Add IFF and DVF study
Before Width: | Height: | Size: 191 KiB After Width: | Height: | Size: 8.1 KiB |
1678
figs/dvf_plant_and_coupling.pdf
Normal file
BIN
figs/dvf_plant_and_coupling.png
Normal file
After Width: | Height: | Size: 131 KiB |
BIN
figs/dvf_root_locus_ws.pdf
Normal file
BIN
figs/dvf_root_locus_ws.png
Normal file
After Width: | Height: | Size: 43 KiB |
BIN
figs/dvf_variability_plant_ws.pdf
Normal file
BIN
figs/dvf_variability_plant_ws.png
Normal file
After Width: | Height: | Size: 134 KiB |
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 37 KiB |
2330
figs/iff_plant_and_coupling.pdf
Normal file
BIN
figs/iff_plant_and_coupling.png
Normal file
After Width: | Height: | Size: 158 KiB |
BIN
figs/iff_root_locus_ws.pdf
Normal file
BIN
figs/iff_root_locus_ws.png
Normal file
After Width: | Height: | Size: 53 KiB |
BIN
figs/iff_variability_plant_ws.pdf
Normal file
BIN
figs/iff_variability_plant_ws.png
Normal file
After Width: | Height: | Size: 135 KiB |
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
BIN
index.html
681
index.org
@ -23,6 +23,7 @@
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
:END:
|
||||
|
||||
* Introduction :ignore:
|
||||
The objective of this note it to highlight some control problems that arises when controlling the position of an object using actuators that are rotating with respect to a fixed reference frame.
|
||||
|
||||
In section [[sec:system]], a simple system composed of a spindle and a translation stage is defined and the equations of motion are written.
|
||||
@ -38,10 +39,10 @@ In section [[sec:simscape]], the analytical study will be validated using a mult
|
||||
Finally, in section [[sec:control]], the control strategies are implemented using Simulink and Simscape and compared.
|
||||
|
||||
* System Description and Analysis
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/system_numerical_analysis.m
|
||||
:END:
|
||||
<<sec:system>>
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/system_numerical_analysis.m
|
||||
:END:
|
||||
<<sec:system>>
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -437,7 +438,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
figure;
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs{i}, freqs, 'Hz'))));
|
||||
@ -448,7 +449,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -477,7 +478,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
figure;
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))));
|
||||
@ -488,7 +489,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -533,7 +534,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
freqs = logspace(2, 3, 1000);
|
||||
|
||||
figure;
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs{i}, freqs, 'Hz'))));
|
||||
@ -544,7 +545,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -570,7 +571,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))));
|
||||
@ -581,7 +582,7 @@ Then we compare the result between voice coil and piezoelectric actuators.
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gcs{i}, freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -728,6 +729,512 @@ For the voice coil (figure [[fig:poles_w_vc]]), the system is unstable when the
|
||||
#+CAPTION: Real and Imaginary part of the poles of the system as a function of the rotation speed - Piezoelectric actuator and light sample
|
||||
[[file:figs/poles_w_pz.png]]
|
||||
|
||||
* Integral Force Feedback
|
||||
<<sec:iff>>
|
||||
** Introduction :ignore:
|
||||
In this section, we study the use of Decentralized Integral Force Feedback (IFF) to damp the resonance of the positioning system.
|
||||
|
||||
We thus suppose there is a force sensor in series with the actuator in the $u$ and $v$ directions.
|
||||
|
||||
** Analytical Derivation of the transfer function for IFF control
|
||||
The sensed forces are equal to:
|
||||
\begin{align}
|
||||
F_{um} &= F_u - k d_u \\
|
||||
F_{vm} &= F_v - k d_v
|
||||
\end{align}
|
||||
|
||||
If we consider a constant rotating speed $\dot{\theta} = \omega$, we have:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega}^2))^2 + (2 m {\omega} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega}^2) & 2 m \omega s \\
|
||||
-2 m \omega s & ms^2 + (k-m{\omega}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Which then give:
|
||||
\begin{align}
|
||||
F_{um} &= \frac{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2 - k(m s^2 + (k - m\omega^2))}{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2} F_u - \frac{2 m \omega s}{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2} F_v\\
|
||||
F_{vm} &= \frac{2 m \omega s}{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2} F_u + \frac{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2 - k(m s^2 + (k - m\omega^2))}{(m s^2 + (k - m\omega^2))^2 + (2 m \omega s)^2} F_v
|
||||
\end{align}
|
||||
|
||||
If we note $\omega_0 = \sqrt{\frac{k}{m}}$, which corresponds to the resonance of the positioning system when not rotating, we obtain:
|
||||
#+begin_important
|
||||
\begin{align}
|
||||
F_{um} &= \frac{s^4 + (\omega_0^2 + 2\omega^2) s^2 + \omega^2(\omega^2 - \omega_0^2)}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_u - \frac{2 \omega_0^2 \omega s}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_v\\
|
||||
F_{vm} &= \frac{2 \omega_0^2 \omega s}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_u + \frac{s^4 + (\omega_0^2 + 2\omega^2) s^2 + \omega^2(\omega^2 - \omega_0^2)}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_v
|
||||
\end{align}
|
||||
#+end_important
|
||||
|
||||
** Low and High frequency Behavior
|
||||
At high frequency, the force sensors give:
|
||||
\begin{align}
|
||||
F_{um} &= F_u \\
|
||||
F_{vm} &= F_v
|
||||
\end{align}
|
||||
which is usual for IFF control.
|
||||
|
||||
|
||||
At low frequency:
|
||||
\begin{align}
|
||||
F_{um} &= \frac{\omega^2}{\omega_0^2 - \omega^2} F_u \\
|
||||
F_{vm} &= \frac{\omega^2}{\omega_0^2 - \omega^2} F_v
|
||||
\end{align}
|
||||
|
||||
The gain at low frequency is no more zero as it is usually the case.
|
||||
Thus, a constant force will be sensed by the force sensor.
|
||||
|
||||
|
||||
This could be explained by the fact that a constant force will induce some displacement of the mass.
|
||||
The mass being more off-center with the rotation axis, it is experiencing a larger centrifugal force and this (constant) centrifugal force is sensed by the force sensor.
|
||||
It is like a *negative stiffness is in parallel with both the stiffness and the force sensor*.
|
||||
|
||||
** Poles and Zeros
|
||||
Let's use Matlab Symbolic toolbox to find the analytical formula for the poles and zeros of the transfer function from the force actuators to the force sensors.
|
||||
|
||||
Let's define the parameters and suppose that we have $\omega > \omega_0$ (stable poles).
|
||||
#+begin_src matlab
|
||||
syms w w0 positive
|
||||
assume(w > w0)
|
||||
syms x
|
||||
#+end_src
|
||||
|
||||
The characteristic equations to find the poles and zeros are:
|
||||
#+begin_src matlab
|
||||
z = x^4 + (w0^2 + 2*w^2)*x^2 + w^2*(w^2 - w0^2) == 0
|
||||
p = x^4 + 2*(w0^2 + w^2)*x^2 +(w^2 - w0^2)^2 == 0
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
solve(p, x)
|
||||
#+end_src
|
||||
|
||||
The obtained poles are:
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \omega)
|
||||
\end{align}
|
||||
|
||||
We obtain two pairs of complex conjugate poles:
|
||||
- $p_1$ is going to lower frequencies as the rotating speed $\omega$ is increased
|
||||
- $p_2$ is going to higher frequencies as the rotating speed $\omega$ is increased
|
||||
|
||||
#+begin_src matlab
|
||||
solve(z, x)
|
||||
#+end_src
|
||||
|
||||
The obtained zeros are:
|
||||
\begin{align}
|
||||
z_1 &= \pm j \sqrt{ \frac{1}{2} \omega_0 \sqrt{(8 \omega^2 + \omega_0^2)} + \omega^2 + \frac{1}{2} \omega_0^2 } \\
|
||||
z_2 &= \pm \sqrt{ \frac{1}{2} \omega_0 \sqrt{(8 \omega^2 + \omega_0^2)} - \omega^2 - \frac{1}{2} \omega_0^2 }
|
||||
\end{align}
|
||||
|
||||
Thus, there are *two complex conjugate zeros* and *two real zeros*.
|
||||
|
||||
We can easily show that the frequency of the two complex conjugate zeros is between the frequency of $p_1$ and $p_2$.
|
||||
|
||||
The effect of the two real zeros is an increase of +2 of the slope without change of phase (non-minimum phase behavior).
|
||||
|
||||
#+begin_important
|
||||
Also, as one zero has a positive real part, the *IFF control is no more unconditionally stable*.
|
||||
|
||||
This is due to the fact that the zeros of the plant are the poles of the closed loop system with an infinite gain.
|
||||
|
||||
Thus, for some finite IFF gain, one pole will have a positive real part and the system will be unstable.
|
||||
#+end_important
|
||||
|
||||
** IFF Plant and Root Locus
|
||||
#+begin_src matlab :exports none
|
||||
w0 = 2*pi; % [rad/s]
|
||||
m = 1; % [kg]
|
||||
k = m*w0^2; % [N/m]
|
||||
|
||||
ws = linspace(0, 0.9*w0, 4);
|
||||
|
||||
G_iff = {zeros(2, 2, length(ws))};
|
||||
|
||||
for i = 1:length(ws)
|
||||
w = ws(i);
|
||||
G_iff(:, :, i) = {[((m*s^2 + k-m*w^2)^2 + (2*m*w*s)^2 - k*(m*s^2 + k - m*w^2))/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2), -(2*k*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2);
|
||||
(2*k*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2), ((m*s^2 + k-m*w^2)^2 + (2*m*w*s)^2 - k*(m*s^2 + k - m*w^2))/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2)]};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
The bode plot for the diagonal and off-diagonal elements are shown in Figure [[fig:iff_plant_and_coupling]].
|
||||
|
||||
The change of dynamics from $F_u$ to $F_{u,m}$ due to the change in rotation speed is shown in Figure [[fig:iff_variability_plant_ws]].
|
||||
It is shown that the rotation speed does change the low frequency gain (explained in previous section).
|
||||
|
||||
The root locus for Decentralized Direct Velocity Feedback is shown in Figure [[fig:iff_root_locus_ws]].
|
||||
|
||||
It is shown that:
|
||||
- the high frequency pair of complex conjugate poles cannot be critically damped.
|
||||
There is an optimal gain that gives maximum damping of this resonance.
|
||||
- the low frequency resonance can be critically damped with sufficient gain
|
||||
- a closed loop unstable pole is present whatever the gain of the IFF (if the rotation speed in not null)
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
i = 2;
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff{i}(1,1), freqs, 'Hz'))))
|
||||
plot(freqs, ones(size(freqs))*(ws(i)^2/(k/m - ws(i)^2)), 'k--')
|
||||
plot(sqrt(0.5*sqrt(k/m)*sqrt(8*ws(i)^2 + k/m) + ws(i) + 0.5*k/m)/2/pi, 1, 'ko')
|
||||
plot(sqrt(0.5*sqrt(k/m)*sqrt(8*ws(i)^2 + k/m) - ws(i) - 0.5*k/m)/2/pi, 1, 'ko')
|
||||
plot((sqrt(k/m) + ws(i))/2/pi, 1, 'kx')
|
||||
plot((sqrt(k/m) - ws(i))/2/pi, 1, 'kx')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]');
|
||||
title(['$\frac{F_{u,m}}{F_u}$' sprintf(', $\\omega = %.2f \\omega_0 $', ws(i)/w0)]);
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff{i}(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
yticks(-180:90:180);
|
||||
ylim([-180 180]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff{i}(1,2), freqs, 'Hz'))))
|
||||
plot((sqrt(k/m) + ws(i))/2/pi, 1, 'kx')
|
||||
plot((sqrt(k/m) - ws(i))/2/pi, 1, 'kx')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
title(['$\frac{F_{v,m}}{F_u}$' sprintf(', $\\omega = %.2f \\omega_0 $', ws(i)/w0)]);
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff{i}(1, 2), freqs, 'Hz'))));
|
||||
hold off;
|
||||
yticks(-180:90:180);
|
||||
ylim([-180 180]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
linkaxes([ax1,ax2],'y');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/iff_plant_and_coupling.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:iff_plant_and_coupling
|
||||
#+caption: Transfer Function from $F_u$ to $F_{u,m}$ and from $F_u$ to $F_{v,m}$ for $\omega = 0.3 \omega_0$
|
||||
#+RESULTS:
|
||||
[[file:figs/iff_plant_and_coupling.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff{i}(1,1), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$\\omega = %.2f \\omega_0 $', ws(i)/w0))
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [N/N]');
|
||||
legend('location', 'northwest');
|
||||
ylim([0, 1e3]);
|
||||
title('$\frac{F_{u,m}}{F_u}$');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/iff_variability_plant_ws.pdf', 'width', 'full', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:iff_variability_plant_ws
|
||||
#+caption: Transfer Function from $F_u$ to $F_{u,m}$ for multiple rotation speed
|
||||
#+RESULTS:
|
||||
[[file:figs/iff_variability_plant_ws.png]]
|
||||
|
||||
Let's see how the root locus is changing with the rotation speed.
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
|
||||
gains = logspace(0, 3, 100);
|
||||
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(pole(G_iff{i})), imag(pole(G_iff{i})), 'x', ...
|
||||
'DisplayName', sprintf('$\\omega = %.2f \\omega_0 $', ws(i)/w0));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(tzero(G_iff{i})), imag(tzero(G_iff{i})), 'o', ...
|
||||
'HandleVisibility', 'off');
|
||||
for k = 1:length(gains)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
cl_poles = pole(feedback(G_iff{i}, gains(k)/s*eye(2)));
|
||||
plot(real(cl_poles), imag(cl_poles), '.', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
axis square;
|
||||
xlim([-13, 2]); ylim([0, 15]);
|
||||
|
||||
xlabel('Real Part'); ylabel('Imaginary Part');
|
||||
legend('location', 'northwest');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/iff_root_locus_ws.pdf', 'width', 'wide', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:iff_root_locus_ws
|
||||
#+caption: Change of the Root Locus plot for different rotating speed
|
||||
#+RESULTS:
|
||||
[[file:figs/iff_root_locus_ws.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
The centrifugal forces can be modeled as a negative stiffness in parallel with the actuators and force sensors.
|
||||
This changes the low frequency gain of the IFF plant.
|
||||
It also add zeros with positive real part which removes the typical unconditional stability property of the IFF control.
|
||||
|
||||
From the Root Locus plot in Figure [[fig:iff_root_locus_ws]], it is shown that when rotating, unstable poles will be introduced due to IFF control.
|
||||
Moreover, only one of the two pairs of complex conjugate poles can be critically damped.
|
||||
|
||||
|
||||
Stiffness can be added in parallel to the force sensor to counteract the negative stiffness due to centrifugal forces.
|
||||
If the added stiffness is higher than the maximum negative stiffness, then the poles of the IFF damped system will stay in the (stable) right half-plane.
|
||||
|
||||
|
||||
Thus, IFF should not be used for rotating positioning platforms unless some stiffness is added in parallel with the force sensor.
|
||||
If no parallel stiffness is added, an unstable pole is added in the system.
|
||||
The frequency of this pole can be made small if the frequency of the position system resonance is much larger than the frequency of the rotation.
|
||||
#+end_important
|
||||
|
||||
* Direct Velocity Feedback
|
||||
<<sec:dvf>>
|
||||
** Introduction :ignore:
|
||||
In this section, we study the use of Direct Velocity Feedback to damp the resonances of the positioning station.
|
||||
We thus suppose that we are able to measure to relative displacement (or velocity) $d_u$ and $d_v$.
|
||||
|
||||
** Analytical Study
|
||||
The equation of motion are:
|
||||
\begin{equation}
|
||||
\begin{bmatrix} d_u \\ d_v \end{bmatrix} =
|
||||
\frac{1}{(m s^2 + (k - m{\omega}^2))^2 + (2 m {\omega} s)^2}
|
||||
\begin{bmatrix}
|
||||
ms^2 + (k-m{\omega}^2) & 2 m \omega s \\
|
||||
-2 m \omega s & ms^2 + (k-m{\omega}^2) \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix} F_u \\ F_v \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
If we note $\omega_0 = \sqrt{\frac{k}{m}}$, we obtain
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{m}\frac{s^2 + (\omega_0^2 - \omega^2)}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_u + \frac{1}{m} \frac{2 \omega s}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_v\\
|
||||
d_v &= - \frac{1}{m} \frac{2 \omega s}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_u + \frac{1}{m}\frac{s^2 + (\omega_0^2 - \omega^2)}{s^4 + 2 (\omega_0^2 + \omega^2) s^2 + (\omega_0^2 - \omega^2)^2} F_v
|
||||
\end{align}
|
||||
|
||||
** High and Low frequency behavior
|
||||
At low frequency:
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{m}\frac{1}{\omega_0^2 - \omega^2} F_u \\
|
||||
d_v &= \frac{1}{m}\frac{1}{\omega_0^2 - \omega^2} F_v
|
||||
\end{align}
|
||||
|
||||
Which can be re-written:
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{k} \frac{1}{1 - \frac{\omega^2}{\omega_0^2}} F_u \\
|
||||
d_v &= \frac{1}{k} \frac{1}{1 - \frac{\omega^2}{\omega_0^2}} F_v
|
||||
\end{align}
|
||||
|
||||
The usual low frequency gain of $\frac{1}{k}$ is modified by a factor $\frac{1}{1 - \frac{\omega^2}{\omega_0^2}}$.
|
||||
|
||||
At high frequency:
|
||||
\begin{align}
|
||||
d_u &= \frac{1}{m s^2} F_u + \frac{2 \omega}{m s^3} F_v\\
|
||||
d_v &= -\frac{2 \omega}{m s^3} F_u + \frac{1}{m s^2} F_v
|
||||
\end{align}
|
||||
|
||||
Thus the rotating speed does not change the high frequency behavior of the diagonal terms but change the coupling.
|
||||
|
||||
** Poles and Zeros
|
||||
The direct terms (diagonal terms of the 2x2 transfer function matrix) have two complex conjugate zeros at:
|
||||
\begin{equation}
|
||||
z = \pm j \sqrt{\omega_0^2 - \omega^2}
|
||||
\end{equation}
|
||||
|
||||
Which are between the two pairs of complex conjugate poles at:
|
||||
\begin{align}
|
||||
p_1 &= \pm j (\omega_0 - \omega) \\
|
||||
p_2 &= \pm j (\omega_0 + \omega)
|
||||
\end{align}
|
||||
|
||||
** DVF Plant and Root Locus
|
||||
#+begin_src matlab :exports none
|
||||
w0 = 2*pi; % [rad/s]
|
||||
m = 1; % [kg]
|
||||
k = m*w0^2; % [N/m]
|
||||
|
||||
ws = linspace(0, 0.9*w0, 4);
|
||||
|
||||
G_dvf = {zeros(2, 2, length(ws))};
|
||||
|
||||
for i = 1:length(ws)
|
||||
w = ws(i);
|
||||
G_dvf(:, :, i) = {[ (m*s^2 + k-m*w^2)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2), (2*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2);
|
||||
-(2*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2), (m*s^2 + k-m*w^2)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2) ]};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
The bode plot for the diagonal and off-diagonal elements are shown in Figure [[fig:dvf_plant_and_coupling]].
|
||||
|
||||
The change of dynamics from $F_u$ to $d_u$ due to the change in rotation speed is shown in Figure [[fig:dvf_variability_plant_ws]].
|
||||
It is shown that the rotation speed does not change much the low frequency and high frequency gains.
|
||||
It only modifies the location of the two pair of complex conjugate pairs.
|
||||
|
||||
The root locus for Decentralized Direct Velocity Feedback is shown in Figure [[fig:dvf_root_locus_ws]].
|
||||
It is shown that the closed-loop poles are in the left-half of the complex plane, whatever the gain.
|
||||
Moreover, has much damping can be added to both pairs of complex conjugate poles.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
i = 2;
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf{i}(1,1), freqs, 'Hz'))))
|
||||
plot(freqs, ones(size(freqs))*1/(k * (1 - ws(i)^2/(k/m))), 'k--')
|
||||
plot(freqs, abs(squeeze(freqresp(1/m/s^2, freqs, 'Hz'))), 'k--')
|
||||
plot(sqrt(k/m - ws(i))/2/pi, 1, 'ko')
|
||||
plot((sqrt(k/m) + ws(i))/2/pi, 1, 'kx')
|
||||
plot((sqrt(k/m) - ws(i))/2/pi, 1, 'kx')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]');
|
||||
title(['$\frac{d_u}{F_u}$' sprintf(', $\\omega = %.2f \\omega_0 $', ws(i)/w0)]);
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf{i}(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
yticks(-180:90:180);
|
||||
ylim([-180 180]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf{i}(1,2), freqs, 'Hz'))))
|
||||
plot((sqrt(k/m) + ws(i))/2/pi, 1, 'kx')
|
||||
plot((sqrt(k/m) - ws(i))/2/pi, 1, 'kx')
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
title(['$\frac{d_v}{F_u}$' sprintf(', $\\omega = %.2f \\omega_0 $', ws(i)/w0)]);
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf{i}(1, 2), freqs, 'Hz'))));
|
||||
hold off;
|
||||
yticks(-180:90:180);
|
||||
ylim([-180 180]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
xlabel('Frequency [Hz]');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
linkaxes([ax1,ax2],'y');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/dvf_plant_and_coupling.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:dvf_plant_and_coupling
|
||||
#+caption: Transfer Function from $F_u$ to $d_u$ and from $F_u$ to $d_v$ for $\omega = 0.3 \omega_0$
|
||||
#+RESULTS:
|
||||
[[file:figs/dvf_plant_and_coupling.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-2, 1, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf{i}(1,1), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$\\omega = %.2f \\omega_0 $', ws(i)/w0))
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
|
||||
legend('location', 'northwest');
|
||||
title('$\frac{d_u}{F_u}$');
|
||||
ylim([0, 1e1]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/dvf_variability_plant_ws.pdf', 'width', 'full', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:dvf_variability_plant_ws
|
||||
#+caption: Transfer Function from $F_u$ to $d_u$ for multiple rotation speed
|
||||
#+RESULTS:
|
||||
[[file:figs/dvf_variability_plant_ws.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
|
||||
gains = logspace(-1, 3, 200);
|
||||
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(pole(G_dvf{i})), imag(pole(G_dvf{i})), 'x', ...
|
||||
'DisplayName', sprintf('$\\omega = %.2f \\omega_0 $', ws(i)/w0));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(real(tzero(G_dvf{i})), imag(tzero(G_dvf{i})), 'o', ...
|
||||
'HandleVisibility', 'off');
|
||||
for k = 1:length(gains)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
cl_poles = pole(feedback(G_dvf{i}, s*gains(k)*eye(2)));
|
||||
plot(real(cl_poles), imag(cl_poles), '.', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
hold off;
|
||||
axis square;
|
||||
xlim([-14, 1]); ylim([0, 15]);
|
||||
|
||||
xlabel('Real Part'); ylabel('Imaginary Part');
|
||||
legend('location', 'northwest');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/dvf_root_locus_ws.pdf', 'width', 'wide', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:dvf_root_locus_ws
|
||||
#+caption: Change of the Root Locus plot for multiple rotating speed
|
||||
#+RESULTS:
|
||||
[[file:figs/dvf_root_locus_ws.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
(Relative) Direct Velocity Feedback can be used to damp the resonance of a rotating positioning stage.
|
||||
|
||||
As shown by the Root Locus in Figure [[fig:dvf_root_locus_ws]]:
|
||||
- DVF permits to critically damp the vibrations of the positioning stage
|
||||
- DVF is unconditionally stage
|
||||
#+end_important
|
||||
|
||||
|
||||
* Control Strategies
|
||||
<<sec:control_strategies>>
|
||||
** Measurement in the fixed reference frame
|
||||
@ -913,6 +1420,62 @@ We obtain the same result than the analytical case (figures [[fig:coupling_light
|
||||
#+CAPTION: Coupling ratio obtained with the Simscape model
|
||||
[[file:figs/coupling_ratio_light_heavy.png]]
|
||||
|
||||
** Transfer function from force to force sensor (IFF plant)
|
||||
#+begin_src matlab :exports code
|
||||
%% Name of the Simulink File
|
||||
mdl = 'rotating_frame';
|
||||
|
||||
%% Input/Output definition
|
||||
io(1) = linio([mdl, '/fu'], 1, 'input');
|
||||
io(2) = linio([mdl, '/fv'], 1, 'input');
|
||||
|
||||
io(3) = linio([mdl, '/fum'], 1, 'output');
|
||||
io(4) = linio([mdl, '/fvm'], 1, 'output');
|
||||
#+end_src
|
||||
|
||||
We start we identify the transfer functions at high speed with the light sample.
|
||||
#+begin_src matlab :exports code
|
||||
w = wlight; % Rotation speed [rad/s]
|
||||
m = mlight; % mass of the sample [kg]
|
||||
|
||||
kTuv = kpz;
|
||||
Gpz_light = linearize(mdl, io, 0.1);
|
||||
Gpz_light.InputName = {'Fu', 'Fv'};
|
||||
Gpz_light.OutputName = {'Fum', 'Fvm'};
|
||||
|
||||
kTuv = kvc;
|
||||
Gvc_light = linearize(mdl, io, 0.1);
|
||||
Gvc_light.InputName = {'Fu', 'Fv'};
|
||||
Gvc_light.OutputName = {'Fum', 'Fvm'};
|
||||
#+end_src
|
||||
|
||||
Then we identify the system with an heavy mass and low speed.
|
||||
#+begin_src matlab :exports code
|
||||
w = wheavy; % Rotation speed [rad/s]
|
||||
m = mheavy; % mass of the sample [kg]
|
||||
|
||||
kTuv = kpz;
|
||||
Gpz_heavy = linearize(mdl, io, 0.1);
|
||||
Gpz_heavy.InputName = {'Fu', 'Fv'};
|
||||
Gpz_heavy.OutputName = {'Fum', 'Fvm'};
|
||||
|
||||
kTuv = kvc;
|
||||
Gvc_heavy = linearize(mdl, io, 0.1);
|
||||
Gvc_heavy.InputName = {'Fu', 'Fv'};
|
||||
Gvc_heavy.OutputName = {'Fum', 'Fvm'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gvc_heavy('Fum', 'Fu'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coupling ratio');
|
||||
legend({'light - VC', 'light - PZ', 'heavy - VC', 'heavy - PZ'}, 'Location', 'northeast')
|
||||
#+end_src
|
||||
|
||||
** Plant Control - SISO approach
|
||||
*** Plant identification
|
||||
The goal is to study the control problems due to the coupling that appears because of the rotation.
|
||||
@ -963,7 +1526,7 @@ The bode plot of the system not rotating and rotating at 60rpm is shown figure [
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
ax1 = subaxis(2,2,1);
|
||||
ax1 = subplot(2,2,1);
|
||||
title('From $F_u$ to $D_u$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gvc(1, 1), freqs, 'Hz'))));
|
||||
@ -974,7 +1537,7 @@ The bode plot of the system not rotating and rotating at 60rpm is shown figure [
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,2,3);
|
||||
ax2 = subplot(2,2,3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gvc(1, 1), freqs, 'Hz'))), 'DisplayName', 'Gvc - $\omega = 0$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gtvc(1, 1), freqs, 'Hz'))), 'DisplayName', 'Gvc - $\omega = 60$rpm');
|
||||
@ -987,7 +1550,7 @@ The bode plot of the system not rotating and rotating at 60rpm is shown figure [
|
||||
legend('Location', 'northeast');
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
ax1 = subaxis(2,2,2);
|
||||
ax1 = subplot(2,2,2);
|
||||
title('From $F_u$ to $D_v$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gvc(1, 2), freqs, 'Hz'))));
|
||||
@ -997,7 +1560,7 @@ The bode plot of the system not rotating and rotating at 60rpm is shown figure [
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subaxis(2,2,4);
|
||||
ax2 = subplot(2,2,4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gvc(1, 2), freqs, 'Hz'))), 'DisplayName', 'Gvc - $\omega = 0$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gtvc(1, 2), freqs, 'Hz'))), 'DisplayName', 'Gvc - $\omega = 60$rpm');
|
||||
@ -1052,7 +1615,7 @@ To stabilize the unstable pole, we need a control bandwidth of at least twice of
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
|
||||
figure;
|
||||
ax1 = subaxis(2,2,1);
|
||||
ax1 = subplot(2,2,1);
|
||||
title('$D_u/F_u$');
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
@ -1065,7 +1628,7 @@ To stabilize the unstable pole, we need a control bandwidth of at least twice of
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,2,3);
|
||||
ax2 = subplot(2,2,3);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_vc{i}(1, 1), freqs, 'Hz'))));
|
||||
@ -1078,7 +1641,7 @@ To stabilize the unstable pole, we need a control bandwidth of at least twice of
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
ax1 = subaxis(2,2,2);
|
||||
ax1 = subplot(2,2,2);
|
||||
title('$D_v/F_u$');
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
@ -1091,7 +1654,7 @@ To stabilize the unstable pole, we need a control bandwidth of at least twice of
|
||||
set(gca, 'XTickLabel',[]);
|
||||
set(gca, 'YTickLabel',[]);
|
||||
|
||||
ax2 = subaxis(2,2,4);
|
||||
ax2 = subplot(2,2,4);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_vc{i}(1, 2), freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -1139,7 +1702,7 @@ Then, we can look at the same plots for the piezoelectric actuator (figure [[fig
|
||||
freqs = logspace(2, 3, 1000);
|
||||
|
||||
figure;
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_pz{i}(1, 1), freqs, 'Hz'))));
|
||||
@ -1150,7 +1713,7 @@ Then, we can look at the same plots for the piezoelectric actuator (figure [[fig
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude [m/N]');
|
||||
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_pz{i}(1, 1), freqs, 'Hz'))), 'DisplayName', sprintf('w = %.0f [rpm]', ws(i)*60/2/pi));
|
||||
@ -1194,7 +1757,7 @@ The loop gain is displayed figure [[fig:Gvc_loop_gain]].
|
||||
|
||||
figure;
|
||||
% Amplitude
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gvc('Du', 'fu')*Kll, freqs, 'Hz'))), '-');
|
||||
set(gca,'xscale','log'); set(gca,'yscale','log');
|
||||
@ -1202,7 +1765,7 @@ The loop gain is displayed figure [[fig:Gvc_loop_gain]].
|
||||
set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
% Phase
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gvc('Du', 'fu')*Kll, freqs, 'Hz')))), '-');
|
||||
set(gca,'xscale','log');
|
||||
@ -1233,7 +1796,7 @@ Let's first plot the SISO loop gain.
|
||||
|
||||
figure;
|
||||
% Amplitude
|
||||
ax1 = subaxis(2,1,1);
|
||||
ax1 = subplot(2,1,1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_vc{1}(1, 1)*Kll, freqs, 'Hz'))), '-');
|
||||
plot(freqs, abs(squeeze(freqresp(Gs_vc{2}(1, 1)*Kll, freqs, 'Hz'))), '-');
|
||||
@ -1244,7 +1807,7 @@ Let's first plot the SISO loop gain.
|
||||
hold off;
|
||||
|
||||
% Phase
|
||||
ax2 = subaxis(2,1,2);
|
||||
ax2 = subplot(2,1,2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_vc{1}(1, 1)*Kll, freqs, 'Hz'))), 'DisplayName', sprintf('%.0f rpm', ws(1)./(2*pi).*60));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_vc{2}(1, 1)*Kll, freqs, 'Hz'))), 'DisplayName', sprintf('%.0f rpm', ws(2)./(2*pi).*60));
|
||||
@ -1283,7 +1846,7 @@ The system then goes unstable at some point (here for $\omega=60rpm$).
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
sys = feedback(Gs_vc{i}(1, 1), K(1, 1), 'name');
|
||||
plot(real(pole(sys)), imag(pole(sys)), 'o', 'DisplayName', sprintf('$\\omega = %.0f rpm$', ws(i)/(2*pi)*60));
|
||||
plot(real(pole(sys)), imag(pole(sys)), 'x', 'DisplayName', sprintf('$\\omega = %.0f rpm$', ws(i)/(2*pi)*60));
|
||||
end
|
||||
hold off;
|
||||
xlim([-80, 10]);
|
||||
@ -1306,7 +1869,7 @@ If we look at the poles of the closed loop-system for multiple rotating speed (f
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:length(ws)
|
||||
plot(real(pole(Gvc_cl{i})), imag(pole(Gvc_cl{i})), 'o', 'DisplayName', sprintf('$\\omega = %.0f rpm$', ws(i)/(2*pi)*60));
|
||||
plot(real(pole(Gvc_cl{i})), imag(pole(Gvc_cl{i})), 'x', 'DisplayName', sprintf('$\\omega = %.0f rpm$', ws(i)/(2*pi)*60));
|
||||
end
|
||||
hold off;
|
||||
xlim([-80, 0]);
|
||||
@ -1323,6 +1886,12 @@ If we look at the poles of the closed loop-system for multiple rotating speed (f
|
||||
#+CAPTION: Evolution of the poles of the closed-loop system
|
||||
[[file:figs/poles_cl_system.png]]
|
||||
|
||||
*** TODO Neglected coupling
|
||||
Take a diagonal system and apply the diagonal controller.
|
||||
|
||||
I expect that the system will be unstable
|
||||
=> in some way the coupling makes the system stable
|
||||
|
||||
*** Close loop performance
|
||||
First, we create the closed loop systems. Then, we plot the transfer function from the reference signals $[r_u, r_v]$ to the output $[d_u, d_v]$ (figure [[fig:perfcomp]]).
|
||||
|
||||
@ -1369,6 +1938,59 @@ First, we create the closed loop systems. Then, we plot the transfer function fr
|
||||
#+CAPTION: Close loop performance for $\omega = 0$ and $\omega = 60 rpm$
|
||||
[[file:figs/perfcomp.png]]
|
||||
|
||||
*** Campbell Diagram for the close loop system
|
||||
|
||||
#+begin_src matlab :exports code
|
||||
m = mlight;
|
||||
k = kvc;
|
||||
c = 0.1*sqrt(k*m);
|
||||
|
||||
wsvc = linspace(0, 10, 100); % [rad/s]
|
||||
|
||||
polesvc = zeros(8, length(wsvc));
|
||||
|
||||
for i = 1:length(wsvc)
|
||||
Gs = (m*s^2 + (k-m*w^2))/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2);
|
||||
Gcs = (2*m*w*s)/((m*s^2 + (k - m*w^2))^2 + (2*m*w*s)^2);
|
||||
|
||||
G = [Gs, Gcs; Gcs, Gs];
|
||||
G.InputName = {'Fu', 'Fv'};
|
||||
G.OutputName = {'Du', 'Dv'};
|
||||
|
||||
polei = pole(feedback(G, K, 'name'));
|
||||
polesvc(:, i) = sort(polei(imag(polei) > 0));
|
||||
|
||||
polei = pole(feedback(G, 10*K, 'name'));
|
||||
polesvcb(:, i) = sort(polei(imag(polei) > 0));
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
% Amplitude
|
||||
ax1 = subplot(1,2,1);
|
||||
hold on;
|
||||
for i = 1:8
|
||||
plot(wsvc, real(polesvc(i, :)), 'b')
|
||||
plot(wsvc, real(polesvcb(i, :)), 'r')
|
||||
end
|
||||
plot(wsvc, zeros(size(wsvc)), 'k--')
|
||||
hold off;
|
||||
xlabel('Rotation Frequency [rad/s]');
|
||||
ylabel('Pole Real Part');
|
||||
|
||||
ax2 = subplot(1,2,2);
|
||||
hold on;
|
||||
for i = 1:8
|
||||
plot(wsvc, imag(polesvc(i, :)), 'b')
|
||||
plot(wsvc, imag(polesvcb(i, :)), 'r')
|
||||
end
|
||||
hold off;
|
||||
xlabel('Rotation Frequency [rad/s]');
|
||||
ylabel('Pole Imaginary Part');
|
||||
#+end_src
|
||||
|
||||
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
Even though considering one input and output at a time would results in an unstable system (figure [[fig:evolution_poles_u]]), when using the diagonal MIMO controller, the system stays stable (figure [[fig:poles_cl_system]]). This could be understood by saying that when controlling both directions at the same time, the coupling effect should be much lower than when controlling only one direction.
|
||||
@ -1418,4 +2040,5 @@ We first look at the evolution of the singular values as a function of frequency
|
||||
<<sec:control>>
|
||||
|
||||
* Bibliography :ignore:
|
||||
# #+BIBLIOGRAPHY: /home/tdehaeze/MEGA/These/Ressources/references.bib plain option:-a option:-noabstract option:-nokeywords option:-noheader option:-nofooter option:-nobibsource limit:t
|
||||
# bibliographystyle:unsrt
|
||||
# bibliography:refs.bib
|
||||
|