phd-nass-fem/matlab/strut_encoder.m

104 lines
3.2 KiB
Matlab

%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
addpath('strut_encoder/');
open('strut_encoder.slx');
% Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates
% We first extract the stiffness and mass matrices.
K = readmatrix('strut_encoder_mat_K.CSV');
M = readmatrix('strut_encoder_mat_M.CSV');
% #+caption: First 10x10 elements of the Mass matrix
% #+RESULTS:
% | 0.04 | -0.005 | 0.007 | 2e-06 | 0.0001 | -5e-07 | -1e-05 | -9e-07 | 8e-05 | -5e-10 |
% | -0.005 | 0.03 | 0.02 | -0.0001 | 1e-06 | -3e-07 | 3e-05 | -0.0001 | 8e-05 | -3e-08 |
% | 0.007 | 0.02 | 0.08 | -6e-06 | -5e-06 | -7e-07 | 4e-05 | -0.0001 | 0.0005 | -3e-08 |
% | 2e-06 | -0.0001 | -6e-06 | 2e-06 | -4e-10 | 2e-11 | -8e-09 | 3e-08 | -2e-08 | 6e-12 |
% | 0.0001 | 1e-06 | -5e-06 | -4e-10 | 3e-06 | 2e-10 | -3e-09 | 3e-09 | -7e-09 | 6e-13 |
% | -5e-07 | -3e-07 | -7e-07 | 2e-11 | 2e-10 | 5e-07 | -2e-08 | 5e-09 | -5e-09 | 1e-12 |
% | -1e-05 | 3e-05 | 4e-05 | -8e-09 | -3e-09 | -2e-08 | 0.04 | 0.004 | 0.003 | 1e-06 |
% | -9e-07 | -0.0001 | -0.0001 | 3e-08 | 3e-09 | 5e-09 | 0.004 | 0.02 | -0.02 | 0.0001 |
% | 8e-05 | 8e-05 | 0.0005 | -2e-08 | -7e-09 | -5e-09 | 0.003 | -0.02 | 0.08 | -5e-06 |
% | -5e-10 | -3e-08 | -3e-08 | 6e-12 | 6e-13 | 1e-12 | 1e-06 | 0.0001 | -5e-06 | 2e-06 |
% Then, we extract the coordinates of the interface nodes.
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('strut_encoder_out_nodes_3D.txt');
% Piezoelectric parameters
% Parameters for the APA300ML:
d33 = 3e-10; % Strain constant [m/V]
n = 80; % Number of layers per stack
eT = 1.6e-8; % Permittivity under constant stress [F/m]
sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N]
ka = 235e6; % Stack stiffness [N/m]
C = 5e-6; % Stack capactiance [F]
na = 2; % Number of stacks used as actuator
ns = 1; % Number of stacks used as force sensor
% Identification of the Dynamics
m = 0.01;
% The dynamics is identified from the applied force to the measured relative displacement.
%% Name of the Simulink File
mdl = 'strut_encoder';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/L'], 1, 'openoutput'); io_i = io_i + 1;
Gh = -linearize(mdl, io);
% The same dynamics is identified for a payload mass of 10Kg.
m = 10;
Ghm = -linearize(mdl, io);
freqs = logspace(0, 4, 5000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
axis padded 'auto x'
hold off;
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gh, freqs, 'Hz'))), '-', ...
'DisplayName', '$m = 0kg$');
plot(freqs, 180/pi*angle(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-', ...
'DisplayName', '$m = 10kg$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360);
ylim([-180 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
axis padded 'auto x'