega_0\). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Then, we compute the bode plot of the direct term and coupling term for multiple rotating speed. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| Then we compare the result between voice coil and piezoelectric actuators. | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-orga1abb2c" class="outline-3"> | ||||
| <h3 id="orga1abb2c"><span class="section-number-3">3.1</span> Measurement in the fixed reference frame</h3> | ||||
| 
 | ||||
| <div id="outline-container-org755ed06" class="outline-4"> | ||||
| <h4 id="org755ed06"><span class="section-number-4">2.8.1</span> Voice coil actuator</h4> | ||||
| <div class="outline-text-4" id="text-2-8-1"> | ||||
| 
 | ||||
| <div id="org4eafd24" class="figure"> | ||||
| <p><img src="Figures/G_ws_vc.png" alt="G_ws_vc.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 4: </span>Bode plot of the direct transfer function term (from \(F_u\) to \(D_u\)) for multiple rotation speed - Voice coil</p> | ||||
| </div> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org9ef750d" class="figure"> | ||||
| <p><img src="Figures/Gc_ws_vc.png" alt="Gc_ws_vc.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 5: </span>Bode plot of the coupling transfer function term (from \(F_u\) to \(D_v\)) for multiple rotation speed - Voice coil</p> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org53fec97" class="outline-4"> | ||||
| <h4 id="org53fec97"><span class="section-number-4">2.8.2</span> Piezoelectric actuator</h4> | ||||
| <div class="outline-text-4" id="text-2-8-2"> | ||||
| 
 | ||||
| <div id="orgc028298" class="figure"> | ||||
| <p><img src="Figures/G_ws_pz.png" alt="G_ws_pz.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 6: </span>Bode plot of the direct transfer function term (from \(F_u\) to \(D_u\)) for multiple rotation speed - Piezoelectric actuator</p> | ||||
| </div> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org991a168" class="figure"> | ||||
| <p><img src="Figures/Gc_ws_pz.png" alt="Gc_ws_pz.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 7: </span>Bode plot of the coupling transfer function term (from \(F_u\) to \(D_v\)) for multiple rotation speed - Piezoelectric actuator</p> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgf6be1a4" class="outline-4"> | ||||
| <h4 id="orgf6be1a4"><span class="section-number-4">2.8.3</span> Analysis</h4> | ||||
| <div class="outline-text-4" id="text-2-8-3"> | ||||
| <p> | ||||
| When the rotation speed is null, the coupling terms are equal to zero and the diagonal terms corresponds to one degree of freedom mass spring system. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| When the rotation speed in not null, the resonance frequency is duplicated into two pairs of complex conjugate poles. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| As the rotation speed increases, one of the two resonant frequency goes to lower frequencies as the other one goes to higher frequencies. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| The poles of the coupling terms are the same as the poles of the diagonal terms. The magnitude of the coupling terms are increasing with the rotation speed. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| As shown in the previous figures, the system with voice coil is much more sensitive to rotation speed. | ||||
| </p> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org2262aaa" class="outline-4"> | ||||
| <h4 id="org2262aaa"><span class="section-number-4">2.8.4</span> Campbell diagram</h4> | ||||
| <div class="outline-text-4" id="text-2-8-4"> | ||||
| <p> | ||||
| The poles of the system are computed for multiple values of the rotation frequency. | ||||
| </p> | ||||
| 
 | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">m = mlight; | ||||
| k = kvc; | ||||
| c = <span style="color: #D0372D;">0</span>.<span style="color: #D0372D;">1</span><span style="color: #6434A3;">*</span>sqrt<span style="color: #707183;">(</span>k<span style="color: #6434A3;">*</span>m<span style="color: #707183;">)</span>; | ||||
| 
 | ||||
| ws = linspace<span style="color: #707183;">(</span><span style="color: #D0372D;">0</span>, <span style="color: #D0372D;">10</span>, <span style="color: #D0372D;">100</span><span style="color: #707183;">)</span>; <span style="color: #8D8D84; font-style: italic;">% [rad/s]</span> | ||||
| 
 | ||||
| polesvc = zeros<span style="color: #707183;">(</span><span style="color: #D0372D;">2</span>, length<span style="color: #7388D6;">(</span>ws<span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
| 
 | ||||
| <span style="color: #0000FF;">for</span> <span style="color: #BA36A5;">i</span> = <span style="color: #D0372D;">1</span><span style="color: #D0372D;">:length</span><span style="color: #707183;">(</span><span style="color: #D0372D;">ws</span><span style="color: #707183;">)</span> | ||||
|   polei = pole<span style="color: #707183;">(</span><span style="color: #D0372D;">1</span><span style="color: #6434A3;">/</span><span style="color: #7388D6;">(</span><span style="color: #909183;">(</span>m<span style="color: #6434A3;">*</span>s<span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span> <span style="color: #6434A3;">+</span> c<span style="color: #6434A3;">*</span>s <span style="color: #6434A3;">+</span> <span style="color: #709870;">(</span>k <span style="color: #6434A3;">-</span> m<span style="color: #6434A3;">*</span>ws<span style="color: #907373;">(</span><span style="color: #D0372D;">i</span><span style="color: #907373;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span><span style="color: #709870;">)</span><span style="color: #909183;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span> <span style="color: #6434A3;">+</span> <span style="color: #909183;">(</span><span style="color: #D0372D;">2</span><span style="color: #6434A3;">*</span>m<span style="color: #6434A3;">*</span>ws<span style="color: #709870;">(</span><span style="color: #D0372D;">i</span><span style="color: #709870;">)</span><span style="color: #6434A3;">*</span>s<span style="color: #909183;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span><span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
|   polesvc<span style="color: #707183;">(</span><span style="color: #6434A3;">:</span>, <span style="color: #D0372D;">i</span><span style="color: #707183;">)</span> = sort<span style="color: #707183;">(</span>polei<span style="color: #7388D6;">(</span>imag<span style="color: #909183;">(</span>polei<span style="color: #909183;">)</span> <span style="color: #6434A3;">></span> <span style="color: #D0372D;">0</span><span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
| <span style="color: #0000FF;">end</span> | ||||
| </pre> | ||||
| </div> | ||||
| 
 | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">m = mlight; | ||||
| k = kpz; | ||||
| c = <span style="color: #D0372D;">0</span>.<span style="color: #D0372D;">1</span><span style="color: #6434A3;">*</span>sqrt<span style="color: #707183;">(</span>k<span style="color: #6434A3;">*</span>m<span style="color: #707183;">)</span>; | ||||
| 
 | ||||
| ws = linspace<span style="color: #707183;">(</span><span style="color: #D0372D;">0</span>, <span style="color: #D0372D;">1000</span>, <span style="color: #D0372D;">100</span><span style="color: #707183;">)</span>; <span style="color: #8D8D84; font-style: italic;">% [rad/s]</span> | ||||
| 
 | ||||
| polespz = zeros<span style="color: #707183;">(</span><span style="color: #D0372D;">2</span>, length<span style="color: #7388D6;">(</span>ws<span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
| 
 | ||||
| <span style="color: #0000FF;">for</span> <span style="color: #BA36A5;">i</span> = <span style="color: #D0372D;">1</span><span style="color: #D0372D;">:length</span><span style="color: #707183;">(</span><span style="color: #D0372D;">ws</span><span style="color: #707183;">)</span> | ||||
|   polei = pole<span style="color: #707183;">(</span><span style="color: #D0372D;">1</span><span style="color: #6434A3;">/</span><span style="color: #7388D6;">(</span><span style="color: #909183;">(</span>m<span style="color: #6434A3;">*</span>s<span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span> <span style="color: #6434A3;">+</span> c<span style="color: #6434A3;">*</span>s <span style="color: #6434A3;">+</span> <span style="color: #709870;">(</span>k <span style="color: #6434A3;">-</span> m<span style="color: #6434A3;">*</span>ws<span style="color: #907373;">(</span><span style="color: #D0372D;">i</span><span style="color: #907373;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span><span style="color: #709870;">)</span><span style="color: #909183;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span> <span style="color: #6434A3;">+</span> <span style="color: #909183;">(</span><span style="color: #D0372D;">2</span><span style="color: #6434A3;">*</span>m<span style="color: #6434A3;">*</span>ws<span style="color: #709870;">(</span><span style="color: #D0372D;">i</span><span style="color: #709870;">)</span><span style="color: #6434A3;">*</span>s<span style="color: #909183;">)</span><span style="color: #6434A3;">^</span><span style="color: #D0372D;">2</span><span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
|   polespz<span style="color: #707183;">(</span><span style="color: #6434A3;">:</span>, <span style="color: #D0372D;">i</span><span style="color: #707183;">)</span> = sort<span style="color: #707183;">(</span>polei<span style="color: #7388D6;">(</span>imag<span style="color: #909183;">(</span>polei<span style="color: #909183;">)</span> <span style="color: #6434A3;">></span> <span style="color: #D0372D;">0</span><span style="color: #7388D6;">)</span><span style="color: #707183;">)</span>; | ||||
| <span style="color: #0000FF;">end</span> | ||||
| </pre> | ||||
| </div> | ||||
| 
 | ||||
| <p> | ||||
| We then plot the real and imaginary part of the poles as a function of the rotation frequency (figures <a href="#org2e762b4">8</a> and <a href="#orgf969e06">9</a>). | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| When the real part of one pole becomes positive, the system goes unstable. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| For the voice coil (figure <a href="#org2e762b4">8</a>), the system is unstable when the rotation speed is above 5 rad/s. The real and imaginary part of the poles of the system with piezoelectric actuators are changing much less (figure <a href="#orgf969e06">9</a>). | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org2e762b4" class="figure"> | ||||
| <p><img src="Figures/poles_w_vc.png" alt="poles_w_vc.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 8: </span>Real and Imaginary part of the poles of the system as a function of the rotation speed - Voice Coil and light sample</p> | ||||
| </div> | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| <div id="orgf969e06" class="figure"> | ||||
| <p><img src="Figures/poles_w_pz.png" alt="poles_w_pz.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 9: </span>Real and Imaginary part of the poles of the system as a function of the rotation speed - Voice Coil and light sample</p> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| 
 | ||||
| <div id="outline-container-orga07d0dd" class="outline-2"> | ||||
| <h2 id="orga07d0dd"><span class="section-number-2">3</span> Control Strategies</h2> | ||||
| <div class="outline-text-2" id="text-3"> | ||||
| <p> | ||||
| <a id="org3747048"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-orgeb25ab0" class="outline-3"> | ||||
| <h3 id="orgeb25ab0"><span class="section-number-3">3.1</span> Measurement in the fixed reference frame</h3> | ||||
| <div class="outline-text-3" id="text-3-1"> | ||||
| <p> | ||||
| First, let's consider a measurement in the fixed referenced frame. | ||||
| @@ -923,14 +1084,14 @@ Finally, the control low \(K\) links the position errors \([\epsilon_u, \epsilon | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| The block diagram is shown on figure <a href="#org859df00">4</a>. | ||||
| The block diagram is shown on figure <a href="#orgf3c5c1c">10</a>. | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org859df00" class="figure"> | ||||
| <div id="orgf3c5c1c" class="figure"> | ||||
| <p><img src="./Figures/control_measure_fixed_2dof.png" alt="control_measure_fixed_2dof.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 4: </span>Control with a measure from fixed frame</p> | ||||
| <p><span class="figure-number">Figure 10: </span>Control with a measure from fixed frame</p> | ||||
| </div> | ||||
| 
 | ||||
| <p> | ||||
| @@ -943,22 +1104,22 @@ One question we wish to answer is: is \(G(\theta) J(\theta) = G(\theta_0) J(\the | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org08a5499" class="outline-3"> | ||||
| <h3 id="org08a5499"><span class="section-number-3">3.2</span> Measurement in the rotating frame</h3> | ||||
| <div id="outline-container-org9456905" class="outline-3"> | ||||
| <h3 id="org9456905"><span class="section-number-3">3.2</span> Measurement in the rotating frame</h3> | ||||
| <div class="outline-text-3" id="text-3-2"> | ||||
| <p> | ||||
| Let's consider that the measurement is made in the rotating reference frame. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| The corresponding block diagram is shown figure <a href="#org36bbc4f">5</a> | ||||
| The corresponding block diagram is shown figure <a href="#org6cffd33">11</a> | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| <div id="org36bbc4f" class="figure"> | ||||
| <div id="org6cffd33" class="figure"> | ||||
| <p><img src="./Figures/control_measure_rotating_2dof.png" alt="control_measure_rotating_2dof.png" /> | ||||
| </p> | ||||
| <p><span class="figure-number">Figure 5: </span>Control with a measure from rotating frame</p> | ||||
| <p><span class="figure-number">Figure 11: </span>Control with a measure from rotating frame</p> | ||||
| </div> | ||||
| 
 | ||||
| <p> | ||||
| @@ -968,17 +1129,23 @@ The loop gain is \(L = G K\). | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org5b0bef3" class="outline-2"> | ||||
| <h2 id="org5b0bef3"><span class="section-number-2">4</span> Multi Body Model - Simscape</h2> | ||||
| <div id="outline-container-orgab7ac9c" class="outline-2"> | ||||
| <h2 id="orgab7ac9c"><span class="section-number-2">4</span> Multi Body Model - Simscape</h2> | ||||
| <div class="outline-text-2" id="text-4"> | ||||
| <p> | ||||
| <a id="org8ef210c"></a> | ||||
| <a id="org149db50"></a> | ||||
| </p> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org13aaa95" class="outline-3"> | ||||
| <h3 id="org13aaa95"><span class="section-number-3">4.1</span> Parameter for the Simscape simulations</h3> | ||||
| <div class="outline-text-3" id="text-4-1"> | ||||
| <div id="outline-container-org123b2ae" class="outline-3"> | ||||
| <h3 id="org123b2ae"><span class="section-number-3">4.1</span> Initialize</h3> | ||||
| </div> | ||||
| <div id="outline-container-orgc1906bb" class="outline-3"> | ||||
| <h3 id="orgc1906bb"><span class="section-number-3">4.2</span> Parameter for the Simscape simulations</h3> | ||||
| <div class="outline-text-3" id="text-4-2"> | ||||
| <p> | ||||
| First we define the parameters that must be defined in order to run the Simscape simulation. | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">w = <span style="color: #D0372D;">2</span><span style="color: #6434A3;">*</span><span style="color: #D0372D;">pi</span>; <span style="color: #8D8D84; font-style: italic;">% Rotation speed [rad/s]</span> | ||||
| 
 | ||||
| @@ -992,6 +1159,9 @@ cTuv = <span style="color: #D0372D;">0</span>; <span style="color: #8D8D84; font | ||||
| </pre> | ||||
| </div> | ||||
| 
 | ||||
| <p> | ||||
| Then, we defined parameters that will be used in the following analysis. | ||||
| </p> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">mlight = <span style="color: #D0372D;">5</span>; <span style="color: #8D8D84; font-style: italic;">% Mass for light sample [kg]</span> | ||||
| mheavy = <span style="color: #D0372D;">55</span>; <span style="color: #8D8D84; font-style: italic;">% Mass for heavy sample [kg]</span> | ||||
| @@ -1003,17 +1173,24 @@ kvc = <span style="color: #D0372D;">1e3</span>; <span style="color: #8D8D84; fon | ||||
| kpz = <span style="color: #D0372D;">1e8</span>; <span style="color: #8D8D84; font-style: italic;">% Piezo Stiffness [N/m]</span> | ||||
| 
 | ||||
| d = <span style="color: #D0372D;">0</span>.<span style="color: #D0372D;">01</span>; <span style="color: #8D8D84; font-style: italic;">% Maximum excentricity from rotational axis [m]</span> | ||||
| 
 | ||||
| freqs = logspace<span style="color: #707183;">(</span><span style="color: #6434A3;">-</span><span style="color: #D0372D;">2</span>, <span style="color: #D0372D;">3</span>, <span style="color: #D0372D;">1000</span><span style="color: #707183;">)</span>; <span style="color: #8D8D84; font-style: italic;">% Frequency vector for analysis [Hz]</span> | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgd334995" class="outline-3"> | ||||
| <h3 id="orgd334995"><span class="section-number-3">4.2</span> Identification in the rotating referenced frame</h3> | ||||
| <div class="outline-text-3" id="text-4-2"> | ||||
| <div id="outline-container-org255159f" class="outline-3"> | ||||
| <h3 id="org255159f"><span class="section-number-3">4.3</span> Identification in the rotating referenced frame</h3> | ||||
| <div class="outline-text-3" id="text-4-3"> | ||||
| <p> | ||||
| We initialize the inputs and outputs of the system to identify. | ||||
| We initialize the inputs and outputs of the system to identify: | ||||
| </p> | ||||
| <ul class="org-ul"> | ||||
| <li>Inputs: \(f_u\) and \(f_v\)</li> | ||||
| <li>Outputs: \(d_u\) and \(d_v\)</li> | ||||
| </ul> | ||||
| 
 | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span style="color: #8D8D84; font-weight: bold; font-style: italic; text-decoration: overline;">%% Options for Linearized</span> | ||||
| options = linearizeOptions; | ||||
| @@ -1068,21 +1245,38 @@ Gvc_heavy.InputName  = <span style="color: #707183;">{</span><span style="color: | ||||
| Gvc_heavy.OutputName = <span style="color: #707183;">{</span><span style="color: #008000;">'Du', 'Dv'</span><span style="color: #707183;">}</span>; | ||||
| </pre> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org5f1926d" class="outline-3"> | ||||
| <h3 id="org5f1926d"><span class="section-number-3">4.4</span> Coupling ratio between \(f_{uv}\) and \(d_{uv}\)</h3> | ||||
| <div class="outline-text-3" id="text-4-4"> | ||||
| <p> | ||||
| Finally, we plot the coupling ratio in both case (figure <a href="#orgded0015">6</a>). | ||||
| We obtain the same result than the analytical case (figures <a href="#org2b9a0e8">2</a> and <a href="#org24d5dc4">3</a>). | ||||
| From the previous identification, we plot the coupling ratio in both case (figure <a href="#orgcd55860">12</a>). | ||||
| We obtain the same result than the analytical case (figures <a href="#orgeb8c982">2</a> and <a href="#orga3125c6">3</a>). | ||||
| </p> | ||||
| 
 | ||||
| <div id="orgded0015" class="figure"> | ||||
| <div id="orgcd55860" class="figure"> | ||||
| <p><img src="Figures/coupling_ration_light_heavy.png" alt="coupling_ration_light_heavy.png" /> | ||||
| </p> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orge5f2b9f" class="outline-3"> | ||||
| <h3 id="orge5f2b9f"><span class="section-number-3">4.5</span> Plant Control</h3> | ||||
| <div class="outline-text-3" id="text-4-5"> | ||||
| <p> | ||||
| The goal is the study control problems due to the coupling that appears because of the rotation. | ||||
| </p> | ||||
| 
 | ||||
| <p> | ||||
| First, we identify the system when the rotation speed is null and then when the rotation speed is equal to 60rpm. | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| <p> | ||||
| The actuators are voice coil with some damping. | ||||
| </p> | ||||
| 
 | ||||
| 
 | ||||
| <div class="figure"> | ||||
| @@ -1135,9 +1329,9 @@ Plot the ratio between the main transfer function and the coupling term: | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org5cb3ac6" class="outline-4"> | ||||
| <h4 id="org5cb3ac6"><span class="section-number-4">4.2.1</span> Low rotation speed and High rotation speed</h4> | ||||
| <div class="outline-text-4" id="text-4-2-1"> | ||||
| <div id="outline-container-orgb9cef97" class="outline-4"> | ||||
| <h4 id="orgb9cef97"><span class="section-number-4">4.5.1</span> Low rotation speed and High rotation speed</h4> | ||||
| <div class="outline-text-4" id="text-4-5-1"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab">rot_speed = <span style="color: #D0372D;">2</span><span style="color: #6434A3;">*</span><span style="color: #D0372D;">pi</span><span style="color: #6434A3;">/</span><span style="color: #D0372D;">60</span>; angle_e = <span style="color: #D0372D;">0</span>; | ||||
| G_low = linearize<span style="color: #707183;">(</span>mdl, io, <span style="color: #D0372D;">0</span>.<span style="color: #D0372D;">1</span><span style="color: #707183;">)</span>; | ||||
| @@ -1161,9 +1355,9 @@ bode<span style="color: #707183;">(</span>G_low, G_high<span style="color: #7071 | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-orgb159f85" class="outline-3"> | ||||
| <h3 id="orgb159f85"><span class="section-number-3">4.3</span> Identification in the fixed frame</h3> | ||||
| <div class="outline-text-3" id="text-4-3"> | ||||
| <div id="outline-container-org09ff6ca" class="outline-3"> | ||||
| <h3 id="org09ff6ca"><span class="section-number-3">4.6</span> Identification in the fixed frame</h3> | ||||
| <div class="outline-text-3" id="text-4-6"> | ||||
| <p> | ||||
| Let's define some options as well as the inputs and outputs for linearization. | ||||
| </p> | ||||
| @@ -1243,9 +1437,9 @@ bode<span style="color: #707183;">(</span>Ge<span style="color: #707183;">)</spa | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org6b50e4b" class="outline-3"> | ||||
| <h3 id="org6b50e4b"><span class="section-number-3">4.4</span> Identification from actuator forces to displacement in the fixed frame</h3> | ||||
| <div class="outline-text-3" id="text-4-4"> | ||||
| <div id="outline-container-org588dae5" class="outline-3"> | ||||
| <h3 id="org588dae5"><span class="section-number-3">4.7</span> Identification from actuator forces to displacement in the fixed frame</h3> | ||||
| <div class="outline-text-3" id="text-4-7"> | ||||
| <div class="org-src-container"> | ||||
| <pre class="src src-matlab"><span style="color: #8D8D84; font-weight: bold; font-style: italic; text-decoration: overline;">%% Options for Linearized</span> | ||||
| options = linearizeOptions; | ||||
| @@ -1302,48 +1496,48 @@ exportFig<span style="color: #707183;">(</span><span style="color: #008000;">'G_ | ||||
| </div> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org6a8d002" class="outline-3"> | ||||
| <h3 id="org6a8d002"><span class="section-number-3">4.5</span> Effect of the rotating Speed</h3> | ||||
| <div class="outline-text-3" id="text-4-5"> | ||||
| <div id="outline-container-org53255e3" class="outline-3"> | ||||
| <h3 id="org53255e3"><span class="section-number-3">4.8</span> Effect of the rotating Speed</h3> | ||||
| <div class="outline-text-3" id="text-4-8"> | ||||
| <p> | ||||
| <a id="org5ada9df"></a> | ||||
| <a id="org09b2961"></a> | ||||
| </p> | ||||
| </div> | ||||
| 
 | ||||
| <div id="outline-container-org4a07d2b" class="outline-4"> | ||||
| <h4 id="org4a07d2b"><span class="section-number-4">4.5.1</span> <span class="todo TODO">TODO</span> Use realistic parameters for the mass of the sample and stiffness of the X-Y stage</h4> | ||||
| <div id="outline-container-org14c5fe5" class="outline-4"> | ||||
| <h4 id="org14c5fe5"><span class="section-number-4">4.8.1</span> <span class="todo TODO">TODO</span> Use realistic parameters for the mass of the sample and stiffness of the X-Y stage</h4> | ||||
| </div> | ||||
| <div id="outline-container-org01d22ae" class="outline-4"> | ||||
| <h4 id="org01d22ae"><span class="section-number-4">4.5.2</span> <span class="todo TODO">TODO</span> Check if the plant is changing a lot when we are not turning to when we are turning at the maximum speed (60rpm)</h4> | ||||
| <div id="outline-container-org5347efa" class="outline-4"> | ||||
| <h4 id="org5347efa"><span class="section-number-4">4.8.2</span> <span class="todo TODO">TODO</span> Check if the plant is changing a lot when we are not turning to when we are turning at the maximum speed (60rpm)</h4> | ||||
| </div> | ||||
| </div> | ||||
| <div id="outline-container-org6cdc442" class="outline-3"> | ||||
| <h3 id="org6cdc442"><span class="section-number-3">4.6</span> Effect of the X-Y stage stiffness</h3> | ||||
| <div class="outline-text-3" id="text-4-6"> | ||||
| <div id="outline-container-orgd2cb6ed" class="outline-3"> | ||||
| <h3 id="orgd2cb6ed"><span class="section-number-3">4.9</span> Effect of the X-Y stage stiffness</h3> | ||||
| <div class="outline-text-3" id="text-4-9"> | ||||
| <p> | ||||
| <a id="org377008c"></a> | ||||
| <a id="org2bcac98"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-org74a0c06" class="outline-4"> | ||||
| <h4 id="org74a0c06"><span class="section-number-4">4.6.1</span> <span class="todo TODO">TODO</span> At full speed, check how the coupling changes with the stiffness of the actuators</h4> | ||||
| <div id="outline-container-org177c370" class="outline-4"> | ||||
| <h4 id="org177c370"><span class="section-number-4">4.9.1</span> <span class="todo TODO">TODO</span> At full speed, check how the coupling changes with the stiffness of the actuators</h4> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| <div id="outline-container-orge84791a" class="outline-2"> | ||||
| <h2 id="orge84791a"><span class="section-number-2">5</span> Control Implementation</h2> | ||||
| <div id="outline-container-org4965ab2" class="outline-2"> | ||||
| <h2 id="org4965ab2"><span class="section-number-2">5</span> Control Implementation</h2> | ||||
| <div class="outline-text-2" id="text-5"> | ||||
| <p> | ||||
| <a id="orgd9942b8"></a> | ||||
| <a id="org9e7daf4"></a> | ||||
| </p> | ||||
| </div> | ||||
| <div id="outline-container-org86d67af" class="outline-3"> | ||||
| <h3 id="org86d67af"><span class="section-number-3">5.1</span> Measurement in the fixed reference frame</h3> | ||||
| <div id="outline-container-org9f42bc5" class="outline-3"> | ||||
| <h3 id="org9f42bc5"><span class="section-number-3">5.1</span> Measurement in the fixed reference frame</h3> | ||||
| </div> | ||||
| </div> | ||||
| </div> | ||||
| <div id="postamble" class="status"> | ||||
| <p class="author">Author: Thomas Dehaeze</p> | ||||
| <p class="date">Created: 2019-01-23 mer. 15:21</p> | ||||
| <p class="date">Created: 2019-01-24 jeu. 14:05</p> | ||||
| <p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p> | ||||
| </div> | ||||
| </body> | ||||
|   | ||||
		Reference in New Issue
	
	Block a user