Add complementary filter section

This commit is contained in:
2025-04-03 15:25:11 +02:00
parent eb59823cb3
commit f3bf64da95
81 changed files with 11828 additions and 38 deletions

View File

@@ -0,0 +1,239 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Path for functions, data and scripts
addpath('./src/'); % Path for functions
%% Colors for the figures
colors = colororder;
%% Initialize Frequency Vector
freqs = logspace(-1, 3, 1000);
%% Weighting Function Design
% Parameters
n = 3; w0 = 2*pi*10; G0 = 1e-3; G1 = 1e1; Gc = 2;
% Formulas
W = (((1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (G0/Gc)^(1/n))/((1/G1)^(1/n)*(1/w0)*sqrt((1-(G0/Gc)^(2/n))/(1-(Gc/G1)^(2/n)))*s + (1/Gc)^(1/n)))^n;
% Function generateWF can be used to easily design the weighting filters
% W = generateWF('n', 3, 'w0', 2*pi*10, 'G0', 1e-3, 'Ginf', 10, 'Gc', 2);
%% Magnitude of the weighting function with parameters
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(W, freqs, 'Hz'))), 'k-');
plot([1e-3 1e0], [G0 G0], 'k--', 'LineWidth', 1)
text(1e0, G0, '$\quad G_0$')
plot([1e1 1e3], [G1 G1], 'k--', 'LineWidth', 1)
text(1e1,G1,'$G_{\infty}\quad$','HorizontalAlignment', 'right')
plot([w0/2/pi w0/2/pi], [1 2*Gc], 'k--', 'LineWidth', 1)
text(w0/2/pi,1,'$\omega_c$','VerticalAlignment', 'top', 'HorizontalAlignment', 'center')
plot([w0/2/pi/2 2*w0/2/pi], [Gc Gc], 'k--', 'LineWidth', 1)
text(w0/2/pi/2, Gc, '$G_c \quad$','HorizontalAlignment', 'right')
text(w0/5/pi/2, abs(evalfr(W, j*w0/5)), 'Slope: $n \quad$', 'HorizontalAlignment', 'right')
text(w0/2/pi, abs(evalfr(W, j*w0)), '$\bullet$', 'HorizontalAlignment', 'center')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
hold off;
xlim([freqs(1), freqs(end)]);
ylim([5e-4, 20]);
yticks([1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1]);
%% Synthesis of Complementary Filters using H-infinity synthesis
% Design of the Weighting Functions
W1 = generateWF('n', 3, 'w0', 2*pi*10, 'G0', 1000, 'Ginf', 1/10, 'Gc', 0.45);
W2 = generateWF('n', 2, 'w0', 2*pi*10, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.45);
% Generalized Plant
P = [W1 -W1;
0 W2;
1 0];
% H-Infinity Synthesis
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Define H1 to be the complementary of H2
H1 = 1 - H2;
% The function generateCF can also be used to synthesize the complementary filters.
% [H1, H2] = generateCF(W1, W2);
%% Bode plot of the obtained complementary filters
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude');
ylim([8e-4, 20]);
yticks([1e-3, 1e-2, 1e-1, 1, 1e1]);
yticklabels({'', '$10^{-2}$', '', '$10^0$', ''})
leg = legend('location', 'south', 'FontSize', 8, 'NumColumns', 2);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
yticks([-180:90:180]);
ylim([-180, 200])
yticklabels({'-180', '', '0', '', '180'})
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Design of "Closed-loop" complementary filters
% Design of the Weighting Functions
W1 = generateWF('n', 3, 'w0', 2*pi*10, 'G0', 1000, 'Ginf', 1/10, 'Gc', 0.45);
W2 = generateWF('n', 2, 'w0', 2*pi*10, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.45);
% Generalized plant for "closed-loop" complementary filter synthesis
P = [ W1 0 1;
-W1 W2 -1];
% Standard H-Infinity Synthesis
[L, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Complementary filters
H1 = inv(1 + L);
H2 = 1 - H1;
%% Bode plot of the obtained complementary filters after H-infinity mixed-sensitivity synthesis
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
plot(freqs, abs(squeeze(freqresp(L, freqs, 'Hz'))), 'k--', 'DisplayName', '$|L|$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'XTickLabel',[]); ylabel('Magnitude');
ylim([1e-3, 1e3]);
yticks([1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3]);
yticklabels({'', '$10^{-2}$', '', '$10^0$', '', '$10^2$', ''});
leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))), '-');
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))), '-');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
yticks([-180:90:180]);
ylim([-180, 200])
yticklabels({'-180', '', '0', '', '180'})
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
%% Synthesis of a set of three complementary filters
% Design of the Weighting Functions
W1 = generateWF('n', 2, 'w0', 2*pi*1, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.5);
W2 = 0.22*(1 + s/2/pi/1)^2/(sqrt(1e-4) + s/2/pi/1)^2*(1 + s/2/pi/10)^2/(1 + s/2/pi/1000)^2;
W3 = generateWF('n', 3, 'w0', 2*pi*10, 'G0', 1000, 'Ginf', 1/10, 'Gc', 0.5);
% Generalized plant for the synthesis of 3 complementary filters
P = [W1 -W1 -W1;
0 W2 0 ;
0 0 W3;
1 0 0];
% Standard H-Infinity Synthesis
[H, ~, gamma, ~] = hinfsyn(P, 1, 2,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
% Synthesized H2 and H3 filters
H2 = tf(H(1));
H3 = tf(H(2));
% H1 is defined as the complementary filter of H2 and H3
H1 = 1 - H2 - H3;
%% Bode plot of the inverse weighting functions and of the three complementary filters obtained using the H-infinity synthesis
figure;
tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$');
set(gca,'ColorOrderIndex',2)
plot(freqs, 1./abs(squeeze(freqresp(W2, freqs, 'Hz'))), '--', 'DisplayName', '$|W_2|^{-1}$');
set(gca,'ColorOrderIndex',3)
plot(freqs, 1./abs(squeeze(freqresp(W3, freqs, 'Hz'))), '--', 'DisplayName', '$|W_3|^{-1}$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(H1, freqs, 'Hz'))), '-', 'DisplayName', '$H_1$');
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(H2, freqs, 'Hz'))), '-', 'DisplayName', '$H_2$');
set(gca,'ColorOrderIndex',3)
plot(freqs, abs(squeeze(freqresp(H3, freqs, 'Hz'))), '-', 'DisplayName', '$H_3$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude');
set(gca, 'XTickLabel',[]);
ylim([1e-4, 20]);
leg = legend('location', 'northeast', 'FontSize', 8);
leg.ItemTokenSize(1) = 18;
% Phase
ax2 = nexttile;
hold on;
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*phase(squeeze(freqresp(H1, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*phase(squeeze(freqresp(H2, freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3)
plot(freqs, 180/pi*phase(squeeze(freqresp(H3, freqs, 'Hz'))));
hold off;
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
set(gca, 'XScale', 'log');
yticks([-180:90:180]); ylim([-220, 220]);
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);

34
matlab/src/generateCF.m Normal file
View File

@@ -0,0 +1,34 @@
function [H1, H2] = generateCF(W1, W2, args)
% generateCF -
%
% Syntax: [H1, H2] = generateCF(W1, W2, args)
%
% Inputs:
% - W1 - Weighting Function for H1
% - W2 - Weighting Function for H2
% - args:
% - method - H-Infinity solver ('lmi' or 'ric')
% - display - Display synthesis results ('on' or 'off')
%
% Outputs:
% - H1 - Generated H1 Filter
% - H2 - Generated H2 Filter
%% Argument validation
arguments
W1
W2
args.method char {mustBeMember(args.method,{'lmi', 'ric'})} = 'ric'
args.display char {mustBeMember(args.display,{'on', 'off'})} = 'on'
end
%% The generalized plant is defined
P = [W1 -W1;
0 W2;
1 0];
%% The standard H-infinity synthesis is performed
[H2, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', args.method, 'DISPLAY', args.display);
%% H1 is defined as the complementary of H2
H1 = 1 - H2;

43
matlab/src/generateWF.m Normal file
View File

@@ -0,0 +1,43 @@
function [W] = generateWF(args)
% generateWF -
%
% Syntax: [W] = generateWeight(args)
%
% Inputs:
% - n - Weight Order (integer)
% - G0 - Low frequency Gain
% - G1 - High frequency Gain
% - Gc - Gain of the weight at frequency w0
% - w0 - Frequency at which |W(j w0)| = Gc [rad/s]
%
% Outputs:
% - W - Generated Weighting Function
%% Argument validation
arguments
args.n (1,1) double {mustBeInteger, mustBePositive} = 1
args.G0 (1,1) double {mustBeNumeric, mustBePositive} = 0.1
args.Ginf (1,1) double {mustBeNumeric, mustBePositive} = 10
args.Gc (1,1) double {mustBeNumeric, mustBePositive} = 1
args.w0 (1,1) double {mustBeNumeric, mustBePositive} = 1
end
% Verification of correct relation between G0, Gc and Ginf
mustBeBetween(args.G0, args.Gc, args.Ginf);
%% Initialize the Laplace variable
s = zpk('s');
%% Create the weighting function according to formula
W = (((1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.Ginf)^(2/args.n)))*s + ...
(args.G0/args.Gc)^(1/args.n))/...
((1/args.Ginf)^(1/args.n)*(1/args.w0)*sqrt((1-(args.G0/args.Gc)^(2/args.n))/(1-(args.Gc/args.Ginf)^(2/args.n)))*s + ...
(1/args.Gc)^(1/args.n)))^args.n;
%% Custom validation function
function mustBeBetween(a,b,c)
if ~((a > b && b > c) || (c > b && b > a))
eid = 'createWeight:inputError';
msg = 'Gc should be between G0 and Ginf.';
throwAsCaller(MException(eid,msg))
end