Modify transpose notation
This commit is contained in:
parent
de4b8bc88c
commit
3f53a5977c
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 10 KiB |
@ -51,7 +51,7 @@
|
|||||||
<path d="M 5.265625 -0.671875 C 5.265625 -0.734375 5.21875 -0.734375 5.1875 -0.734375 C 5.078125 -0.734375 4.796875 -0.625 4.65625 -0.421875 C 4.4375 -0.421875 4.171875 -0.421875 4.046875 -1.046875 L 3.84375 -2.453125 C 3.84375 -2.46875 3.859375 -2.484375 3.875 -2.5 L 4.109375 -2.625 C 6.171875 -3.75 6.171875 -4.0625 6.171875 -4.296875 C 6.171875 -4.5 6.0625 -4.703125 5.78125 -4.703125 C 5.546875 -4.703125 5.21875 -4.46875 5.21875 -4.34375 C 5.21875 -4.296875 5.25 -4.296875 5.296875 -4.28125 C 5.46875 -4.265625 5.53125 -4.109375 5.53125 -3.984375 C 5.53125 -3.84375 5.53125 -3.75 4.90625 -3.375 C 4.765625 -3.28125 4.625 -3.203125 3.8125 -2.75 C 3.71875 -3.265625 3.671875 -3.8125 3.609375 -4.046875 C 3.484375 -4.609375 3.234375 -4.703125 2.921875 -4.703125 C 2.15625 -4.703125 1.765625 -4.203125 1.765625 -4.03125 C 1.765625 -3.96875 1.8125 -3.96875 1.84375 -3.96875 C 1.96875 -3.96875 2.25 -4.09375 2.375 -4.28125 C 2.609375 -4.28125 2.84375 -4.28125 2.984375 -3.71875 L 3.15625 -2.40625 C 2.765625 -2.203125 2.046875 -1.8125 1.625 -1.5625 C 0.53125 -0.890625 0.484375 -0.625 0.484375 -0.40625 C 0.484375 -0.203125 0.59375 0 0.875 0 C 1.078125 0 1.4375 -0.234375 1.4375 -0.359375 C 1.4375 -0.40625 1.390625 -0.421875 1.34375 -0.421875 C 1.1875 -0.4375 1.125 -0.5625 1.125 -0.71875 C 1.125 -0.875 1.125 -0.96875 1.96875 -1.46875 L 3.203125 -2.140625 C 3.296875 -1.609375 3.375 -0.921875 3.390625 -0.765625 C 3.5 -0.3125 3.609375 0 4.109375 0 C 4.859375 0 5.265625 -0.484375 5.265625 -0.671875 Z M 5.265625 -0.671875 "/>
|
<path d="M 5.265625 -0.671875 C 5.265625 -0.734375 5.21875 -0.734375 5.1875 -0.734375 C 5.078125 -0.734375 4.796875 -0.625 4.65625 -0.421875 C 4.4375 -0.421875 4.171875 -0.421875 4.046875 -1.046875 L 3.84375 -2.453125 C 3.84375 -2.46875 3.859375 -2.484375 3.875 -2.5 L 4.109375 -2.625 C 6.171875 -3.75 6.171875 -4.0625 6.171875 -4.296875 C 6.171875 -4.5 6.0625 -4.703125 5.78125 -4.703125 C 5.546875 -4.703125 5.21875 -4.46875 5.21875 -4.34375 C 5.21875 -4.296875 5.25 -4.296875 5.296875 -4.28125 C 5.46875 -4.265625 5.53125 -4.109375 5.53125 -3.984375 C 5.53125 -3.84375 5.53125 -3.75 4.90625 -3.375 C 4.765625 -3.28125 4.625 -3.203125 3.8125 -2.75 C 3.71875 -3.265625 3.671875 -3.8125 3.609375 -4.046875 C 3.484375 -4.609375 3.234375 -4.703125 2.921875 -4.703125 C 2.15625 -4.703125 1.765625 -4.203125 1.765625 -4.03125 C 1.765625 -3.96875 1.8125 -3.96875 1.84375 -3.96875 C 1.96875 -3.96875 2.25 -4.09375 2.375 -4.28125 C 2.609375 -4.28125 2.84375 -4.28125 2.984375 -3.71875 L 3.15625 -2.40625 C 2.765625 -2.203125 2.046875 -1.8125 1.625 -1.5625 C 0.53125 -0.890625 0.484375 -0.625 0.484375 -0.40625 C 0.484375 -0.203125 0.59375 0 0.875 0 C 1.078125 0 1.4375 -0.234375 1.4375 -0.359375 C 1.4375 -0.40625 1.390625 -0.421875 1.34375 -0.421875 C 1.1875 -0.4375 1.125 -0.5625 1.125 -0.71875 C 1.125 -0.875 1.125 -0.96875 1.96875 -1.46875 L 3.203125 -2.140625 C 3.296875 -1.609375 3.375 -0.921875 3.390625 -0.765625 C 3.5 -0.3125 3.609375 0 4.109375 0 C 4.859375 0 5.265625 -0.484375 5.265625 -0.671875 Z M 5.265625 -0.671875 "/>
|
||||||
</g>
|
</g>
|
||||||
<g id="glyph-3-0">
|
<g id="glyph-3-0">
|
||||||
<path d="M 5.25 -3.25 L 5.4375 -4.5625 C 5.4375 -4.65625 5.359375 -4.65625 5.234375 -4.65625 L 1 -4.65625 C 0.828125 -4.65625 0.8125 -4.65625 0.765625 -4.515625 L 0.328125 -3.296875 C 0.328125 -3.265625 0.296875 -3.203125 0.296875 -3.171875 C 0.296875 -3.140625 0.3125 -3.078125 0.40625 -3.078125 C 0.5 -3.078125 0.515625 -3.109375 0.5625 -3.234375 C 0.953125 -4.34375 1.1875 -4.40625 2.234375 -4.40625 L 2.515625 -4.40625 C 2.734375 -4.40625 2.734375 -4.40625 2.734375 -4.34375 C 2.734375 -4.34375 2.734375 -4.296875 2.703125 -4.203125 L 1.796875 -0.578125 C 1.734375 -0.3125 1.71875 -0.25 1 -0.25 C 0.75 -0.25 0.6875 -0.25 0.6875 -0.09375 C 0.6875 -0.078125 0.703125 0 0.796875 0 C 1 0 1.203125 -0.015625 1.390625 -0.015625 L 1.984375 -0.03125 L 2.609375 -0.015625 C 2.796875 -0.015625 3 0 3.1875 0 C 3.234375 0 3.34375 0 3.34375 -0.15625 C 3.34375 -0.25 3.265625 -0.25 3.0625 -0.25 C 2.921875 -0.25 2.796875 -0.25 2.65625 -0.265625 C 2.421875 -0.28125 2.40625 -0.3125 2.40625 -0.390625 C 2.40625 -0.4375 2.40625 -0.453125 2.4375 -0.546875 L 3.34375 -4.171875 C 3.390625 -4.375 3.40625 -4.390625 3.5625 -4.40625 C 3.59375 -4.40625 3.84375 -4.40625 3.96875 -4.40625 C 4.390625 -4.40625 4.578125 -4.40625 4.75 -4.359375 C 5.0625 -4.265625 5.078125 -4.0625 5.078125 -3.8125 C 5.078125 -3.703125 5.078125 -3.609375 5.015625 -3.25 L 5.015625 -3.171875 C 5.015625 -3.109375 5.0625 -3.078125 5.125 -3.078125 C 5.234375 -3.078125 5.25 -3.140625 5.25 -3.25 Z M 5.25 -3.25 "/>
|
<path d="M 2.5625 -2.296875 L 3.484375 -2.296875 C 3.578125 -2.296875 3.90625 -2.296875 3.90625 -2.625 C 3.90625 -2.96875 3.578125 -2.96875 3.484375 -2.96875 L 0.96875 -2.96875 C 0.875 -2.96875 0.53125 -2.96875 0.53125 -2.625 C 0.53125 -2.296875 0.875 -2.296875 0.96875 -2.296875 L 1.890625 -2.296875 L 1.890625 1.046875 C 1.890625 1.140625 1.890625 1.46875 2.21875 1.46875 C 2.5625 1.46875 2.5625 1.125 2.5625 1.046875 Z M 2.5625 -2.296875 "/>
|
||||||
</g>
|
</g>
|
||||||
<g id="glyph-4-0">
|
<g id="glyph-4-0">
|
||||||
<path d="M 3.265625 0 L 3.265625 -0.25 L 3 -0.25 C 2.3125 -0.25 2.3125 -0.34375 2.3125 -0.5625 L 2.3125 -4.375 C 2.3125 -4.5625 2.296875 -4.578125 2.109375 -4.578125 C 1.65625 -4.140625 1.03125 -4.140625 0.75 -4.140625 L 0.75 -3.890625 C 0.921875 -3.890625 1.375 -3.890625 1.75 -4.078125 L 1.75 -0.5625 C 1.75 -0.34375 1.75 -0.25 1.0625 -0.25 L 0.796875 -0.25 L 0.796875 0 L 2.03125 -0.03125 Z M 3.265625 0 "/>
|
<path d="M 3.265625 0 L 3.265625 -0.25 L 3 -0.25 C 2.3125 -0.25 2.3125 -0.34375 2.3125 -0.5625 L 2.3125 -4.375 C 2.3125 -4.5625 2.296875 -4.578125 2.109375 -4.578125 C 1.65625 -4.140625 1.03125 -4.140625 0.75 -4.140625 L 0.75 -3.890625 C 0.921875 -3.890625 1.375 -3.890625 1.75 -4.078125 L 1.75 -0.5625 C 1.75 -0.34375 1.75 -0.25 1.0625 -0.25 L 0.796875 -0.25 L 0.796875 0 L 2.03125 -0.03125 Z M 3.265625 0 "/>
|
||||||
@ -102,13 +102,13 @@
|
|||||||
</g>
|
</g>
|
||||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.008591 -14.171476 L 17.009728 -14.171476 L 17.009728 14.171857 L -17.008591 14.171857 Z M -17.008591 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.008591 -14.171476 L 17.009728 -14.171476 L 17.009728 14.171857 L -17.008591 14.171857 Z M -17.008591 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
<use xlink:href="#glyph-1-0" x="86.470777" y="36.756948"/>
|
<use xlink:href="#glyph-1-0" x="87.097884" y="36.535383"/>
|
||||||
</g>
|
</g>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
<use xlink:href="#glyph-2-0" x="93.683491" y="33.180265"/>
|
<use xlink:href="#glyph-2-0" x="94.310598" y="32.9587"/>
|
||||||
</g>
|
</g>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
<use xlink:href="#glyph-3-0" x="99.842785" y="33.180265"/>
|
<use xlink:href="#glyph-3-0" x="100.469799" y="32.9587"/>
|
||||||
</g>
|
</g>
|
||||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 46.352207 -14.171476 L 80.366577 -14.171476 L 80.366577 14.171857 L 46.352207 14.171857 Z M 46.352207 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 46.352207 -14.171476 L 80.366577 -14.171476 L 80.366577 14.171857 L 46.352207 14.171857 Z M 46.352207 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
@ -122,7 +122,7 @@
|
|||||||
<use xlink:href="#glyph-2-0" x="219.916866" y="33.046733"/>
|
<use xlink:href="#glyph-2-0" x="219.916866" y="33.046733"/>
|
||||||
</g>
|
</g>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
<use xlink:href="#glyph-4-0" x="226.075171" y="33.046733"/>
|
<use xlink:href="#glyph-4-0" x="226.076067" y="33.046733"/>
|
||||||
</g>
|
</g>
|
||||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -80.36544 -14.171476 L -46.35107 -14.171476 L -46.35107 14.171857 L -80.36544 14.171857 Z M -80.36544 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -80.36544 -14.171476 L -46.35107 -14.171476 L -46.35107 14.171857 L -80.36544 14.171857 Z M -80.36544 -14.171476 " transform="matrix(0.989127, 0, 0, -0.989127, 96.261156, 32.611517)"/>
|
||||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||||
|
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 30 KiB |
@ -364,8 +364,8 @@ ylim([1e-10, 2e-3])
|
|||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
|
||||||
** TODO [#B] Change review based on christophe's comments
|
** DONE [#B] Change review based on christophe's comments
|
||||||
SCHEDULED: <2025-04-04 Fri>
|
CLOSED: [2025-04-04 Fri 21:11] SCHEDULED: <2025-04-04 Fri>
|
||||||
|
|
||||||
- [-] make sure that all papers are cited
|
- [-] make sure that all papers are cited
|
||||||
- [X] geng93_six_degree_of_freed_activ
|
- [X] geng93_six_degree_of_freed_activ
|
||||||
@ -713,7 +713,7 @@ Compute:
|
|||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sum_{i = 1}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3
|
\sum_{i = 1}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
@ -731,12 +731,12 @@ This is wrong, check from matlab script
|
|||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\bm{K} = k \bm{J}^T \bm{J} =
|
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||||
k \left[
|
k \left[
|
||||||
\begin{array}{c|c}
|
\begin{array}{c|c}
|
||||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||||
\hline
|
\hline
|
||||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||||
\end{array}
|
\end{array}
|
||||||
\right]
|
\right]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -1216,12 +1216,12 @@ The analysis is significantly simplified when considering small motions, as the
|
|||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
||||||
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
||||||
{{}^A\hat{\bm{s}}_1}^T & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^T \\
|
{{}^A\hat{\bm{s}}_1}^{\intercal} & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_2}^T & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^T \\
|
{{}^A\hat{\bm{s}}_2}^{\intercal} & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_3}^T & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^T \\
|
{{}^A\hat{\bm{s}}_3}^{\intercal} & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_4}^T & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^T \\
|
{{}^A\hat{\bm{s}}_4}^{\intercal} & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_5}^T & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^T \\
|
{{}^A\hat{\bm{s}}_5}^{\intercal} & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_6}^T & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^T
|
{{}^A\hat{\bm{s}}_6}^{\intercal} & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^{\intercal}
|
||||||
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -1606,28 +1606,28 @@ The contribution of joints stiffness is not considered here, as the joints were
|
|||||||
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature [[cite:&mcinroy00_desig_contr_flexur_joint_hexap;&mcinroy02_model_desig_flexur_joint_stewar]].
|
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature [[cite:&mcinroy00_desig_contr_flexur_joint_hexap;&mcinroy02_model_desig_flexur_joint_stewar]].
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
||||||
\bm{K} = \bm{J}^T \bm{\mathcal{K}} \bm{J}
|
\bm{K} = \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
It is assumed that the stiffness of all struts is the same: $\bm{\mathcal{K}} = k \cdot \mathbf{I}_6$.
|
It is assumed that the stiffness of all struts is the same: $\bm{\mathcal{K}} = k \cdot \mathbf{I}_6$.
|
||||||
In that case, the obtained stiffness matrix linearly depends on the strut stiffness $k$, and is structured as shown in equation eqref:eq:detail_kinematics_stiffness_matrix_simplified.
|
In that case, the obtained stiffness matrix linearly depends on the strut stiffness $k$, and is structured as shown in equation eqref:eq:detail_kinematics_stiffness_matrix_simplified.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
||||||
\bm{K} = k \bm{J}^T \bm{J} =
|
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||||
k \left[
|
k \left[
|
||||||
\begin{array}{c|c}
|
\begin{array}{c|c}
|
||||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||||
\hline
|
\hline
|
||||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||||
\end{array}
|
\end{array}
|
||||||
\right]
|
\right]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
**** Translation Stiffness
|
**** Translation Stiffness
|
||||||
|
|
||||||
As shown by equation eqref:eq:detail_kinematics_stiffness_matrix_simplified, the translation stiffnesses (the $3 \times 3$ top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T$.
|
As shown by equation eqref:eq:detail_kinematics_stiffness_matrix_simplified, the translation stiffnesses (the $3 \times 3$ top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal}$.
|
||||||
In the extreme case where all struts are vertical ($s_i = [0\ 0\ 1]$), a vertical stiffness of $6k$ is achieved, but with null stiffness in the horizontal directions.
|
In the extreme case where all struts are vertical ($s_i = [0\ 0\ 1]$), a vertical stiffness of $6k$ is achieved, but with null stiffness in the horizontal directions.
|
||||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3$, resulting in well-distributed stiffness along all directions.
|
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then $\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3$, resulting in well-distributed stiffness along all directions.
|
||||||
This configuration corresponds to the cubic architecture presented in Section ref:sec:detail_kinematics_cubic.
|
This configuration corresponds to the cubic architecture presented in Section ref:sec:detail_kinematics_cubic.
|
||||||
|
|
||||||
When the struts are oriented more vertically, as shown in Figure ref:fig:detail_kinematics_stewart_mobility_vert_struts, the vertical stiffness increases while the horizontal stiffness decreases.
|
When the struts are oriented more vertically, as shown in Figure ref:fig:detail_kinematics_stewart_mobility_vert_struts, the vertical stiffness increases while the horizontal stiffness decreases.
|
||||||
@ -1658,14 +1658,14 @@ Under very specific conditions, the equations of motion in the Cartesian frame,
|
|||||||
These conditions are studied in Section ref:ssec:detail_kinematics_cubic_dynamic.
|
These conditions are studied in Section ref:ssec:detail_kinematics_cubic_dynamic.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
||||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{T} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{T} \bm{\mathcal{K}} \bm{J} )^{-1}
|
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{\intercal} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
In the frame of the struts, the equations of motion eqref:eq:detail_kinematics_transfer_function_struts are well decoupled at low frequency.
|
In the frame of the struts, the equations of motion eqref:eq:detail_kinematics_transfer_function_struts are well decoupled at low frequency.
|
||||||
This is why most Stewart platforms are controlled in the frame of the struts: below the resonance frequency, the system is well decoupled and SISO control may be applied for each strut, independently of the payload being used.
|
This is why most Stewart platforms are controlled in the frame of the struts: below the resonance frequency, the system is well decoupled and SISO control may be applied for each strut, independently of the payload being used.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_struts}
|
\begin{equation}\label{eq:detail_kinematics_transfer_function_struts}
|
||||||
\frac{\bm{\mathcal{L}}}{\bm{f}}(s) = ( \bm{J}^{-T} \bm{M} \bm{J}^{-1} s^2 + \bm{\mathcal{C}} + \bm{\mathcal{K}} )^{-1}
|
\frac{\bm{\mathcal{L}}}{\bm{f}}(s) = ( \bm{J}^{-\intercal} \bm{M} \bm{J}^{-1} s^2 + \bm{\mathcal{C}} + \bm{\mathcal{K}} )^{-1}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
Coupling between sensors (force sensors, relative position sensors or inertial sensors) in different struts may also be important for decentralized control.
|
Coupling between sensors (force sensors, relative position sensors or inertial sensors) in different struts may also be important for decentralized control.
|
||||||
@ -2274,7 +2274,7 @@ When relative motion sensors are integrated in each strut (measuring $\bm{\mathc
|
|||||||
|
|
||||||
#+begin_src latex :file detail_kinematics_centralized_control.pdf
|
#+begin_src latex :file detail_kinematics_centralized_control.pdf
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
\node[block] (Jt) at (0, 0) {$\bm{J}^{-T}$};
|
\node[block] (Jt) at (0, 0) {$\bm{J}^{-\intercal}$};
|
||||||
\node[block, right= of Jt] (G) {$\bm{G}$};
|
\node[block, right= of Jt] (G) {$\bm{G}$};
|
||||||
\node[block, right= of G] (J) {$\bm{J}^{-1}$};
|
\node[block, right= of G] (J) {$\bm{J}^{-1}$};
|
||||||
\node[block, left= of Jt] (Kx) {$\bm{K}_{\mathcal{X}}$};
|
\node[block, left= of Jt] (Kx) {$\bm{K}_{\mathcal{X}}$};
|
||||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
|||||||
% Created 2025-04-04 Fri 17:48
|
% Created 2025-04-07 Mon 17:09
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
@ -37,7 +37,7 @@ Finally, Section \ref{sec:detail_kinematics_nano_hexapod} presents the optimized
|
|||||||
\label{sec:detail_kinematics_stewart_review}
|
\label{sec:detail_kinematics_stewart_review}
|
||||||
|
|
||||||
The first parallel platform similar to the Stewart platform was built in 1954 by Gough \cite{gough62_univer_tyre_test_machin}, for a tyre test machine (shown in Figure \ref{fig:detail_geometry_gough_paper}).
|
The first parallel platform similar to the Stewart platform was built in 1954 by Gough \cite{gough62_univer_tyre_test_machin}, for a tyre test machine (shown in Figure \ref{fig:detail_geometry_gough_paper}).
|
||||||
Subsequently, Stewart proposed a similar design in a 1965 publication \cite{stewart65_platf_with_six_degrees_freed}, for a flight simulator (shown in Figure \ref{fig:detail_geometry_stewart_flight_simulator}).
|
Subsequently, Stewart proposed a similar design for a flight simulator (shown in Figure \ref{fig:detail_geometry_stewart_flight_simulator}) in a 1965 publication \cite{stewart65_platf_with_six_degrees_freed}.
|
||||||
Since then, the Stewart platform (sometimes referred to as the Stewart-Gough platform) has been utilized across diverse applications \cite{dasgupta00_stewar_platf_manip}, including large telescopes \cite{kazezkhan14_dynam_model_stewar_platf_nansh_radio_teles,yun19_devel_isotr_stewar_platf_teles_secon_mirror}, machine tools \cite{russo24_review_paral_kinem_machin_tools}, and Synchrotron instrumentation \cite{marion04_hexap_esrf,villar18_nanop_esrf_id16a_nano_imagin_beaml}.
|
Since then, the Stewart platform (sometimes referred to as the Stewart-Gough platform) has been utilized across diverse applications \cite{dasgupta00_stewar_platf_manip}, including large telescopes \cite{kazezkhan14_dynam_model_stewar_platf_nansh_radio_teles,yun19_devel_isotr_stewar_platf_teles_secon_mirror}, machine tools \cite{russo24_review_paral_kinem_machin_tools}, and Synchrotron instrumentation \cite{marion04_hexap_esrf,villar18_nanop_esrf_id16a_nano_imagin_beaml}.
|
||||||
|
|
||||||
\begin{figure}[htbp]
|
\begin{figure}[htbp]
|
||||||
@ -65,7 +65,7 @@ Long stroke Stewart platforms are not addressed here as their design presents di
|
|||||||
|
|
||||||
In terms of actuation, mainly two types are used: voice coil actuators and piezoelectric actuators.
|
In terms of actuation, mainly two types are used: voice coil actuators and piezoelectric actuators.
|
||||||
Voice coil actuators, providing stroke ranges from \(0.5\,mm\) to \(10\,mm\), are commonly implemented in cubic architectures (as illustrated in Figures \ref{fig:detail_kinematics_jpl}, \ref{fig:detail_kinematics_uw_gsp} and \ref{fig:detail_kinematics_pph}) and are mainly used for vibration isolation \cite{spanos95_soft_activ_vibrat_isolat,rahman98_multiax,thayer98_stewar,mcinroy99_dynam,preumont07_six_axis_singl_stage_activ}.
|
Voice coil actuators, providing stroke ranges from \(0.5\,mm\) to \(10\,mm\), are commonly implemented in cubic architectures (as illustrated in Figures \ref{fig:detail_kinematics_jpl}, \ref{fig:detail_kinematics_uw_gsp} and \ref{fig:detail_kinematics_pph}) and are mainly used for vibration isolation \cite{spanos95_soft_activ_vibrat_isolat,rahman98_multiax,thayer98_stewar,mcinroy99_dynam,preumont07_six_axis_singl_stage_activ}.
|
||||||
For applications requiring smaller stroke (typically smaller than \(500\,\mu m\)), piezoelectric actuators present an interesting alternative, as shown in \cite{agrawal04_algor_activ_vibrat_isolat_spacec,furutani04_nanom_cuttin_machin_using_stewar,yang19_dynam_model_decoup_contr_flexib}.
|
For applications requiring short stroke (typically smaller than \(500\,\mu m\)), piezoelectric actuators present an interesting alternative, as shown in \cite{agrawal04_algor_activ_vibrat_isolat_spacec,furutani04_nanom_cuttin_machin_using_stewar,yang19_dynam_model_decoup_contr_flexib}.
|
||||||
Examples of piezoelectric-actuated Stewart platforms are presented in Figures \ref{fig:detail_kinematics_ulb_pz}, \ref{fig:detail_kinematics_uqp} and \ref{fig:detail_kinematics_yang19}.
|
Examples of piezoelectric-actuated Stewart platforms are presented in Figures \ref{fig:detail_kinematics_ulb_pz}, \ref{fig:detail_kinematics_uqp} and \ref{fig:detail_kinematics_yang19}.
|
||||||
Although less frequently encountered, magnetostrictive actuators have been successfully implemented in \cite{zhang11_six_dof} (Figure \ref{fig:detail_kinematics_zhang11}).
|
Although less frequently encountered, magnetostrictive actuators have been successfully implemented in \cite{zhang11_six_dof} (Figure \ref{fig:detail_kinematics_zhang11}).
|
||||||
|
|
||||||
@ -166,12 +166,12 @@ The analysis is significantly simplified when considering small motions, as the
|
|||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
\begin{equation}\label{eq:detail_kinematics_jacobian}
|
||||||
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
\begin{bmatrix} \delta l_1 \\ \delta l_2 \\ \delta l_3 \\ \delta l_4 \\ \delta l_5 \\ \delta l_6 \end{bmatrix} = \underbrace{\begin{bmatrix}
|
||||||
{{}^A\hat{\bm{s}}_1}^T & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^T \\
|
{{}^A\hat{\bm{s}}_1}^{\intercal} & ({}^A\bm{b}_1 \times {}^A\hat{\bm{s}}_1)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_2}^T & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^T \\
|
{{}^A\hat{\bm{s}}_2}^{\intercal} & ({}^A\bm{b}_2 \times {}^A\hat{\bm{s}}_2)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_3}^T & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^T \\
|
{{}^A\hat{\bm{s}}_3}^{\intercal} & ({}^A\bm{b}_3 \times {}^A\hat{\bm{s}}_3)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_4}^T & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^T \\
|
{{}^A\hat{\bm{s}}_4}^{\intercal} & ({}^A\bm{b}_4 \times {}^A\hat{\bm{s}}_4)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_5}^T & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^T \\
|
{{}^A\hat{\bm{s}}_5}^{\intercal} & ({}^A\bm{b}_5 \times {}^A\hat{\bm{s}}_5)^{\intercal} \\
|
||||||
{{}^A\hat{\bm{s}}_6}^T & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^T
|
{{}^A\hat{\bm{s}}_6}^{\intercal} & ({}^A\bm{b}_6 \times {}^A\hat{\bm{s}}_6)^{\intercal}
|
||||||
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
\end{bmatrix}}_{\bm{J}} \begin{bmatrix} \delta x \\ \delta y \\ \delta z \\ \delta \theta_x \\ \delta \theta_y \\ \delta \theta_z \end{bmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -277,27 +277,27 @@ The contribution of joints stiffness is not considered here, as the joints were
|
|||||||
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature \cite{mcinroy00_desig_contr_flexur_joint_hexap,mcinroy02_model_desig_flexur_joint_stewar}.
|
However, theoretical frameworks for evaluating flexible joint contribution to the stiffness matrix have been established in the literature \cite{mcinroy00_desig_contr_flexur_joint_hexap,mcinroy02_model_desig_flexur_joint_stewar}.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix}
|
||||||
\bm{K} = \bm{J}^T \bm{\mathcal{K}} \bm{J}
|
\bm{K} = \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
It is assumed that the stiffness of all struts is the same: \(\bm{\mathcal{K}} = k \cdot \mathbf{I}_6\).
|
It is assumed that the stiffness of all struts is the same: \(\bm{\mathcal{K}} = k \cdot \mathbf{I}_6\).
|
||||||
In that case, the obtained stiffness matrix linearly depends on the strut stiffness \(k\), and is structured as shown in equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}.
|
In that case, the obtained stiffness matrix linearly depends on the strut stiffness \(k\), and is structured as shown in equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
\begin{equation}\label{eq:detail_kinematics_stiffness_matrix_simplified}
|
||||||
\bm{K} = k \bm{J}^T \bm{J} =
|
\bm{K} = k \bm{J}^{\intercal} \bm{J} =
|
||||||
k \left[
|
k \left[
|
||||||
\begin{array}{c|c}
|
\begin{array}{c|c}
|
||||||
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T \\
|
\Sigma_{i = 0}^{6} \hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} \bm{\hat{s}}_i \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal} \\
|
||||||
\hline
|
\hline
|
||||||
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^T & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^T\\
|
\Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot \hat{\bm{s}}_i^{\intercal} & \Sigma_{i = 0}^{6} ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i) \cdot ({}^A\bm{b}_i \times {}^A\hat{\bm{s}}_i)^{\intercal}\\
|
||||||
\end{array}
|
\end{array}
|
||||||
\right]
|
\right]
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\subsubsection{Translation Stiffness}
|
\subsubsection{Translation Stiffness}
|
||||||
|
|
||||||
As shown by equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}, the translation stiffnesses (the \(3 \times 3\) top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T\).
|
As shown by equation \eqref{eq:detail_kinematics_stiffness_matrix_simplified}, the translation stiffnesses (the \(3 \times 3\) top left terms of the stiffness matrix) only depend on the orientation of the struts and not their location: \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal}\).
|
||||||
In the extreme case where all struts are vertical (\(s_i = [0\ 0\ 1]\)), a vertical stiffness of \(6k\) is achieved, but with null stiffness in the horizontal directions.
|
In the extreme case where all struts are vertical (\(s_i = [0\ 0\ 1]\)), a vertical stiffness of \(6k\) is achieved, but with null stiffness in the horizontal directions.
|
||||||
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^T = 2 \bm{I}_3\), resulting in well-distributed stiffness along all directions.
|
If two struts are aligned with the X axis, two struts with the Y axis, and two struts with the Z axis, then \(\hat{\bm{s}}_i \cdot \hat{\bm{s}}_i^{\intercal} = 2 \bm{I}_3\), resulting in well-distributed stiffness along all directions.
|
||||||
This configuration corresponds to the cubic architecture presented in Section \ref{sec:detail_kinematics_cubic}.
|
This configuration corresponds to the cubic architecture presented in Section \ref{sec:detail_kinematics_cubic}.
|
||||||
|
|
||||||
When the struts are oriented more vertically, as shown in Figure \ref{fig:detail_kinematics_stewart_mobility_vert_struts}, the vertical stiffness increases while the horizontal stiffness decreases.
|
When the struts are oriented more vertically, as shown in Figure \ref{fig:detail_kinematics_stewart_mobility_vert_struts}, the vertical stiffness increases while the horizontal stiffness decreases.
|
||||||
@ -323,14 +323,14 @@ Under very specific conditions, the equations of motion in the Cartesian frame,
|
|||||||
These conditions are studied in Section \ref{ssec:detail_kinematics_cubic_dynamic}.
|
These conditions are studied in Section \ref{ssec:detail_kinematics_cubic_dynamic}.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
\begin{equation}\label{eq:detail_kinematics_transfer_function_cart}
|
||||||
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{T} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{T} \bm{\mathcal{K}} \bm{J} )^{-1}
|
\frac{{\mathcal{X}}}{\bm{\mathcal{F}}}(s) = ( \bm{M} s^2 + \bm{J}^{\intercal} \bm{\mathcal{C}} \bm{J} s + \bm{J}^{\intercal} \bm{\mathcal{K}} \bm{J} )^{-1}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
In the frame of the struts, the equations of motion \eqref{eq:detail_kinematics_transfer_function_struts} are well decoupled at low frequency.
|
In the frame of the struts, the equations of motion \eqref{eq:detail_kinematics_transfer_function_struts} are well decoupled at low frequency.
|
||||||
This is why most Stewart platforms are controlled in the frame of the struts: below the resonance frequency, the system is well decoupled and SISO control may be applied for each strut, independently of the payload being used.
|
This is why most Stewart platforms are controlled in the frame of the struts: below the resonance frequency, the system is well decoupled and SISO control may be applied for each strut, independently of the payload being used.
|
||||||
|
|
||||||
\begin{equation}\label{eq:detail_kinematics_transfer_function_struts}
|
\begin{equation}\label{eq:detail_kinematics_transfer_function_struts}
|
||||||
\frac{\bm{\mathcal{L}}}{\bm{f}}(s) = ( \bm{J}^{-T} \bm{M} \bm{J}^{-1} s^2 + \bm{\mathcal{C}} + \bm{\mathcal{K}} )^{-1}
|
\frac{\bm{\mathcal{L}}}{\bm{f}}(s) = ( \bm{J}^{-\intercal} \bm{M} \bm{J}^{-1} s^2 + \bm{\mathcal{C}} + \bm{\mathcal{K}} )^{-1}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
Coupling between sensors (force sensors, relative position sensors or inertial sensors) in different struts may also be important for decentralized control.
|
Coupling between sensors (force sensors, relative position sensors or inertial sensors) in different struts may also be important for decentralized control.
|
||||||
|
Reference in New Issue
Block a user