Modify transpose notation
This commit is contained in:
parent
de4b8bc88c
commit
42a7ca9244
@ -364,8 +364,8 @@ ylim([1e-10, 2e-3])
|
||||
#+end_src
|
||||
|
||||
|
||||
** TODO [#B] Change review based on christophe's comments
|
||||
SCHEDULED: <2025-04-04 Fri>
|
||||
** DONE [#B] Change review based on christophe's comments
|
||||
CLOSED: [2025-04-04 Fri 21:11] SCHEDULED: <2025-04-04 Fri>
|
||||
|
||||
- [-] make sure that all papers are cited
|
||||
- [X] geng93_six_degree_of_freed_activ
|
||||
@ -713,7 +713,7 @@ Compute:
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\sum_{i = 1}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3
|
||||
\sum_{i = 1}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3
|
||||
\end{equation}
|
||||
|
||||
|
||||
@ -731,12 +731,12 @@ This is wrong, check from matlab script
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\bm{K} = k \bm{J}^T \bm{J} =
|
||||
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||
k \left[
|
||||
\begin{array}{c|c}
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||
\hline
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||
\end{array}
|
||||
\right]
|
||||
\end{equation}
|
||||
@ -1216,12 +1216,12 @@ The analysis is significantly simplified when considering small motions, as the
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
||||
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
||||
{{}^A\hat{\bm{s}}_1}^T & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^T \\
|
||||
{{}^A\hat{\bm{s}}_2}^T & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^T \\
|
||||
{{}^A\hat{\bm{s}}_3}^T & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^T \\
|
||||
{{}^A\hat{\bm{s}}_4}^T & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^T \\
|
||||
{{}^A\hat{\bm{s}}_5}^T & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^T \\
|
||||
{{}^A\hat{\bm{s}}_6}^T & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^T
|
||||
{{}^A\hat{\bm{s}}_1}^{\intercal} & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_2}^{\intercal} & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_3}^{\intercal} & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_4}^{\intercal} & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_5}^{\intercal} & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_6}^{\intercal} & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^{\intercal}
|
||||
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
@ -1606,28 +1606,28 @@ The contribution of joints stiffness is not considered here, as the joints were
|
||||
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature [[cite:&mcinroy00_desig_contr_flexur_joint_hexap;&mcinroy02_model_desig_flexur_joint_stewar]].
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
||||
\bm{K} = \bm{J}^T \bm{\mathcal{K}} \bm{J}
|
||||
\bm{K} = \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J}
|
||||
\end{equation}
|
||||
|
||||
It is assumed that the stiffness of all struts is the same: $\bm{\mathcal{K}} = k \cdot \mathbf{I}_6$.
|
||||
In that case, the obtained stiffness matrix linearly depends on the strut stiffness $k$, and is structured as shown in equation eqref:eq:detail_kinematics_stiffness_matrix_simplified.
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
||||
\bm{K} = k \bm{J}^T \bm{J} =
|
||||
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||
k \left[
|
||||
\begin{array}{c|c}
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||
\hline
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||
\end{array}
|
||||
\right]
|
||||
\end{equation}
|
||||
|
||||
**** Translation Stiffness
|
||||
|
||||
As shown by equation eqref:eq:detail_kinematics_stiffness_matrix_simplified, the translation stiffnesses (the $3 \times 3$ top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T$.
|
||||
As shown by equation eqref:eq:detail_kinematics_stiffness_matrix_simplified, the translation stiffnesses (the $3 \times 3$ top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal}$.
|
||||
In the extreme case where all struts are vertical ($s_i = [0\ 0\ 1]$), a vertical stiffness of $6k$ is achieved, but with null stiffness in the horizontal directions.
|
||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3$, resulting in well-distributed stiffness along all directions.
|
||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3$, resulting in well-distributed stiffness along all directions.
|
||||
This configuration corresponds to the cubic architecture presented in Section ref:sec:detail_kinematics_cubic.
|
||||
|
||||
When the struts are oriented more vertically, as shown in Figure ref:fig:detail_kinematics_stewart_mobility_vert_struts, the vertical stiffness increases while the horizontal stiffness decreases.
|
||||
@ -1658,7 +1658,7 @@ Under very specific conditions, the equations of motion in the Cartesian frame,
|
||||
These conditions are studied in Section ref:ssec:detail_kinematics_cubic_dynamic.
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{T} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{T} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{\intercal} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||
\end{equation}
|
||||
|
||||
In the frame of the struts, the equations of motion eqref:eq:detail_kinematics_transfer_function_struts are well decoupled at low frequency.
|
||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
% Created 2025-04-04 Fri 17:48
|
||||
% Created 2025-04-07 Mon 14:36
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
@ -37,7 +37,7 @@ Finally, Section \ref{sec:detail_kinematics_nano_hexapod} presents the optimized
|
||||
\label{sec:detail_kinematics_stewart_review}
|
||||
|
||||
The first parallel platform similar to the Stewart platform was built in 1954 by Gough \cite{gough62_univer_tyre_test_machin}, for a tyre test machine (shown in Figure \ref{fig:detail_geometry_gough_paper}).
|
||||
Subsequently, Stewart proposed a similar design in a 1965 publication \cite{stewart65_platf_with_six_degrees_freed}, for a flight simulator (shown in Figure \ref{fig:detail_geometry_stewart_flight_simulator}).
|
||||
Subsequently, Stewart proposed a similar design for a flight simulator (shown in Figure \ref{fig:detail_geometry_stewart_flight_simulator}) in a 1965 publication \cite{stewart65_platf_with_six_degrees_freed}.
|
||||
Since then, the Stewart platform (sometimes referred to as the Stewart-Gough platform) has been utilized across diverse applications \cite{dasgupta00_stewar_platf_manip}, including large telescopes \cite{kazezkhan14_dynam_model_stewar_platf_nansh_radio_teles,yun19_devel_isotr_stewar_platf_teles_secon_mirror}, machine tools \cite{russo24_review_paral_kinem_machin_tools}, and Synchrotron instrumentation \cite{marion04_hexap_esrf,villar18_nanop_esrf_id16a_nano_imagin_beaml}.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -65,7 +65,7 @@ Long stroke Stewart platforms are not addressed here as their design presents di
|
||||
|
||||
In terms of actuation, mainly two types are used: voice coil actuators and piezoelectric actuators.
|
||||
Voice coil actuators, providing stroke ranges from \(0.5\,mm\) to \(10\,mm\), are commonly implemented in cubic architectures (as illustrated in Figures \ref{fig:detail_kinematics_jpl}, \ref{fig:detail_kinematics_uw_gsp} and \ref{fig:detail_kinematics_pph}) and are mainly used for vibration isolation \cite{spanos95_soft_activ_vibrat_isolat,rahman98_multiax,thayer98_stewar,mcinroy99_dynam,preumont07_six_axis_singl_stage_activ}.
|
||||
For applications requiring smaller stroke (typically smaller than \(500\,\mu m\)), piezoelectric actuators present an interesting alternative, as shown in \cite{agrawal04_algor_activ_vibrat_isolat_spacec,furutani04_nanom_cuttin_machin_using_stewar,yang19_dynam_model_decoup_contr_flexib}.
|
||||
For applications requiring short stroke (typically smaller than \(500\,\mu m\)), piezoelectric actuators present an interesting alternative, as shown in \cite{agrawal04_algor_activ_vibrat_isolat_spacec,furutani04_nanom_cuttin_machin_using_stewar,yang19_dynam_model_decoup_contr_flexib}.
|
||||
Examples of piezoelectric-actuated Stewart platforms are presented in Figures \ref{fig:detail_kinematics_ulb_pz}, \ref{fig:detail_kinematics_uqp} and \ref{fig:detail_kinematics_yang19}.
|
||||
Although less frequently encountered, magnetostrictive actuators have been successfully implemented in \cite{zhang11_six_dof} (Figure \ref{fig:detail_kinematics_zhang11}).
|
||||
|
||||
@ -166,12 +166,12 @@ The analysis is significantly simplified when considering small motions, as the
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
||||
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
||||
{{}^A\hat{\bm{s}}_1}^T & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^T \\
|
||||
{{}^A\hat{\bm{s}}_2}^T & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^T \\
|
||||
{{}^A\hat{\bm{s}}_3}^T & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^T \\
|
||||
{{}^A\hat{\bm{s}}_4}^T & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^T \\
|
||||
{{}^A\hat{\bm{s}}_5}^T & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^T \\
|
||||
{{}^A\hat{\bm{s}}_6}^T & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^T
|
||||
{{}^A\hat{\bm{s}}_1}^{\intercal} & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_2}^{\intercal} & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_3}^{\intercal} & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_4}^{\intercal} & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_5}^{\intercal} & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^{\intercal} \\
|
||||
{{}^A\hat{\bm{s}}_6}^{\intercal} & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^{\intercal}
|
||||
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
@ -277,27 +277,27 @@ The contribution of joints stiffness is not considered here, as the joints were
|
||||
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature \cite{mcinroy00_desig_contr_flexur_joint_hexap,mcinroy02_model_desig_flexur_joint_stewar}.
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
||||
\bm{K} = \bm{J}^T \bm{\mathcal{K}} \bm{J}
|
||||
\bm{K} = \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J}
|
||||
\end{equation}
|
||||
|
||||
It is assumed that the stiffness of all struts is the same: \(\bm{\mathcal{K}} = k \cdot \mathbf{I}_6\).
|
||||
In that case, the obtained stiffness matrix linearly depends on the strut stiffness \(k\), and is structured as shown in equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}.
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
||||
\bm{K} = k \bm{J}^T \bm{J} =
|
||||
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||
k \left[
|
||||
\begin{array}{c|c}
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||
\hline
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||
\end{array}
|
||||
\right]
|
||||
\end{equation}
|
||||
\subsubsection{Translation Stiffness}
|
||||
|
||||
As shown by equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}, the translation stiffnesses (the \(3 \times 3\) top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T\).
|
||||
As shown by equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}, the translation stiffnesses (the \(3 \times 3\) top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal}\).
|
||||
In the extreme case where all struts are vertical (\(s_i = [0\ 0\ 1]\)), a vertical stiffness of \(6k\) is achieved, but with null stiffness in the horizontal directions.
|
||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3\), resulting in well-distributed stiffness along all directions.
|
||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3\), resulting in well-distributed stiffness along all directions.
|
||||
This configuration corresponds to the cubic architecture presented in Section \ref{sec:detail_kinematics_cubic}.
|
||||
|
||||
When the struts are oriented more vertically, as shown in Figure \ref{fig:detail_kinematics_stewart_mobility_vert_struts}, the vertical stiffness increases while the horizontal stiffness decreases.
|
||||
@ -323,7 +323,7 @@ Under very specific conditions, the equations of motion in the Cartesian frame,
|
||||
These conditions are studied in Section \ref{ssec:detail_kinematics_cubic_dynamic}.
|
||||
|
||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{T} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{T} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{\intercal} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||
\end{equation}
|
||||
|
||||
In the frame of the struts, the equations of motion \eqref{eq:detail_kinematics_transfer_function_struts} are well decoupled at low frequency.
|
||||
|
Reference in New Issue
Block a user