phd-nass-fem/index.html

2488 lines
66 KiB
HTML
Raw Normal View History

2020-06-14 12:23:45 +02:00
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
2020-08-03 15:46:35 +02:00
<!-- 2020-08-03 lun. 15:42 -->
2020-06-14 12:23:45 +02:00
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Finite Element Model with Simscape</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="./index.html"> UP </a>
|
<a accesskey="H" href="./index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Finite Element Model with Simscape</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#org71cd323">1. Amplified Piezoelectric Actuator - 3D elements</a>
2020-06-14 12:23:45 +02:00
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#orgab9c056">1.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org42c8d07">1.2. Output parameters</a></li>
<li><a href="#org6561967">1.3. Piezoelectric parameters</a></li>
<li><a href="#orgddd3cad">1.4. Identification of the Dynamics</a></li>
<li><a href="#org8daed84">1.5. Comparison with Ansys</a></li>
<li><a href="#orgc22a98a">1.6. Force Sensor</a></li>
<li><a href="#org251d0e8">1.7. Distributed Actuator</a></li>
<li><a href="#orgacd6070">1.8. Distributed Actuator and Force Sensor</a></li>
<li><a href="#org63ac6c4">1.9. Dynamics from input voltage to displacement</a></li>
<li><a href="#org07a18c3">1.10. Dynamics from input voltage to output voltage</a></li>
2020-06-15 09:13:55 +02:00
</ul>
</li>
2020-08-03 15:46:35 +02:00
<li><a href="#org12ed48f">2. APA300ML</a>
2020-06-15 09:13:55 +02:00
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#orgda6e732">2.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org4cf9c6e">2.2. Output parameters</a></li>
<li><a href="#org2b612f9">2.3. Piezoelectric parameters</a></li>
<li><a href="#orgedd29dc">2.4. Identification of the APA Characteristics</a>
2020-08-03 15:37:17 +02:00
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#org9c27963">2.4.1. Stiffness</a></li>
<li><a href="#orgc01b2f9">2.4.2. Resonance Frequency</a></li>
<li><a href="#org934e234">2.4.3. Amplification factor</a></li>
<li><a href="#org2874b23">2.4.4. Stroke</a></li>
2020-08-03 15:37:17 +02:00
</ul>
</li>
2020-08-03 15:46:35 +02:00
<li><a href="#org5f49459">2.5. Identification of the Dynamics</a></li>
<li><a href="#org051104c">2.6. IFF</a></li>
<li><a href="#org1e28770">2.7. DVF</a></li>
2020-08-03 15:37:17 +02:00
</ul>
</li>
2020-08-03 15:46:35 +02:00
<li><a href="#orge4cfde0">3. Flexible Joint</a>
2020-08-03 15:37:17 +02:00
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#orgca3d7e7">3.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#orgb6376e0">3.2. Output parameters</a></li>
<li><a href="#org92f65bd">3.3. Flexible Joint Characteristics</a></li>
<li><a href="#orgd334b90">3.4. Identification</a></li>
2020-08-03 15:37:17 +02:00
</ul>
</li>
2020-08-03 15:46:35 +02:00
<li><a href="#org1351f3f">4. Integral Force Feedback with Amplified Piezo</a>
2020-08-03 15:37:17 +02:00
<ul>
2020-08-03 15:46:35 +02:00
<li><a href="#orga590a65">4.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org5ddfecc">4.2. IFF Plant</a></li>
<li><a href="#org76400d1">4.3. IFF controller</a></li>
<li><a href="#org8c42386">4.4. Closed Loop System</a></li>
2020-06-14 12:23:45 +02:00
</ul>
</li>
</ul>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org71cd323" class="outline-2">
<h2 id="org71cd323"><span class="section-number-2">1</span> Amplified Piezoelectric Actuator - 3D elements</h2>
2020-06-14 12:23:45 +02:00
<div class="outline-text-2" id="text-1">
<p>
The idea here is to:
</p>
<ul class="org-ul">
<li>export a FEM of an amplified piezoelectric actuator from Ansys to Matlab</li>
<li>import it into a Simscape model</li>
<li>compare the obtained dynamics</li>
<li>add 10kg mass on top of the actuator and identify the dynamics</li>
<li>compare with results from Ansys where 10kg are directly added to the FEM</li>
</ul>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgab9c056" class="outline-3">
<h3 id="orgab9c056"><span class="section-number-3">1.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
2020-06-14 12:23:45 +02:00
<div class="outline-text-3" id="text-1-1">
<p>
We first extract the stiffness and mass matrices.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = extractMatrix('piezo_amplified_3d_K.txt');
M = extractMatrix('piezo_amplified_3d_M.txt');
</pre>
</div>
<p>
Then, we extract the coordinates of the interface nodes.
</p>
<div class="org-src-container">
<pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_3d.txt');
</pre>
</div>
2020-08-03 15:37:17 +02:00
<div class="org-src-container">
<pre class="src src-matlab">save('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org42c8d07" class="outline-3">
<h3 id="org42c8d07"><span class="section-number-3">1.2</span> Output parameters</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">load('./mat/piezo_amplified_3d.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
2020-06-14 12:23:45 +02:00
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-left">Total number of Nodes</td>
<td class="org-right">168959</td>
</tr>
<tr>
<td class="org-left">Number of interface Nodes</td>
<td class="org-right">13</td>
</tr>
<tr>
<td class="org-left">Number of Modes</td>
<td class="org-right">30</td>
</tr>
<tr>
<td class="org-left">Size of M and K matrices</td>
<td class="org-right">108</td>
</tr>
</tbody>
</table>
2020-08-03 15:46:35 +02:00
<div id="org8f635f5" class="figure">
2020-06-14 12:23:45 +02:00
<p><img src="figs/amplified_piezo_interface_nodes.png" alt="amplified_piezo_interface_nodes.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Interface Nodes for the Amplified Piezo Actuator</p>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 1:</span> Coordinates of the interface nodes</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Node i</th>
<th scope="col" class="org-right">Node Number</th>
<th scope="col" class="org-right">x [m]</th>
<th scope="col" class="org-right">y [m]</th>
<th scope="col" class="org-right">z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1.0</td>
<td class="org-right">168947.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.03</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">2.0</td>
<td class="org-right">168949.0</td>
<td class="org-right">0.0</td>
<td class="org-right">-0.03</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">3.0</td>
<td class="org-right">168950.0</td>
<td class="org-right">-0.035</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">4.0</td>
<td class="org-right">168951.0</td>
<td class="org-right">-0.028</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">5.0</td>
<td class="org-right">168952.0</td>
<td class="org-right">-0.021</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">6.0</td>
<td class="org-right">168953.0</td>
<td class="org-right">-0.014</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">7.0</td>
<td class="org-right">168954.0</td>
<td class="org-right">-0.007</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">8.0</td>
<td class="org-right">168955.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">9.0</td>
<td class="org-right">168956.0</td>
<td class="org-right">0.007</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">10.0</td>
<td class="org-right">168957.0</td>
<td class="org-right">0.014</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">11.0</td>
<td class="org-right">168958.0</td>
<td class="org-right">0.021</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">12.0</td>
<td class="org-right">168959.0</td>
<td class="org-right">0.035</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">13.0</td>
<td class="org-right">168960.0</td>
<td class="org-right">0.028</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 2:</span> First 10x10 elements of the Stiffness matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">300000000.0</td>
<td class="org-right">-30000.0</td>
<td class="org-right">8000.0</td>
<td class="org-right">-200.0</td>
<td class="org-right">-30.0</td>
<td class="org-right">-60000.0</td>
<td class="org-right">20000000.0</td>
<td class="org-right">-4000.0</td>
<td class="org-right">500.0</td>
<td class="org-right">8</td>
</tr>
<tr>
<td class="org-right">-30000.0</td>
<td class="org-right">100000000.0</td>
<td class="org-right">400.0</td>
<td class="org-right">30.0</td>
<td class="org-right">200.0</td>
<td class="org-right">-1</td>
<td class="org-right">4000.0</td>
<td class="org-right">-8000000.0</td>
<td class="org-right">800.0</td>
<td class="org-right">7</td>
</tr>
<tr>
<td class="org-right">8000.0</td>
<td class="org-right">400.0</td>
<td class="org-right">50000000.0</td>
<td class="org-right">-800000.0</td>
<td class="org-right">-300.0</td>
<td class="org-right">-40.0</td>
<td class="org-right">300.0</td>
<td class="org-right">100.0</td>
<td class="org-right">5000000.0</td>
<td class="org-right">40000.0</td>
</tr>
<tr>
<td class="org-right">-200.0</td>
<td class="org-right">30.0</td>
<td class="org-right">-800000.0</td>
<td class="org-right">20000.0</td>
<td class="org-right">5</td>
<td class="org-right">1</td>
<td class="org-right">-10.0</td>
<td class="org-right">-2</td>
<td class="org-right">-40000.0</td>
<td class="org-right">-300.0</td>
</tr>
<tr>
<td class="org-right">-30.0</td>
<td class="org-right">200.0</td>
<td class="org-right">-300.0</td>
<td class="org-right">5</td>
<td class="org-right">40000.0</td>
<td class="org-right">0.3</td>
<td class="org-right">-4</td>
<td class="org-right">-10.0</td>
<td class="org-right">40.0</td>
<td class="org-right">0.4</td>
</tr>
<tr>
<td class="org-right">-60000.0</td>
<td class="org-right">-1</td>
<td class="org-right">-40.0</td>
<td class="org-right">1</td>
<td class="org-right">0.3</td>
<td class="org-right">3000.0</td>
<td class="org-right">7000.0</td>
<td class="org-right">0.8</td>
<td class="org-right">-1</td>
<td class="org-right">0.0003</td>
</tr>
<tr>
<td class="org-right">20000000.0</td>
<td class="org-right">4000.0</td>
<td class="org-right">300.0</td>
<td class="org-right">-10.0</td>
<td class="org-right">-4</td>
<td class="org-right">7000.0</td>
<td class="org-right">300000000.0</td>
<td class="org-right">20000.0</td>
<td class="org-right">3000.0</td>
<td class="org-right">80.0</td>
</tr>
<tr>
<td class="org-right">-4000.0</td>
<td class="org-right">-8000000.0</td>
<td class="org-right">100.0</td>
<td class="org-right">-2</td>
<td class="org-right">-10.0</td>
<td class="org-right">0.8</td>
<td class="org-right">20000.0</td>
<td class="org-right">100000000.0</td>
<td class="org-right">-4000.0</td>
<td class="org-right">-100.0</td>
</tr>
<tr>
<td class="org-right">500.0</td>
<td class="org-right">800.0</td>
<td class="org-right">5000000.0</td>
<td class="org-right">-40000.0</td>
<td class="org-right">40.0</td>
<td class="org-right">-1</td>
<td class="org-right">3000.0</td>
<td class="org-right">-4000.0</td>
<td class="org-right">50000000.0</td>
<td class="org-right">800000.0</td>
</tr>
<tr>
<td class="org-right">8</td>
<td class="org-right">7</td>
<td class="org-right">40000.0</td>
<td class="org-right">-300.0</td>
<td class="org-right">0.4</td>
<td class="org-right">0.0003</td>
<td class="org-right">80.0</td>
<td class="org-right">-100.0</td>
<td class="org-right">800000.0</td>
<td class="org-right">20000.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 3:</span> First 10x10 elements of the Mass matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">0.03</td>
<td class="org-right">2e-06</td>
<td class="org-right">-2e-07</td>
<td class="org-right">1e-08</td>
<td class="org-right">2e-08</td>
<td class="org-right">0.0002</td>
<td class="org-right">-0.001</td>
<td class="org-right">2e-07</td>
<td class="org-right">-8e-08</td>
<td class="org-right">-9e-10</td>
</tr>
<tr>
<td class="org-right">2e-06</td>
<td class="org-right">0.02</td>
<td class="org-right">-5e-07</td>
<td class="org-right">7e-09</td>
<td class="org-right">3e-08</td>
<td class="org-right">2e-08</td>
<td class="org-right">-3e-07</td>
<td class="org-right">0.0003</td>
<td class="org-right">-1e-08</td>
<td class="org-right">1e-10</td>
</tr>
<tr>
<td class="org-right">-2e-07</td>
<td class="org-right">-5e-07</td>
<td class="org-right">0.02</td>
<td class="org-right">-9e-05</td>
<td class="org-right">4e-09</td>
<td class="org-right">-1e-08</td>
<td class="org-right">2e-07</td>
<td class="org-right">-2e-08</td>
<td class="org-right">-0.0006</td>
<td class="org-right">-5e-06</td>
</tr>
<tr>
<td class="org-right">1e-08</td>
<td class="org-right">7e-09</td>
<td class="org-right">-9e-05</td>
<td class="org-right">1e-06</td>
<td class="org-right">6e-11</td>
<td class="org-right">4e-10</td>
<td class="org-right">-1e-09</td>
<td class="org-right">3e-11</td>
<td class="org-right">5e-06</td>
<td class="org-right">3e-08</td>
</tr>
<tr>
<td class="org-right">2e-08</td>
<td class="org-right">3e-08</td>
<td class="org-right">4e-09</td>
<td class="org-right">6e-11</td>
<td class="org-right">1e-06</td>
<td class="org-right">2e-10</td>
<td class="org-right">-2e-09</td>
<td class="org-right">2e-10</td>
<td class="org-right">-7e-09</td>
<td class="org-right">-4e-11</td>
</tr>
<tr>
<td class="org-right">0.0002</td>
<td class="org-right">2e-08</td>
<td class="org-right">-1e-08</td>
<td class="org-right">4e-10</td>
<td class="org-right">2e-10</td>
<td class="org-right">2e-06</td>
<td class="org-right">-2e-06</td>
<td class="org-right">-1e-09</td>
<td class="org-right">-7e-10</td>
<td class="org-right">-9e-12</td>
</tr>
<tr>
<td class="org-right">-0.001</td>
<td class="org-right">-3e-07</td>
<td class="org-right">2e-07</td>
<td class="org-right">-1e-09</td>
<td class="org-right">-2e-09</td>
<td class="org-right">-2e-06</td>
<td class="org-right">0.03</td>
<td class="org-right">-2e-06</td>
<td class="org-right">-1e-07</td>
<td class="org-right">-5e-09</td>
</tr>
<tr>
<td class="org-right">2e-07</td>
<td class="org-right">0.0003</td>
<td class="org-right">-2e-08</td>
<td class="org-right">3e-11</td>
<td class="org-right">2e-10</td>
<td class="org-right">-1e-09</td>
<td class="org-right">-2e-06</td>
<td class="org-right">0.02</td>
<td class="org-right">-8e-07</td>
<td class="org-right">-1e-08</td>
</tr>
<tr>
<td class="org-right">-8e-08</td>
<td class="org-right">-1e-08</td>
<td class="org-right">-0.0006</td>
<td class="org-right">5e-06</td>
<td class="org-right">-7e-09</td>
<td class="org-right">-7e-10</td>
<td class="org-right">-1e-07</td>
<td class="org-right">-8e-07</td>
<td class="org-right">0.02</td>
<td class="org-right">9e-05</td>
</tr>
<tr>
<td class="org-right">-9e-10</td>
<td class="org-right">1e-10</td>
<td class="org-right">-5e-06</td>
<td class="org-right">3e-08</td>
<td class="org-right">-4e-11</td>
<td class="org-right">-9e-12</td>
<td class="org-right">-5e-09</td>
<td class="org-right">-1e-08</td>
<td class="org-right">9e-05</td>
<td class="org-right">1e-06</td>
</tr>
</tbody>
</table>
<p>
Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block.
</p>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org6561967" class="outline-3">
<h3 id="org6561967"><span class="section-number-3">1.3</span> Piezoelectric parameters</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-3">
<p>
Parameters for the APA95ML:
</p>
<div class="org-src-container">
<pre class="src src-matlab">d33 = 3e-10; % Strain constant [m/V]
n = 80; % Number of layers per stack
eT = 1.6e-7; % Permittivity under constant stress [F/m]
sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N]
ka = 235e6; % Stack stiffness [N/m]
C = 5e-6; % Stack capactiance [F]
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">na = 2; % Number of stacks used as actuator
ns = 1; % Number of stacks used as force sensor
</pre>
</div>
<p>
The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V].
We denote this constant by \(g_a\) and:
\[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">d33*(na*n)*(ka/(na + ns)) % [N/V]
</pre>
</div>
<pre class="example">
3.76
</pre>
<p>
From (<a href="#citeproc_bib_item_1">Fleming and Leang 2014</a>) (page 123), the relation between relative displacement and generated voltage is:
\[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \]
where:
</p>
<ul class="org-ul">
<li>\(V_s\): measured voltage [V]</li>
<li>\(d_{33}\): strain constant [m/V]</li>
<li>\(\epsilon^T\): permittivity under constant stress [F/m]</li>
<li>\(s^D\): elastic compliance under constant electric displacement [m^2/N]</li>
<li>\(n\): number of layers</li>
<li>\(\Delta h\): relative displacement [m]</li>
</ul>
<div class="org-src-container">
<pre class="src src-matlab">1e-6*d33/(eT*sD*ns*n) % [V/um]
</pre>
</div>
<pre class="example">
1.1719
</pre>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgddd3cad" class="outline-3">
<h3 id="orgddd3cad"><span class="section-number-3">1.4</span> Identification of the Dynamics</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-4">
2020-06-14 12:23:45 +02:00
<p>
The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block.
</p>
<p>
2020-06-14 12:31:03 +02:00
To model the actuator, an <code>Internal Force</code> block is added between the nodes 3 and 12.
A <code>Relative Motion Sensor</code> block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo.
2020-06-14 12:23:45 +02:00
</p>
<p>
2020-06-14 12:31:03 +02:00
One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame.
2020-06-14 12:23:45 +02:00
</p>
<p>
We first set the mass to be zero.
</p>
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">m = 0.01;
2020-06-14 12:23:45 +02:00
</pre>
</div>
<p>
The dynamics is identified from the applied force to the measured relative displacement.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
2020-08-03 15:37:17 +02:00
Gh = -linearize(mdl, io);
2020-06-14 12:23:45 +02:00
</pre>
</div>
<p>
Then, we add 10Kg of mass:
</p>
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">m = 5;
2020-06-14 12:23:45 +02:00
</pre>
</div>
<p>
And the dynamics is identified.
</p>
<p>
2020-08-03 15:46:35 +02:00
The two identified dynamics are compared in Figure <a href="#org0d0b642">2</a>.
2020-06-14 12:23:45 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
2020-08-03 15:37:17 +02:00
Ghm = -linearize(mdl, io);
2020-06-14 12:23:45 +02:00
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="org0d0b642" class="figure">
2020-06-14 12:23:45 +02:00
<p><img src="figs/dynamics_act_disp_comp_mass.png" alt="dynamics_act_disp_comp_mass.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Dynamics from \(F\) to \(d\) without a payload and with a 10kg payload</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org8daed84" class="outline-3">
<h3 id="org8daed84"><span class="section-number-3">1.5</span> Comparison with Ansys</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-5">
2020-06-14 12:23:45 +02:00
<p>
Let&rsquo;s import the results from an Harmonic response analysis in Ansys.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gresp0 = readtable('FEA_HarmResponse_00kg.txt');
Gresp10 = readtable('FEA_HarmResponse_10kg.txt');
</pre>
</div>
2020-06-14 12:31:03 +02:00
<p>
2020-08-03 15:46:35 +02:00
The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure <a href="#org3c4c607">3</a>.
2020-06-14 12:31:03 +02:00
</p>
2020-06-14 12:23:45 +02:00
2020-08-03 15:46:35 +02:00
<div id="org3c4c607" class="figure">
2020-06-14 12:23:45 +02:00
<p><img src="figs/dynamics_force_disp_comp_anasys.png" alt="dynamics_force_disp_comp_anasys.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgc22a98a" class="outline-3">
<h3 id="orgc22a98a"><span class="section-number-3">1.6</span> Force Sensor</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-6">
2020-06-14 12:31:03 +02:00
<p>
The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13.
</p>
<p>
2020-08-03 15:46:35 +02:00
The obtained dynamics is shown in Figure <a href="#orgf53147f">4</a>.
2020-06-14 12:31:03 +02:00
</p>
2020-06-14 12:23:45 +02:00
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
Gf = linearize(mdl, io);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1;
Gfm = linearize(mdl, io);
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="orgf53147f" class="figure">
2020-06-14 12:23:45 +02:00
<p><img src="figs/dynamics_force_force_sensor_comp_mass.png" alt="dynamics_force_force_sensor_comp_mass.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Dynamics from \(F\) to \(F_m\) for \(m=0\) and \(m = 10kg\)</p>
</div>
</div>
</div>
2020-06-15 09:13:55 +02:00
2020-08-03 15:46:35 +02:00
<div id="outline-container-org251d0e8" class="outline-3">
<h3 id="org251d0e8"><span class="section-number-3">1.7</span> Distributed Actuator</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-7">
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
</pre>
</div>
<p>
The dynamics is identified from the applied force to the measured relative displacement.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d_distri';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
Gd = linearize(mdl, io);
</pre>
</div>
<p>
Then, we add 10Kg of mass:
</p>
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<p>
And the dynamics is identified.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d_distri';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
Gdm = linearize(mdl, io);
</pre>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgacd6070" class="outline-3">
<h3 id="orgacd6070"><span class="section-number-3">1.8</span> Distributed Actuator and Force Sensor</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-8">
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d_distri_act_sens';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1;
Gfd = linearize(mdl, io);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d_distri_act_sens';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1;
Gfdm = linearize(mdl, io);
</pre>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org63ac6c4" class="outline-3">
<h3 id="org63ac6c4"><span class="section-number-3">1.9</span> Dynamics from input voltage to displacement</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-9">
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">m = 5;
2020-06-15 09:13:55 +02:00
</pre>
</div>
<p>
2020-08-03 15:37:17 +02:00
And the dynamics is identified.
2020-06-15 09:13:55 +02:00
</p>
<p>
2020-08-03 15:46:35 +02:00
The two identified dynamics are compared in Figure <a href="#org0d0b642">2</a>.
2020-06-15 09:13:55 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
2020-08-03 15:37:17 +02:00
mdl = 'piezo_amplified_3d';
2020-06-15 09:13:55 +02:00
%% Input/Output definition
clear io; io_i = 1;
2020-08-03 15:37:17 +02:00
io(io_i) = linio([mdl, '/V'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
2020-06-15 09:13:55 +02:00
2020-08-03 15:37:17 +02:00
G = -linearize(mdl, io);
2020-06-15 09:13:55 +02:00
</pre>
</div>
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">save('../test-bench-apa/mat/fem_model_5kg.mat', 'G')
2020-06-15 09:13:55 +02:00
</pre>
</div>
2020-08-03 15:37:17 +02:00
</div>
</div>
2020-06-15 09:13:55 +02:00
2020-08-03 15:46:35 +02:00
<div id="outline-container-org07a18c3" class="outline-3">
<h3 id="org07a18c3"><span class="section-number-3">1.10</span> Dynamics from input voltage to output voltage</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-1-10">
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">m = 5;
2020-06-15 09:13:55 +02:00
</pre>
</div>
2020-08-03 15:37:17 +02:00
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_3d';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1;
2020-06-15 09:13:55 +02:00
2020-08-03 15:37:17 +02:00
G = -linearize(mdl, io);
</pre>
2020-06-15 09:13:55 +02:00
</div>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org12ed48f" class="outline-2">
<h2 id="org12ed48f"><span class="section-number-2">2</span> APA300ML</h2>
2020-08-03 15:37:17 +02:00
<div class="outline-text-2" id="text-2">
2020-06-15 09:13:55 +02:00
2020-08-03 15:46:35 +02:00
<div id="orgc4c274c" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_ansys.jpg" alt="apa300ml_ansys.jpg" />
2020-06-15 09:13:55 +02:00
</p>
2020-08-03 15:37:17 +02:00
<p><span class="figure-number">Figure 5: </span>Ansys FEM of the APA300ML</p>
2020-06-15 09:13:55 +02:00
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgda6e732" class="outline-3">
<h3 id="orgda6e732"><span class="section-number-3">2.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-1">
<p>
We first extract the stiffness and mass matrices.
</p>
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">K = extractMatrix('mat_K-48modes-7MDoF.matrix');
M = extractMatrix('mat_M-48modes-7MDoF.matrix');
2020-06-15 09:13:55 +02:00
</pre>
</div>
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">K = extractMatrix('mat_K-80modes-7MDoF.matrix');
M = extractMatrix('mat_M-80modes-7MDoF.matrix');
2020-06-15 09:13:55 +02:00
</pre>
</div>
2020-08-03 15:37:17 +02:00
<p>
Then, we extract the coordinates of the interface nodes.
</p>
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('Nodes_MDoF_NLIST_MLIST.txt');
2020-06-15 09:13:55 +02:00
</pre>
</div>
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">save('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
2020-06-15 09:13:55 +02:00
</pre>
</div>
2020-08-03 15:37:17 +02:00
</div>
</div>
2020-06-15 09:13:55 +02:00
2020-08-03 15:46:35 +02:00
<div id="outline-container-org4cf9c6e" class="outline-3">
<h3 id="org4cf9c6e"><span class="section-number-3">2.2</span> Output parameters</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-2">
2020-06-15 09:13:55 +02:00
<div class="org-src-container">
2020-08-03 15:37:17 +02:00
<pre class="src src-matlab">load('./mat/APA300ML.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
2020-06-15 09:13:55 +02:00
</pre>
</div>
2020-08-03 15:37:17 +02:00
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
2020-06-15 09:13:55 +02:00
2020-08-03 15:37:17 +02:00
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-left">Total number of Nodes</td>
<td class="org-right">7</td>
</tr>
<tr>
<td class="org-left">Number of interface Nodes</td>
<td class="org-right">7</td>
</tr>
2020-06-15 09:13:55 +02:00
2020-08-03 15:37:17 +02:00
<tr>
<td class="org-left">Number of Modes</td>
<td class="org-right">6</td>
</tr>
2020-06-15 09:13:55 +02:00
2020-08-03 15:37:17 +02:00
<tr>
<td class="org-left">Size of M and K matrices</td>
<td class="org-right">48</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 4:</span> Coordinates of the interface nodes</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Node i</th>
<th scope="col" class="org-right">Node Number</th>
<th scope="col" class="org-right">x [m]</th>
<th scope="col" class="org-right">y [m]</th>
<th scope="col" class="org-right">z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1.0</td>
<td class="org-right">53917.0</td>
<td class="org-right">0.0</td>
<td class="org-right">-0.015</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">2.0</td>
<td class="org-right">53918.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.015</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">3.0</td>
<td class="org-right">53919.0</td>
<td class="org-right">-0.0325</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">4.0</td>
<td class="org-right">53920.0</td>
<td class="org-right">-0.0125</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">5.0</td>
<td class="org-right">53921.0</td>
<td class="org-right">-0.0075</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">6.0</td>
<td class="org-right">53922.0</td>
<td class="org-right">0.0125</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">7.0</td>
<td class="org-right">53923.0</td>
<td class="org-right">0.0325</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 5:</span> First 10x10 elements of the Stiffness matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">200000000.0</td>
<td class="org-right">30000.0</td>
<td class="org-right">50000.0</td>
<td class="org-right">200.0</td>
<td class="org-right">-100.0</td>
<td class="org-right">-300000.0</td>
<td class="org-right">10000000.0</td>
<td class="org-right">-6000.0</td>
<td class="org-right">20000.0</td>
<td class="org-right">-60.0</td>
</tr>
<tr>
<td class="org-right">30000.0</td>
<td class="org-right">7000000.0</td>
<td class="org-right">10000.0</td>
<td class="org-right">30.0</td>
<td class="org-right">-30.0</td>
<td class="org-right">-70.0</td>
<td class="org-right">7000.0</td>
<td class="org-right">-500000.0</td>
<td class="org-right">3000.0</td>
<td class="org-right">-10.0</td>
</tr>
<tr>
<td class="org-right">50000.0</td>
<td class="org-right">10000.0</td>
<td class="org-right">30000000.0</td>
<td class="org-right">200000.0</td>
<td class="org-right">-200.0</td>
<td class="org-right">-100.0</td>
<td class="org-right">20000.0</td>
<td class="org-right">-2000.0</td>
<td class="org-right">2000000.0</td>
<td class="org-right">-9000.0</td>
</tr>
<tr>
<td class="org-right">200.0</td>
<td class="org-right">30.0</td>
<td class="org-right">200000.0</td>
<td class="org-right">1000.0</td>
<td class="org-right">-0.8</td>
<td class="org-right">-0.4</td>
<td class="org-right">50.0</td>
<td class="org-right">-6</td>
<td class="org-right">9000.0</td>
<td class="org-right">-30.0</td>
</tr>
<tr>
<td class="org-right">-100.0</td>
<td class="org-right">-30.0</td>
<td class="org-right">-200.0</td>
<td class="org-right">-0.8</td>
<td class="org-right">10000.0</td>
<td class="org-right">0.2</td>
<td class="org-right">-40.0</td>
<td class="org-right">10.0</td>
<td class="org-right">20.0</td>
<td class="org-right">-0.05</td>
</tr>
<tr>
<td class="org-right">-300000.0</td>
<td class="org-right">-70.0</td>
<td class="org-right">-100.0</td>
<td class="org-right">-0.4</td>
<td class="org-right">0.2</td>
<td class="org-right">900.0</td>
<td class="org-right">-30000.0</td>
<td class="org-right">10.0</td>
<td class="org-right">-40.0</td>
<td class="org-right">0.1</td>
</tr>
<tr>
<td class="org-right">10000000.0</td>
<td class="org-right">7000.0</td>
<td class="org-right">20000.0</td>
<td class="org-right">50.0</td>
<td class="org-right">-40.0</td>
<td class="org-right">-30000.0</td>
<td class="org-right">200000000.0</td>
<td class="org-right">-50000.0</td>
<td class="org-right">30000.0</td>
<td class="org-right">-50.0</td>
</tr>
<tr>
<td class="org-right">-6000.0</td>
<td class="org-right">-500000.0</td>
<td class="org-right">-2000.0</td>
<td class="org-right">-6</td>
<td class="org-right">10.0</td>
<td class="org-right">10.0</td>
<td class="org-right">-50000.0</td>
<td class="org-right">7000000.0</td>
<td class="org-right">-4000.0</td>
<td class="org-right">8</td>
</tr>
<tr>
<td class="org-right">20000.0</td>
<td class="org-right">3000.0</td>
<td class="org-right">2000000.0</td>
<td class="org-right">9000.0</td>
<td class="org-right">20.0</td>
<td class="org-right">-40.0</td>
<td class="org-right">30000.0</td>
<td class="org-right">-4000.0</td>
<td class="org-right">30000000.0</td>
<td class="org-right">-200000.0</td>
</tr>
<tr>
<td class="org-right">-60.0</td>
<td class="org-right">-10.0</td>
<td class="org-right">-9000.0</td>
<td class="org-right">-30.0</td>
<td class="org-right">-0.05</td>
<td class="org-right">0.1</td>
<td class="org-right">-50.0</td>
<td class="org-right">8</td>
<td class="org-right">-200000.0</td>
<td class="org-right">1000.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 6:</span> First 10x10 elements of the Mass matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">0.01</td>
<td class="org-right">7e-06</td>
<td class="org-right">-5e-06</td>
<td class="org-right">-6e-08</td>
<td class="org-right">3e-09</td>
<td class="org-right">-5e-05</td>
<td class="org-right">-0.0005</td>
<td class="org-right">-2e-07</td>
<td class="org-right">-3e-06</td>
<td class="org-right">1e-08</td>
</tr>
<tr>
<td class="org-right">7e-06</td>
<td class="org-right">0.009</td>
<td class="org-right">4e-07</td>
<td class="org-right">6e-09</td>
<td class="org-right">-4e-09</td>
<td class="org-right">-3e-08</td>
<td class="org-right">-2e-07</td>
<td class="org-right">6e-05</td>
<td class="org-right">5e-07</td>
<td class="org-right">-1e-09</td>
</tr>
<tr>
<td class="org-right">-5e-06</td>
<td class="org-right">4e-07</td>
<td class="org-right">0.01</td>
<td class="org-right">2e-05</td>
<td class="org-right">2e-08</td>
<td class="org-right">3e-08</td>
<td class="org-right">-2e-06</td>
<td class="org-right">-1e-07</td>
<td class="org-right">-0.0002</td>
<td class="org-right">9e-07</td>
</tr>
<tr>
<td class="org-right">-6e-08</td>
<td class="org-right">6e-09</td>
<td class="org-right">2e-05</td>
<td class="org-right">3e-07</td>
<td class="org-right">1e-10</td>
<td class="org-right">3e-10</td>
<td class="org-right">-7e-09</td>
<td class="org-right">2e-10</td>
<td class="org-right">-9e-07</td>
<td class="org-right">3e-09</td>
</tr>
<tr>
<td class="org-right">3e-09</td>
<td class="org-right">-4e-09</td>
<td class="org-right">2e-08</td>
<td class="org-right">1e-10</td>
<td class="org-right">1e-07</td>
<td class="org-right">-3e-12</td>
<td class="org-right">6e-09</td>
<td class="org-right">-2e-10</td>
<td class="org-right">-3e-09</td>
<td class="org-right">9e-12</td>
</tr>
<tr>
<td class="org-right">-5e-05</td>
<td class="org-right">-3e-08</td>
<td class="org-right">3e-08</td>
<td class="org-right">3e-10</td>
<td class="org-right">-3e-12</td>
<td class="org-right">6e-07</td>
<td class="org-right">1e-06</td>
<td class="org-right">-3e-09</td>
<td class="org-right">2e-08</td>
<td class="org-right">-7e-11</td>
</tr>
<tr>
<td class="org-right">-0.0005</td>
<td class="org-right">-2e-07</td>
<td class="org-right">-2e-06</td>
<td class="org-right">-7e-09</td>
<td class="org-right">6e-09</td>
<td class="org-right">1e-06</td>
<td class="org-right">0.01</td>
<td class="org-right">-8e-06</td>
<td class="org-right">-2e-06</td>
<td class="org-right">9e-09</td>
</tr>
<tr>
<td class="org-right">-2e-07</td>
<td class="org-right">6e-05</td>
<td class="org-right">-1e-07</td>
<td class="org-right">2e-10</td>
<td class="org-right">-2e-10</td>
<td class="org-right">-3e-09</td>
<td class="org-right">-8e-06</td>
<td class="org-right">0.009</td>
<td class="org-right">1e-07</td>
<td class="org-right">2e-09</td>
</tr>
<tr>
<td class="org-right">-3e-06</td>
<td class="org-right">5e-07</td>
<td class="org-right">-0.0002</td>
<td class="org-right">-9e-07</td>
<td class="org-right">-3e-09</td>
<td class="org-right">2e-08</td>
<td class="org-right">-2e-06</td>
<td class="org-right">1e-07</td>
<td class="org-right">0.01</td>
<td class="org-right">-2e-05</td>
</tr>
<tr>
<td class="org-right">1e-08</td>
<td class="org-right">-1e-09</td>
<td class="org-right">9e-07</td>
<td class="org-right">3e-09</td>
<td class="org-right">9e-12</td>
<td class="org-right">-7e-11</td>
<td class="org-right">9e-09</td>
<td class="org-right">2e-09</td>
<td class="org-right">-2e-05</td>
<td class="org-right">3e-07</td>
</tr>
</tbody>
</table>
<p>
Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block.
</p>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org2b612f9" class="outline-3">
<h3 id="org2b612f9"><span class="section-number-3">2.3</span> Piezoelectric parameters</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-3">
<p>
Parameters for the APA95ML:
</p>
<div class="org-src-container">
<pre class="src src-matlab">d33 = 3e-10; % Strain constant [m/V]
n = 80; % Number of layers per stack
eT = 1.6e-8; % Permittivity under constant stress [F/m]
sD = 2e-11; % Elastic compliance under constant electric displacement [m2/N]
ka = 235e6; % Stack stiffness [N/m]
C = 5e-6; % Stack capactiance [F]
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">na = 3; % Number of stacks used as actuator
ns = 0; % Number of stacks used as force sensor
</pre>
</div>
<p>
The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V].
We denote this constant by \(g_a\) and:
\[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">d33*(na*n)*(ka/(na + ns)) % [N/V]
</pre>
</div>
<pre class="example">
1.88
</pre>
<p>
From (<a href="#citeproc_bib_item_1">Fleming and Leang 2014</a>) (page 123), the relation between relative displacement and generated voltage is:
\[ V_s = \frac{d_{33}}{\epsilon^T s^D n} \Delta h \]
where:
</p>
<ul class="org-ul">
<li>\(V_s\): measured voltage [V]</li>
<li>\(d_{33}\): strain constant [m/V]</li>
<li>\(\epsilon^T\): permittivity under constant stress [F/m]</li>
<li>\(s^D\): elastic compliance under constant electric displacement [m^2/N]</li>
<li>\(n\): number of layers</li>
<li>\(\Delta h\): relative displacement [m]</li>
</ul>
<div class="org-src-container">
<pre class="src src-matlab">1e-6*d33/(eT*sD*ns*n) % [V/um]
</pre>
</div>
<pre class="example">
5.8594
</pre>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgedd29dc" class="outline-3">
<h3 id="orgedd29dc"><span class="section-number-3">2.4</span> Identification of the APA Characteristics</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-4">
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org9c27963" class="outline-4">
<h4 id="org9c27963"><span class="section-number-4">2.4.1</span> Stiffness</h4>
2020-08-03 15:37:17 +02:00
<div class="outline-text-4" id="text-2-4-1">
<p>
The transfer function from vertical external force to the relative vertical displacement is identified.
</p>
<p>
The inverse of its DC gain is the axial stiffness of the APA:
</p>
<div class="org-src-container">
<pre class="src src-matlab">1e-6/dcgain(G) % [N/um]
</pre>
</div>
<pre class="example">
1.8634
</pre>
<p>
The specified stiffness in the datasheet is \(k = 1.8\, [N/\mu m]\).
</p>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgc01b2f9" class="outline-4">
<h4 id="orgc01b2f9"><span class="section-number-4">2.4.2</span> Resonance Frequency</h4>
2020-08-03 15:37:17 +02:00
<div class="outline-text-4" id="text-2-4-2">
<p>
The resonance frequency is specified to be between 650Hz and 840Hz.
2020-08-03 15:46:35 +02:00
This is also the case for the FEM model (Figure <a href="#org78bd63c">6</a>).
2020-08-03 15:37:17 +02:00
</p>
2020-08-03 15:46:35 +02:00
<div id="org78bd63c" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_resonance.png" alt="apa300ml_resonance.png" />
</p>
<p><span class="figure-number">Figure 6: </span>First resonance is around 800Hz</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org934e234" class="outline-4">
<h4 id="org934e234"><span class="section-number-4">2.4.3</span> Amplification factor</h4>
2020-08-03 15:37:17 +02:00
<div class="outline-text-4" id="text-2-4-3">
<p>
The amplification factor is the ratio of the axial displacement to the stack displacement.
</p>
<p>
The ratio of the two displacement is computed from the FEM model.
</p>
<div class="org-src-container">
<pre class="src src-matlab">-dcgain(G(1,1))./dcgain(G(2,1))
</pre>
</div>
<pre class="example">
4.936
</pre>
<p>
If we take the ratio of the piezo height and length (approximation of the amplification factor):
</p>
<div class="org-src-container">
<pre class="src src-matlab">75/15
</pre>
</div>
<pre class="example">
5
</pre>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org2874b23" class="outline-4">
<h4 id="org2874b23"><span class="section-number-4">2.4.4</span> Stroke</h4>
2020-08-03 15:37:17 +02:00
<div class="outline-text-4" id="text-2-4-4">
<p>
Estimation of the actuator stroke:
\[ \Delta H = A n \Delta L \]
with:
</p>
<ul class="org-ul">
<li>\(\Delta H\) Axial Stroke of the APA</li>
<li>\(A\) Amplification factor (5 for the APA300ML)</li>
<li>\(n\) Number of stack used</li>
<li>\(\Delta L\) Stroke of the stack (0.1% of its length)</li>
</ul>
<div class="org-src-container">
<pre class="src src-matlab">1e6 * 5 * 3 * 20e-3 * 0.1e-2
</pre>
</div>
<pre class="example">
300
</pre>
<p>
This is exactly the specified stroke in the data-sheet.
</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org5f49459" class="outline-3">
<h3 id="org5f49459"><span class="section-number-3">2.5</span> Identification of the Dynamics</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-5">
<p>
The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block.
</p>
<p>
To model the actuator, an <code>Internal Force</code> block is added between the nodes 3 and 12.
A <code>Relative Motion Sensor</code> block is added between the nodes 1 and 2 to measure the displacement and the amplified piezo.
</p>
<p>
One mass is fixed at one end of the piezo-electric stack actuator, the other end is fixed to the world frame.
</p>
<p>
We first set the mass to be zero.
The dynamics is identified from the applied force to the measured relative displacement.
The same dynamics is identified for a payload mass of 10Kg.
</p>
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="orgd6baf63" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_plant_dynamics.png" alt="apa300ml_plant_dynamics.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Transfer function from forces applied by the stack to the axial displacement of the APA</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org051104c" class="outline-3">
<h3 id="org051104c"><span class="section-number-3">2.6</span> IFF</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-6">
<p>
Let&rsquo;s use 2 stacks as actuators and 1 stack as force sensor.
</p>
<p>
2020-08-03 15:46:35 +02:00
The transfer function from actuator to sensors is identified and shown in Figure <a href="#org521d0e8">8</a>.
2020-08-03 15:37:17 +02:00
</p>
2020-08-03 15:46:35 +02:00
<div id="org521d0e8" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_iff_plant.png" alt="apa300ml_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Transfer function from actuator to force sensor</p>
</div>
<p>
2020-08-03 15:46:35 +02:00
For root locus corresponding to IFF is shown in Figure <a href="#org7ea3704">9</a>.
2020-08-03 15:37:17 +02:00
</p>
2020-08-03 15:46:35 +02:00
<div id="org7ea3704" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_iff_root_locus.png" alt="apa300ml_iff_root_locus.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Root Locus for IFF</p>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org1e28770" class="outline-3">
<h3 id="org1e28770"><span class="section-number-3">2.7</span> DVF</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-2-7">
<p>
2020-08-03 15:46:35 +02:00
Now the dynamics from the stack actuator to the relative motion sensor is identified and shown in Figure <a href="#org84b27a1">10</a>.
2020-08-03 15:37:17 +02:00
</p>
2020-08-03 15:46:35 +02:00
<div id="org84b27a1" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_dvf_plant.png" alt="apa300ml_dvf_plant.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Transfer function from stack actuator to relative motion sensor</p>
</div>
<p>
2020-08-03 15:46:35 +02:00
The root locus for DVF is shown in Figure <a href="#org9f595b0">11</a>.
2020-08-03 15:37:17 +02:00
</p>
2020-08-03 15:46:35 +02:00
<div id="org9f595b0" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/apa300ml_dvf_root_locus.png" alt="apa300ml_dvf_root_locus.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Root Locus for Direct Velocity Feedback</p>
</div>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orge4cfde0" class="outline-2">
<h2 id="orge4cfde0"><span class="section-number-2">3</span> Flexible Joint</h2>
2020-08-03 15:37:17 +02:00
<div class="outline-text-2" id="text-3">
2020-08-03 15:46:35 +02:00
<div id="org329f4b9" class="figure">
<p><img src="figs/flexor_id16_screenshot.png" alt="flexor_id16_screenshot.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Flexor studied</p>
</div>
2020-08-03 15:37:17 +02:00
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgca3d7e7" class="outline-3">
<h3 id="orgca3d7e7"><span class="section-number-3">3.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-3-1">
<p>
We first extract the stiffness and mass matrices.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = extractMatrix('mat_K_6modes_2MDoF.matrix');
M = extractMatrix('mat_M_6modes_2MDoF.matrix');
</pre>
</div>
<p>
Then, we extract the coordinates of the interface nodes.
</p>
<div class="org-src-container">
<pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">save('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgb6376e0" class="outline-3">
<h3 id="orgb6376e0"><span class="section-number-3">3.2</span> Output parameters</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-3-2">
<div class="org-src-container">
<pre class="src src-matlab">load('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-left">Total number of Nodes</td>
<td class="org-right">2</td>
</tr>
<tr>
<td class="org-left">Number of interface Nodes</td>
<td class="org-right">2</td>
</tr>
<tr>
<td class="org-left">Number of Modes</td>
<td class="org-right">6</td>
</tr>
<tr>
<td class="org-left">Size of M and K matrices</td>
<td class="org-right">18</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 7:</span> Coordinates of the interface nodes</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">Node i</th>
<th scope="col" class="org-right">Node Number</th>
<th scope="col" class="org-right">x [m]</th>
<th scope="col" class="org-right">y [m]</th>
<th scope="col" class="org-right">z [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">1.0</td>
<td class="org-right">181278.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
</tr>
<tr>
<td class="org-right">2.0</td>
<td class="org-right">181279.0</td>
<td class="org-right">0.0</td>
<td class="org-right">0.0</td>
<td class="org-right">-0.0</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 8:</span> First 10x10 elements of the Stiffness matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">11200000.0</td>
<td class="org-right">195.0</td>
<td class="org-right">2220.0</td>
<td class="org-right">-0.719</td>
<td class="org-right">-265.0</td>
<td class="org-right">1.59</td>
<td class="org-right">-11200000.0</td>
<td class="org-right">-213.0</td>
<td class="org-right">-2220.0</td>
<td class="org-right">0.147</td>
</tr>
<tr>
<td class="org-right">195.0</td>
<td class="org-right">11400000.0</td>
<td class="org-right">1290.0</td>
<td class="org-right">-148.0</td>
<td class="org-right">-0.188</td>
<td class="org-right">2.41</td>
<td class="org-right">-212.0</td>
<td class="org-right">-11400000.0</td>
<td class="org-right">-1290.0</td>
<td class="org-right">148.0</td>
</tr>
<tr>
<td class="org-right">2220.0</td>
<td class="org-right">1290.0</td>
<td class="org-right">119000000.0</td>
<td class="org-right">1.31</td>
<td class="org-right">1.49</td>
<td class="org-right">1.79</td>
<td class="org-right">-2220.0</td>
<td class="org-right">-1290.0</td>
<td class="org-right">-119000000.0</td>
<td class="org-right">-1.31</td>
</tr>
<tr>
<td class="org-right">-0.719</td>
<td class="org-right">-148.0</td>
<td class="org-right">1.31</td>
<td class="org-right">33.0</td>
<td class="org-right">0.000488</td>
<td class="org-right">-0.000977</td>
<td class="org-right">0.141</td>
<td class="org-right">148.0</td>
<td class="org-right">-1.31</td>
<td class="org-right">-33.0</td>
</tr>
<tr>
<td class="org-right">-265.0</td>
<td class="org-right">-0.188</td>
<td class="org-right">1.49</td>
<td class="org-right">0.000488</td>
<td class="org-right">33.0</td>
<td class="org-right">0.00293</td>
<td class="org-right">266.0</td>
<td class="org-right">0.154</td>
<td class="org-right">-1.49</td>
<td class="org-right">0.00026</td>
</tr>
<tr>
<td class="org-right">1.59</td>
<td class="org-right">2.41</td>
<td class="org-right">1.79</td>
<td class="org-right">-0.000977</td>
<td class="org-right">0.00293</td>
<td class="org-right">236.0</td>
<td class="org-right">-1.32</td>
<td class="org-right">-2.55</td>
<td class="org-right">-1.79</td>
<td class="org-right">0.000379</td>
</tr>
<tr>
<td class="org-right">-11200000.0</td>
<td class="org-right">-212.0</td>
<td class="org-right">-2220.0</td>
<td class="org-right">0.141</td>
<td class="org-right">266.0</td>
<td class="org-right">-1.32</td>
<td class="org-right">11400000.0</td>
<td class="org-right">24600.0</td>
<td class="org-right">1640.0</td>
<td class="org-right">120.0</td>
</tr>
<tr>
<td class="org-right">-213.0</td>
<td class="org-right">-11400000.0</td>
<td class="org-right">-1290.0</td>
<td class="org-right">148.0</td>
<td class="org-right">0.154</td>
<td class="org-right">-2.55</td>
<td class="org-right">24600.0</td>
<td class="org-right">11400000.0</td>
<td class="org-right">1290.0</td>
<td class="org-right">-72.0</td>
</tr>
<tr>
<td class="org-right">-2220.0</td>
<td class="org-right">-1290.0</td>
<td class="org-right">-119000000.0</td>
<td class="org-right">-1.31</td>
<td class="org-right">-1.49</td>
<td class="org-right">-1.79</td>
<td class="org-right">1640.0</td>
<td class="org-right">1290.0</td>
<td class="org-right">119000000.0</td>
<td class="org-right">1.32</td>
</tr>
<tr>
<td class="org-right">0.147</td>
<td class="org-right">148.0</td>
<td class="org-right">-1.31</td>
<td class="org-right">-33.0</td>
<td class="org-right">0.00026</td>
<td class="org-right">0.000379</td>
<td class="org-right">120.0</td>
<td class="org-right">-72.0</td>
<td class="org-right">1.32</td>
<td class="org-right">34.7</td>
</tr>
</tbody>
</table>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<caption class="t-above"><span class="table-number">Table 9:</span> First 10x10 elements of the Mass matrix</caption>
<colgroup>
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<tbody>
<tr>
<td class="org-right">0.02</td>
<td class="org-right">1e-09</td>
<td class="org-right">-4e-08</td>
<td class="org-right">-1e-10</td>
<td class="org-right">0.0002</td>
<td class="org-right">-3e-11</td>
<td class="org-right">0.004</td>
<td class="org-right">5e-08</td>
<td class="org-right">7e-08</td>
<td class="org-right">1e-10</td>
</tr>
<tr>
<td class="org-right">1e-09</td>
<td class="org-right">0.02</td>
<td class="org-right">-3e-07</td>
<td class="org-right">-0.0002</td>
<td class="org-right">-1e-10</td>
<td class="org-right">-2e-09</td>
<td class="org-right">2e-08</td>
<td class="org-right">0.004</td>
<td class="org-right">3e-07</td>
<td class="org-right">1e-05</td>
</tr>
<tr>
<td class="org-right">-4e-08</td>
<td class="org-right">-3e-07</td>
<td class="org-right">0.02</td>
<td class="org-right">7e-10</td>
<td class="org-right">-2e-09</td>
<td class="org-right">1e-09</td>
<td class="org-right">3e-07</td>
<td class="org-right">7e-08</td>
<td class="org-right">0.003</td>
<td class="org-right">1e-09</td>
</tr>
<tr>
<td class="org-right">-1e-10</td>
<td class="org-right">-0.0002</td>
<td class="org-right">7e-10</td>
<td class="org-right">4e-06</td>
<td class="org-right">-1e-12</td>
<td class="org-right">-6e-13</td>
<td class="org-right">2e-10</td>
<td class="org-right">-7e-06</td>
<td class="org-right">-8e-10</td>
<td class="org-right">-1e-09</td>
</tr>
<tr>
<td class="org-right">0.0002</td>
<td class="org-right">-1e-10</td>
<td class="org-right">-2e-09</td>
<td class="org-right">-1e-12</td>
<td class="org-right">3e-06</td>
<td class="org-right">2e-13</td>
<td class="org-right">9e-06</td>
<td class="org-right">4e-11</td>
<td class="org-right">2e-09</td>
<td class="org-right">-3e-13</td>
</tr>
<tr>
<td class="org-right">-3e-11</td>
<td class="org-right">-2e-09</td>
<td class="org-right">1e-09</td>
<td class="org-right">-6e-13</td>
<td class="org-right">2e-13</td>
<td class="org-right">4e-07</td>
<td class="org-right">8e-11</td>
<td class="org-right">9e-10</td>
<td class="org-right">-1e-09</td>
<td class="org-right">2e-12</td>
</tr>
<tr>
<td class="org-right">0.004</td>
<td class="org-right">2e-08</td>
<td class="org-right">3e-07</td>
<td class="org-right">2e-10</td>
<td class="org-right">9e-06</td>
<td class="org-right">8e-11</td>
<td class="org-right">0.02</td>
<td class="org-right">-7e-08</td>
<td class="org-right">-3e-07</td>
<td class="org-right">-2e-10</td>
</tr>
<tr>
<td class="org-right">5e-08</td>
<td class="org-right">0.004</td>
<td class="org-right">7e-08</td>
<td class="org-right">-7e-06</td>
<td class="org-right">4e-11</td>
<td class="org-right">9e-10</td>
<td class="org-right">-7e-08</td>
<td class="org-right">0.01</td>
<td class="org-right">-4e-08</td>
<td class="org-right">0.0002</td>
</tr>
<tr>
<td class="org-right">7e-08</td>
<td class="org-right">3e-07</td>
<td class="org-right">0.003</td>
<td class="org-right">-8e-10</td>
<td class="org-right">2e-09</td>
<td class="org-right">-1e-09</td>
<td class="org-right">-3e-07</td>
<td class="org-right">-4e-08</td>
<td class="org-right">0.02</td>
<td class="org-right">-1e-09</td>
</tr>
<tr>
<td class="org-right">1e-10</td>
<td class="org-right">1e-05</td>
<td class="org-right">1e-09</td>
<td class="org-right">-1e-09</td>
<td class="org-right">-3e-13</td>
<td class="org-right">2e-12</td>
<td class="org-right">-2e-10</td>
<td class="org-right">0.0002</td>
<td class="org-right">-1e-09</td>
<td class="org-right">2e-06</td>
</tr>
</tbody>
</table>
<p>
Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <code>Reduced Order Flexible Solid</code> simscape block.
</p>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org92f65bd" class="outline-3">
<h3 id="org92f65bd"><span class="section-number-3">3.3</span> Flexible Joint Characteristics</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-3-3">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left"><b>Caracteristic</b></th>
<th scope="col" class="org-right"><b>Value</b></th>
<th scope="col" class="org-right"><b>Estimation by Francois</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Axial Stiffness [N/um]</td>
<td class="org-right">119</td>
<td class="org-right">60</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness [Nm/rad]</td>
<td class="org-right">33</td>
<td class="org-right">15</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness [Nm/rad]</td>
<td class="org-right">33</td>
<td class="org-right">15</td>
</tr>
<tr>
<td class="org-left">Torsion Stiffness [Nm/rad]</td>
<td class="org-right">236</td>
<td class="org-right">20</td>
</tr>
</tbody>
</table>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orgd334b90" class="outline-3">
<h3 id="orgd334b90"><span class="section-number-3">3.4</span> Identification</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-3-4">
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<p>
The dynamics is identified from the applied force to the measured relative displacement.
</p>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'flexor_ID16';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/T'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
</pre>
</div>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left"><b>Caracteristic</b></th>
<th scope="col" class="org-right"><b>Value</b></th>
<th scope="col" class="org-right"><b>Identification</b></th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Axial Stiffness Dz [N/um]</td>
<td class="org-right">119</td>
<td class="org-right">119</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness Rx [Nm/rad]</td>
<td class="org-right">33</td>
<td class="org-right">34</td>
</tr>
<tr>
<td class="org-left">Bending Stiffness Ry [Nm/rad]</td>
<td class="org-right">33</td>
<td class="org-right">126</td>
</tr>
<tr>
<td class="org-left">Torsion Stiffness Rz [Nm/rad]</td>
<td class="org-right">236</td>
<td class="org-right">238</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org1351f3f" class="outline-2">
<h2 id="org1351f3f"><span class="section-number-2">4</span> Integral Force Feedback with Amplified Piezo</h2>
2020-08-03 15:37:17 +02:00
<div class="outline-text-2" id="text-4">
2020-08-03 15:46:35 +02:00
<p>
In this section, we try to replicate the results obtained in (<a href="#citeproc_bib_item_2">Souleille et al. 2018</a>).
</p>
2020-08-03 15:37:17 +02:00
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-orga590a65" class="outline-3">
<h3 id="orga590a65"><span class="section-number-3">4.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-4-1">
<p>
We first extract the stiffness and mass matrices.
</p>
<div class="org-src-container">
<pre class="src src-matlab">K = extractMatrix('piezo_amplified_IFF_K.txt');
M = extractMatrix('piezo_amplified_IFF_M.txt');
</pre>
</div>
<p>
Then, we extract the coordinates of the interface nodes.
</p>
<div class="org-src-container">
<pre class="src src-matlab">[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('piezo_amplified_IFF.txt');
</pre>
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org5ddfecc" class="outline-3">
<h3 id="org5ddfecc"><span class="section-number-3">4.2</span> IFF Plant</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-4-2">
<p>
2020-08-03 15:46:35 +02:00
The transfer function from the force actuator to the force sensor is identified and shown in Figure <a href="#orgb98e9a1">13</a>.
2020-08-03 15:37:17 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = tf(0);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_IFF';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Kiff'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/G'], 1, 'openoutput'); io_i = io_i + 1;
Gf = linearize(mdl, io);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Gfm = linearize(mdl, io);
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="orgb98e9a1" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/piezo_amplified_iff_plant.png" alt="piezo_amplified_iff_plant.png" />
</p>
2020-08-03 15:46:35 +02:00
<p><span class="figure-number">Figure 13: </span>IFF Plant</p>
2020-08-03 15:37:17 +02:00
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org76400d1" class="outline-3">
<h3 id="org76400d1"><span class="section-number-3">4.3</span> IFF controller</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-4-3">
<p>
2020-08-03 15:46:35 +02:00
The controller is defined and the loop gain is shown in Figure <a href="#org50ab4b8">14</a>.
2020-08-03 15:37:17 +02:00
</p>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = -1e12/s;
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="org50ab4b8" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/piezo_amplified_iff_loop_gain.png" alt="piezo_amplified_iff_loop_gain.png" />
</p>
2020-08-03 15:46:35 +02:00
<p><span class="figure-number">Figure 14: </span>IFF Loop Gain</p>
2020-08-03 15:37:17 +02:00
</div>
</div>
</div>
2020-08-03 15:46:35 +02:00
<div id="outline-container-org8c42386" class="outline-3">
<h3 id="org8c42386"><span class="section-number-3">4.4</span> Closed Loop System</h3>
2020-08-03 15:37:17 +02:00
<div class="outline-text-3" id="text-4-4">
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = -1e12/s;
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">%% Name of the Simulink File
mdl = 'piezo_amplified_IFF';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/G'], 1, 'output'); io_i = io_i + 1;
Giff = linearize(mdl, io);
Giff.InputName = {'w', 'f', 'F'};
Giff.OutputName = {'x1', 'Fs'};
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = tf(0);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">G = linearize(mdl, io);
G.InputName = {'w', 'f', 'F'};
G.OutputName = {'x1', 'Fs'};
</pre>
</div>
2020-08-03 15:46:35 +02:00
<div id="orgc068c38" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/piezo_amplified_iff_comp.png" alt="piezo_amplified_iff_comp.png" />
</p>
2020-08-03 15:46:35 +02:00
<p><span class="figure-number">Figure 15: </span>OL and CL transfer functions</p>
2020-08-03 15:37:17 +02:00
</div>
2020-08-03 15:46:35 +02:00
<div id="orgb4c1cac" class="figure">
2020-08-03 15:37:17 +02:00
<p><img src="figs/souleille18_results.png" alt="souleille18_results.png" />
</p>
2020-08-03 15:46:35 +02:00
<p><span class="figure-number">Figure 16: </span>Results obtained in <a class='org-ref-reference' href="#souleille18_concep_activ_mount_space_applic">souleille18_concep_activ_mount_space_applic</a></p>
</div>
</div>
2020-08-03 15:37:17 +02:00
</div>
2020-08-03 15:46:35 +02:00
</div>
<p>
</p>
2020-08-03 15:37:17 +02:00
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Fleming, Andrew J., and Kam K. Leang. 2014. <i>Design, Modeling and Control of Nanopositioning Systems</i>. Advances in Industrial Control. Springer International Publishing. <a href="https://doi.org/10.1007/978-3-319-06617-2">https://doi.org/10.1007/978-3-319-06617-2</a>.</div>
2020-08-03 15:46:35 +02:00
<div class="csl-entry"><a name="citeproc_bib_item_2"></a>Souleille, Adrien, Thibault Lampert, V Lafarga, Sylvain Hellegouarch, Alan Rondineau, Gonçalo Rodrigues, and Christophe Collette. 2018. “A Concept of Active Mount for Space Applications.” <i>CEAS Space Journal</i> 10 (2). Springer:15765.</div>
2020-06-14 12:23:45 +02:00
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
2020-08-03 15:46:35 +02:00
<p class="date">Created: 2020-08-03 lun. 15:42</p>
2020-06-14 12:23:45 +02:00
</div>
</body>
</html>