phd-nass-fem/index.org

378 lines
14 KiB
Org Mode
Raw Normal View History

2020-06-14 12:23:45 +02:00
#+TITLE: Finite Element Model with Simscape
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports results
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
:END:
* Amplified Piezoelectric Actuator - 3D elements
** Introduction :ignore:
The idea here is to:
- export a FEM of an amplified piezoelectric actuator from Ansys to Matlab
- import it into a Simscape model
- compare the obtained dynamics
- add 10kg mass on top of the actuator and identify the dynamics
- compare with results from Ansys where 10kg are directly added to the FEM
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/piezo_amplified_3d/');
#+end_src
#+begin_src matlab :exports none
open('piezo_amplified_3d');
#+end_src
** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates
We first extract the stiffness and mass matrices.
#+begin_src matlab
K = extractMatrix('piezo_amplified_3d_K.txt');
M = extractMatrix('piezo_amplified_3d_M.txt');
#+end_src
Then, we extract the coordinates of the interface nodes.
#+begin_src matlab
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_3d.txt');
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f ');
#+end_src
#+RESULTS:
| Total number of Nodes | 168959 |
| Number of interface Nodes | 13 |
| Number of Modes | 30 |
| Size of M and K matrices | 108 |
#+name: fig:amplified_piezo_interface_nodes
#+caption: Interface Nodes for the Amplified Piezo Actuator
[[file:figs/amplified_piezo_interface_nodes.png]]
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f ');
#+end_src
#+caption: Coordinates of the interface nodes
#+RESULTS:
| Node i | Node Number | x [m] | y [m] | z [m] |
|--------+-------------+--------+-------+-------|
| 1.0 | 168947.0 | 0.0 | 0.03 | 0.0 |
| 2.0 | 168949.0 | 0.0 | -0.03 | 0.0 |
| 3.0 | 168950.0 | -0.035 | 0.0 | 0.0 |
| 4.0 | 168951.0 | -0.028 | 0.0 | 0.0 |
| 5.0 | 168952.0 | -0.021 | 0.0 | 0.0 |
| 6.0 | 168953.0 | -0.014 | 0.0 | 0.0 |
| 7.0 | 168954.0 | -0.007 | 0.0 | 0.0 |
| 8.0 | 168955.0 | 0.0 | 0.0 | 0.0 |
| 9.0 | 168956.0 | 0.007 | 0.0 | 0.0 |
| 10.0 | 168957.0 | 0.014 | 0.0 | 0.0 |
| 11.0 | 168958.0 | 0.021 | 0.0 | 0.0 |
| 12.0 | 168959.0 | 0.035 | 0.0 | 0.0 |
| 13.0 | 168960.0 | 0.028 | 0.0 | 0.0 |
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(K(1:10, 1:10), {}, {}, ' %.1g ');
#+end_src
#+caption: First 10x10 elements of the Stiffness matrix
#+RESULTS:
| 300000000.0 | -30000.0 | 8000.0 | -200.0 | -30.0 | -60000.0 | 20000000.0 | -4000.0 | 500.0 | 8 |
| -30000.0 | 100000000.0 | 400.0 | 30.0 | 200.0 | -1 | 4000.0 | -8000000.0 | 800.0 | 7 |
| 8000.0 | 400.0 | 50000000.0 | -800000.0 | -300.0 | -40.0 | 300.0 | 100.0 | 5000000.0 | 40000.0 |
| -200.0 | 30.0 | -800000.0 | 20000.0 | 5 | 1 | -10.0 | -2 | -40000.0 | -300.0 |
| -30.0 | 200.0 | -300.0 | 5 | 40000.0 | 0.3 | -4 | -10.0 | 40.0 | 0.4 |
| -60000.0 | -1 | -40.0 | 1 | 0.3 | 3000.0 | 7000.0 | 0.8 | -1 | 0.0003 |
| 20000000.0 | 4000.0 | 300.0 | -10.0 | -4 | 7000.0 | 300000000.0 | 20000.0 | 3000.0 | 80.0 |
| -4000.0 | -8000000.0 | 100.0 | -2 | -10.0 | 0.8 | 20000.0 | 100000000.0 | -4000.0 | -100.0 |
| 500.0 | 800.0 | 5000000.0 | -40000.0 | 40.0 | -1 | 3000.0 | -4000.0 | 50000000.0 | 800000.0 |
| 8 | 7 | 40000.0 | -300.0 | 0.4 | 0.0003 | 80.0 | -100.0 | 800000.0 | 20000.0 |
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g ');
#+end_src
#+caption: First 10x10 elements of the Mass matrix
#+RESULTS:
| 0.03 | 2e-06 | -2e-07 | 1e-08 | 2e-08 | 0.0002 | -0.001 | 2e-07 | -8e-08 | -9e-10 |
| 2e-06 | 0.02 | -5e-07 | 7e-09 | 3e-08 | 2e-08 | -3e-07 | 0.0003 | -1e-08 | 1e-10 |
| -2e-07 | -5e-07 | 0.02 | -9e-05 | 4e-09 | -1e-08 | 2e-07 | -2e-08 | -0.0006 | -5e-06 |
| 1e-08 | 7e-09 | -9e-05 | 1e-06 | 6e-11 | 4e-10 | -1e-09 | 3e-11 | 5e-06 | 3e-08 |
| 2e-08 | 3e-08 | 4e-09 | 6e-11 | 1e-06 | 2e-10 | -2e-09 | 2e-10 | -7e-09 | -4e-11 |
| 0.0002 | 2e-08 | -1e-08 | 4e-10 | 2e-10 | 2e-06 | -2e-06 | -1e-09 | -7e-10 | -9e-12 |
| -0.001 | -3e-07 | 2e-07 | -1e-09 | -2e-09 | -2e-06 | 0.03 | -2e-06 | -1e-07 | -5e-09 |
| 2e-07 | 0.0003 | -2e-08 | 3e-11 | 2e-10 | -1e-09 | -2e-06 | 0.02 | -8e-07 | -1e-08 |
| -8e-08 | -1e-08 | -0.0006 | 5e-06 | -7e-09 | -7e-10 | -1e-07 | -8e-07 | 0.02 | 9e-05 |
| -9e-10 | 1e-10 | -5e-06 | 3e-08 | -4e-11 | -9e-12 | -5e-09 | -1e-08 | 9e-05 | 1e-06 |
Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block.
** Identification of the Dynamics
The flexible element is imported using the =Reduced Order Flexible Solid= simscape block.
2020-06-14 12:31:03 +02:00
To model the actuator, an =Internal Force= block is added between the nodes 3 and 12.
A =Relative Motion Sensor= block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo.
2020-06-14 12:23:45 +02:00
2020-06-14 12:31:03 +02:00
One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame.
2020-06-14 12:23:45 +02:00
We first set the mass to be zero.
#+begin_src matlab
m = 0;
#+end_src
The dynamics is identified from the applied force to the measured relative displacement.
#+begin_src matlab
%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
Gh = linearize(mdl, io);
#+end_src
Then, we add 10Kg of mass:
#+begin_src matlab
m = 10;
#+end_src
And the dynamics is identified.
The two identified dynamics are compared in Figure [[fig:dynamics_act_disp_comp_mass]].
#+begin_src matlab
%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
Ghm = linearize(mdl, io);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 5, 5000);
figure;
ax1 = subplot(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = subplot(2,1,2);
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ...
'DisplayName', '$m = 0kg$');
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ...
'DisplayName', '$m = 10kg$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360);
ylim([-360 0]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
legend('location', 'southwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/dynamics_act_disp_comp_mass.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:dynamics_act_disp_comp_mass
#+caption: Dynamics from $F$ to $d$ without a payload and with a 10kg payload
#+RESULTS:
[[file:figs/dynamics_act_disp_comp_mass.png]]
** Comparison with Ansys
Let's import the results from an Harmonic response analysis in Ansys.
#+begin_src matlab
Gresp0 = readtable('FEA_HarmResponse_00kg.txt');
Gresp10 = readtable('FEA_HarmResponse_10kg.txt');
#+end_src
2020-06-14 12:31:03 +02:00
The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure [[fig:dynamics_force_disp_comp_anasys]].
2020-06-14 12:23:45 +02:00
#+begin_src matlab :exports none
freqs = logspace(1, 5, 1000);
figure;
ax1 = subplot(2,1,1);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',1)
plot(Gresp0{:, 2}, 1e-3*Gresp0{:, 3}, '--');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(Gresp0{:, 2}, 1e-3*Gresp10{:, 3}, '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = subplot(2,1,2);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ...
'DisplayName', '$m = 0kg$, Simscape');
set(gca,'ColorOrderIndex',1)
plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp0{:, 4}), '--', ...
'DisplayName', '$m = 0kg$, Ansys');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ...
'DisplayName', '$m = 10kg$, Simscape');
set(gca,'ColorOrderIndex',2)
plot(Gresp0{:, 2}, 180/pi*unwrap(pi/180*Gresp10{:, 4}), '--', ...
'DisplayName', '$m = 10kg$, Ansys');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360);
ylim([-390 30]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
2020-06-14 12:31:03 +02:00
legend('location', 'southwest');
2020-06-14 12:23:45 +02:00
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/dynamics_force_disp_comp_anasys.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:dynamics_force_disp_comp_anasys
#+caption: Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys
#+RESULTS:
[[file:figs/dynamics_force_disp_comp_anasys.png]]
** Force Sensor
2020-06-14 12:31:03 +02:00
The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13.
The obtained dynamics is shown in Figure [[fig:dynamics_force_force_sensor_comp_mass]].
2020-06-14 12:23:45 +02:00
#+begin_src matlab
m = 0;
#+end_src
#+begin_src matlab
%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
Gf = linearize(mdl, io);
#+end_src
#+begin_src matlab
m = 10;
#+end_src
#+begin_src matlab
%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
Gfm = linearize(mdl, io);
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 5, 1000);
figure;
ax1 = subplot(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gf, freqs, 'Hz'))), '-');
plot(freqs, abs(squeeze(freqresp(Gfm, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = subplot(2,1,2);
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gf, freqs, 'Hz')))), '-', ...
2020-06-14 12:31:03 +02:00
'DisplayName', '$m = 0kg$');
2020-06-14 12:23:45 +02:00
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gfm, freqs, 'Hz')))), '-', ...
2020-06-14 12:31:03 +02:00
'DisplayName', '$m = 10kg$');
2020-06-14 12:23:45 +02:00
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360);
ylim([-390 30]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
legend('location', 'southwest');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/dynamics_force_force_sensor_comp_mass.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:dynamics_force_force_sensor_comp_mass
#+caption: Dynamics from $F$ to $F_m$ for $m=0$ and $m = 10kg$
#+RESULTS:
[[file:figs/dynamics_force_force_sensor_comp_mass.png]]