Add plant with accelerometers for SVD decoupling
@ -3,7 +3,7 @@
|
||||
1 0 obj
|
||||
<<
|
||||
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
|
||||
/CreationDate (D:20250405104040+02'00')
|
||||
/CreationDate (D:20250405145927+02'00')
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
@ -5518,7 +5518,7 @@ trailer
|
||||
<<
|
||||
/Root 638 0 R
|
||||
/Info 1 0 R
|
||||
/ID [<F68DC9C1F2F41C526EEB9DB995968FB3> <F68DC9C1F2F41C526EEB9DB995968FB3>]
|
||||
/ID [<2D7A8CB2740C2EB4858ED371B800BF81> <2D7A8CB2740C2EB4858ED371B800BF81>]
|
||||
/Size 639
|
||||
>>
|
||||
startxref
|
||||
|
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 11 KiB |
@ -6,6 +6,9 @@
|
||||
<path d="M 7.296875 -2.09375 C 7.34375 -2.234375 7.359375 -2.25 7.421875 -2.25 C 7.546875 -2.28125 7.6875 -2.28125 7.796875 -2.28125 C 8.046875 -2.28125 8.203125 -2.28125 8.203125 -2.5625 C 8.203125 -2.609375 8.171875 -2.75 8 -2.75 C 7.78125 -2.75 7.546875 -2.71875 7.328125 -2.71875 C 7.109375 -2.71875 6.875 -2.71875 6.65625 -2.71875 C 6.265625 -2.71875 5.28125 -2.75 4.890625 -2.75 C 4.765625 -2.75 4.578125 -2.75 4.578125 -2.453125 C 4.578125 -2.28125 4.765625 -2.28125 4.921875 -2.28125 L 5.28125 -2.28125 C 5.390625 -2.28125 5.9375 -2.28125 5.9375 -2.21875 C 5.9375 -2.203125 5.9375 -2.1875 5.875 -1.953125 C 5.859375 -1.875 5.703125 -1.25 5.6875 -1.234375 C 5.53125 -0.5625 4.734375 -0.296875 4.109375 -0.296875 C 3.53125 -0.296875 2.9375 -0.421875 2.46875 -0.796875 C 1.9375 -1.234375 1.9375 -1.921875 1.9375 -2.140625 C 1.9375 -2.59375 2.140625 -4.375 3.109375 -5.453125 C 3.6875 -6.109375 4.640625 -6.515625 5.65625 -6.515625 C 6.90625 -6.515625 7.375 -5.5625 7.375 -4.734375 C 7.375 -4.625 7.34375 -4.484375 7.34375 -4.375 C 7.34375 -4.234375 7.46875 -4.234375 7.609375 -4.234375 C 7.828125 -4.234375 7.84375 -4.25 7.890625 -4.453125 L 8.453125 -6.6875 C 8.46875 -6.734375 8.484375 -6.78125 8.484375 -6.84375 C 8.484375 -6.984375 8.34375 -6.984375 8.234375 -6.984375 L 7.3125 -6.265625 C 7.109375 -6.46875 6.59375 -6.984375 5.5 -6.984375 C 2.3125 -6.984375 0.546875 -4.546875 0.546875 -2.515625 C 0.546875 -0.703125 1.953125 0.171875 3.796875 0.171875 C 4.84375 0.171875 5.53125 -0.171875 5.859375 -0.515625 C 6.109375 -0.265625 6.609375 0 6.671875 0 C 6.78125 0 6.796875 -0.078125 6.84375 -0.234375 Z M 7.296875 -2.09375 "/>
|
||||
</g>
|
||||
<g id="glyph-0-1">
|
||||
<path d="M 5.984375 -6.15625 C 6.015625 -6.3125 6.03125 -6.3125 6.109375 -6.328125 C 6.21875 -6.34375 6.359375 -6.34375 6.484375 -6.34375 C 6.734375 -6.34375 6.890625 -6.34375 6.890625 -6.640625 C 6.890625 -6.65625 6.890625 -6.8125 6.6875 -6.8125 C 6.484375 -6.8125 6.265625 -6.796875 6.0625 -6.796875 C 5.84375 -6.796875 5.609375 -6.78125 5.375 -6.78125 C 4.984375 -6.78125 4.03125 -6.8125 3.640625 -6.8125 C 3.53125 -6.8125 3.34375 -6.8125 3.34375 -6.53125 C 3.34375 -6.34375 3.515625 -6.34375 3.6875 -6.34375 L 4.03125 -6.34375 C 4.421875 -6.34375 4.4375 -6.34375 4.6875 -6.3125 L 3.484375 -1.5 C 3.234375 -0.484375 2.609375 -0.1875 2.140625 -0.1875 C 2.0625 -0.1875 1.625 -0.203125 1.328125 -0.421875 C 1.875 -0.5625 2.046875 -1.03125 2.046875 -1.296875 C 2.046875 -1.625 1.78125 -1.859375 1.4375 -1.859375 C 1.046875 -1.859375 0.5625 -1.546875 0.5625 -0.921875 C 0.5625 -0.234375 1.25 0.171875 2.203125 0.171875 C 3.3125 0.171875 4.515625 -0.28125 4.796875 -1.453125 Z M 5.984375 -6.15625 "/>
|
||||
</g>
|
||||
<g id="glyph-0-2">
|
||||
<path d="M 3.46875 -3.453125 L 5.3125 -3.453125 C 5.515625 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.78125 6 -4 6 -4.03125 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.9375 C 0.703125 -3.625 0.3125 -3.109375 0.3125 -3.015625 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.703125 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.90625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.90625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
|
||||
</g>
|
||||
<g id="glyph-1-0">
|
||||
@ -27,18 +30,15 @@
|
||||
<path d="M 5.3125 -3.28125 L 5.5 -4.609375 C 5.5 -4.703125 5.40625 -4.703125 5.28125 -4.703125 L 1.015625 -4.703125 C 0.828125 -4.703125 0.828125 -4.703125 0.765625 -4.546875 L 0.328125 -3.328125 C 0.328125 -3.296875 0.296875 -3.234375 0.296875 -3.203125 C 0.296875 -3.171875 0.3125 -3.09375 0.421875 -3.09375 C 0.5 -3.09375 0.515625 -3.140625 0.5625 -3.265625 C 0.96875 -4.375 1.203125 -4.453125 2.25 -4.453125 L 2.546875 -4.453125 C 2.75 -4.453125 2.765625 -4.4375 2.765625 -4.375 C 2.765625 -4.375 2.765625 -4.34375 2.734375 -4.234375 L 1.8125 -0.578125 C 1.75 -0.3125 1.734375 -0.25 1 -0.25 C 0.75 -0.25 0.6875 -0.25 0.6875 -0.09375 C 0.6875 -0.078125 0.703125 0 0.8125 0 C 1 0 1.203125 -0.015625 1.40625 -0.015625 L 2 -0.03125 L 2.625 -0.015625 C 2.8125 -0.015625 3.03125 0 3.21875 0 C 3.265625 0 3.375 0 3.375 -0.15625 C 3.375 -0.25 3.296875 -0.25 3.09375 -0.25 C 2.953125 -0.25 2.8125 -0.25 2.6875 -0.265625 C 2.453125 -0.28125 2.4375 -0.3125 2.4375 -0.390625 C 2.4375 -0.4375 2.4375 -0.453125 2.46875 -0.5625 L 3.375 -4.203125 C 3.421875 -4.40625 3.4375 -4.421875 3.59375 -4.4375 C 3.625 -4.453125 3.875 -4.453125 4.015625 -4.453125 C 4.4375 -4.453125 4.609375 -4.453125 4.796875 -4.390625 C 5.109375 -4.296875 5.125 -4.09375 5.125 -3.84375 C 5.125 -3.734375 5.125 -3.640625 5.0625 -3.28125 L 5.0625 -3.203125 C 5.0625 -3.140625 5.109375 -3.09375 5.171875 -3.09375 C 5.28125 -3.09375 5.296875 -3.15625 5.3125 -3.28125 Z M 5.3125 -3.28125 "/>
|
||||
</g>
|
||||
<g id="glyph-3-0">
|
||||
<path d="M 6.296875 -6.671875 C 6.296875 -6.75 6.234375 -6.78125 6.15625 -6.78125 C 5.90625 -6.78125 5.296875 -6.75 5.046875 -6.75 L 3.59375 -6.78125 C 3.5 -6.78125 3.375 -6.78125 3.375 -6.59375 C 3.375 -6.484375 3.453125 -6.484375 3.71875 -6.484375 C 3.9375 -6.484375 4.046875 -6.484375 4.296875 -6.453125 C 4.53125 -6.421875 4.59375 -6.40625 4.59375 -6.265625 C 4.59375 -6.203125 4.578125 -6.125 4.5625 -6.046875 L 3.421875 -1.484375 C 3.1875 -0.53125 2.5 0 1.984375 0 C 1.734375 0 1.203125 -0.09375 1.046875 -0.609375 C 1.078125 -0.609375 1.15625 -0.609375 1.15625 -0.609375 C 1.546875 -0.609375 1.8125 -0.9375 1.8125 -1.25 C 1.8125 -1.5625 1.546875 -1.65625 1.375 -1.65625 C 1.1875 -1.65625 0.703125 -1.546875 0.703125 -0.859375 C 0.703125 -0.25 1.234375 0.21875 2.015625 0.21875 C 2.9375 0.21875 3.96875 -0.4375 4.21875 -1.421875 L 5.375 -6.0625 C 5.453125 -6.390625 5.46875 -6.484375 6.015625 -6.484375 C 6.1875 -6.484375 6.296875 -6.484375 6.296875 -6.671875 Z M 6.296875 -6.671875 "/>
|
||||
</g>
|
||||
<g id="glyph-4-0">
|
||||
<path d="M 3.28125 0 L 3.28125 -0.25 L 3.03125 -0.25 C 2.328125 -0.25 2.328125 -0.34375 2.328125 -0.5625 L 2.328125 -4.421875 C 2.328125 -4.609375 2.3125 -4.609375 2.125 -4.609375 C 1.671875 -4.171875 1.046875 -4.171875 0.765625 -4.171875 L 0.765625 -3.921875 C 0.921875 -3.921875 1.390625 -3.921875 1.765625 -4.109375 L 1.765625 -0.5625 C 1.765625 -0.34375 1.765625 -0.25 1.078125 -0.25 L 0.8125 -0.25 L 0.8125 0 L 2.046875 -0.03125 Z M 3.28125 0 "/>
|
||||
</g>
|
||||
<g id="glyph-5-0">
|
||||
<g id="glyph-4-0">
|
||||
<path d="M 9.234375 -6.40625 C 9.34375 -6.828125 8.625 -6.828125 8.046875 -6.828125 L 4.21875 -6.828125 L 3.5625 -6.8125 C 3.09375 -6.78125 2.625 -6.640625 2.203125 -6.34375 C 2 -6.1875 1.8125 -6 1.75 -5.78125 C 1.75 -5.671875 1.8125 -5.625 1.921875 -5.625 C 2.078125 -5.625 2.3125 -5.703125 2.53125 -5.828125 C 2.59375 -5.859375 2.65625 -5.90625 2.71875 -5.953125 C 2.890625 -5.96875 3.09375 -5.96875 3.28125 -5.96875 L 4.34375 -5.96875 L 4.171875 -5.203125 C 4 -4.484375 3.78125 -3.78125 3.515625 -3.078125 C 3.1875 -2.265625 2.796875 -1.453125 2.359375 -0.65625 C 2.34375 -0.625 2.328125 -0.59375 2.296875 -0.5625 C 1.921875 -0.578125 1.625 -0.765625 1.4375 -1.046875 C 1.40625 -1.09375 1.34375 -1.109375 1.265625 -1.109375 C 1.109375 -1.109375 0.890625 -1.03125 0.671875 -0.90625 C 0.375 -0.734375 0.15625 -0.5 0.15625 -0.375 C 0.15625 -0.375 0.15625 -0.328125 0.171875 -0.3125 C 0.453125 0.109375 0.9375 0.328125 1.515625 0.3125 C 1.59375 0.3125 1.65625 0.296875 1.734375 0.28125 C 2.296875 0.1875 2.84375 -0.140625 3.265625 -0.59375 C 3.390625 -0.734375 3.5 -0.890625 3.59375 -1.046875 C 3.921875 -1.65625 4.21875 -2.28125 4.484375 -2.890625 L 6.453125 -2.890625 C 6.453125 -2.796875 6.515625 -2.75 6.625 -2.75 C 6.78125 -2.75 7 -2.828125 7.21875 -2.953125 C 7.5 -3.109375 7.703125 -3.3125 7.734375 -3.453125 L 7.765625 -3.59375 C 7.78125 -3.71875 7.71875 -3.75 7.609375 -3.75 L 4.84375 -3.75 C 5.09375 -4.40625 5.296875 -5.078125 5.46875 -5.75 L 5.515625 -5.96875 L 7.09375 -5.96875 C 7.46875 -5.96875 7.984375 -5.96875 7.953125 -5.859375 C 7.953125 -5.75 8.015625 -5.703125 8.125 -5.703125 C 8.28125 -5.703125 8.5 -5.78125 8.71875 -5.90625 C 9 -6.0625 9.203125 -6.265625 9.234375 -6.40625 Z M 9.234375 -6.40625 "/>
|
||||
</g>
|
||||
<g id="glyph-5-1">
|
||||
<g id="glyph-4-1">
|
||||
<path d="M 7.46875 -1.546875 C 7.46875 -1.65625 7.328125 -1.65625 7.296875 -1.65625 C 6.984375 -1.65625 6.125 -1.265625 6.015625 -0.75 C 5.53125 -0.75 5.171875 -0.8125 4.375 -0.953125 C 4.015625 -1.03125 3.234375 -1.171875 2.65625 -1.171875 C 2.578125 -1.171875 2.46875 -1.171875 2.390625 -1.15625 C 2.71875 -1.71875 2.859375 -2.1875 3.015625 -2.84375 C 3.21875 -3.625 3.625 -5.03125 4.375 -5.875 C 4.5 -6.015625 4.546875 -6.0625 4.796875 -6.0625 C 5.25 -6.0625 5.4375 -5.703125 5.4375 -5.375 C 5.4375 -5.265625 5.40625 -5.15625 5.40625 -5.125 C 5.40625 -5.015625 5.53125 -4.984375 5.578125 -4.984375 C 5.71875 -4.984375 6.015625 -5.0625 6.40625 -5.328125 C 6.796875 -5.59375 6.84375 -5.78125 6.84375 -6.0625 C 6.84375 -6.5625 6.546875 -6.984375 5.890625 -6.984375 C 5.25 -6.984375 4.359375 -6.671875 3.53125 -5.96875 C 2.390625 -4.953125 1.890625 -3.3125 1.609375 -2.1875 C 1.453125 -1.59375 1.25 -0.78125 0.828125 -0.453125 C 0.71875 -0.375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.15625 0.5 0.171875 0.5625 0.171875 C 0.640625 0.171875 0.9375 0.15625 1.5 -0.25 C 1.875 -0.25 2.203125 -0.234375 3.109375 -0.0625 C 3.5625 0.03125 4.28125 0.171875 4.84375 0.171875 C 6.1875 0.171875 7.46875 -1 7.46875 -1.546875 Z M 7.46875 -1.546875 "/>
|
||||
</g>
|
||||
<g id="glyph-5-2">
|
||||
<g id="glyph-4-2">
|
||||
<path d="M 7.734375 -1.0625 C 7.734375 -1.171875 7.625 -1.1875 7.546875 -1.1875 C 7.390625 -1.1875 7.0625 -1.078125 6.78125 -0.859375 C 6.375 -0.859375 6.0625 -0.859375 5.90625 -2.09375 L 5.734375 -3.625 C 8.359375 -5.0625 9.015625 -5.71875 9.015625 -6.234375 C 9.015625 -6.640625 8.640625 -6.8125 8.34375 -6.8125 C 7.90625 -6.8125 7.21875 -6.328125 7.21875 -6.078125 C 7.21875 -6.03125 7.234375 -5.96875 7.390625 -5.953125 C 7.703125 -5.921875 7.71875 -5.671875 7.71875 -5.609375 C 7.71875 -5.5 7.6875 -5.453125 7.453125 -5.265625 C 7.03125 -4.953125 6.328125 -4.5625 5.671875 -4.1875 C 5.53125 -5.109375 5.53125 -5.578125 5.421875 -6.03125 C 5.1875 -6.8125 4.671875 -6.8125 4.359375 -6.8125 C 3.015625 -6.8125 2.421875 -6 2.421875 -5.75 C 2.421875 -5.640625 2.53125 -5.625 2.59375 -5.625 C 2.59375 -5.625 2.9375 -5.625 3.375 -5.953125 C 3.6875 -5.953125 4.0625 -5.953125 4.203125 -4.984375 L 4.375 -3.484375 C 3.703125 -3.125 2.796875 -2.625 2.0625 -2.140625 C 1.609375 -1.859375 0.5625 -1.1875 0.5625 -0.578125 C 0.5625 -0.171875 0.90625 0 1.21875 0 C 1.65625 0 2.34375 -0.484375 2.34375 -0.734375 C 2.34375 -0.84375 2.234375 -0.859375 2.15625 -0.859375 C 1.984375 -0.890625 1.84375 -1.03125 1.84375 -1.203125 C 1.84375 -1.328125 1.890625 -1.375 2.15625 -1.5625 C 2.640625 -1.921875 3.375 -2.328125 4.4375 -2.921875 C 4.65625 -1.125 4.671875 -1 4.703125 -0.890625 C 4.921875 0 5.453125 0 5.78125 0 C 7.15625 0 7.734375 -0.828125 7.734375 -1.0625 Z M 7.734375 -1.0625 "/>
|
||||
</g>
|
||||
</g>
|
||||
@ -79,48 +79,48 @@
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.028043 -14.173235 L -35.014055 -14.173235 L -35.014055 14.17502 L -69.028043 14.17502 Z M -69.028043 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="47.858915" y="38.99759"/>
|
||||
<use xlink:href="#glyph-0-1" x="47.477084" y="38.99759"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-3" x="54.321127" y="34.748601"/>
|
||||
<use xlink:href="#glyph-1-3" x="54.746824" y="34.748601"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-1" x="60.529025" y="34.748601"/>
|
||||
<use xlink:href="#glyph-2-1" x="60.954722" y="34.748601"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="53.366052" y="42.380233"/>
|
||||
<use xlink:href="#glyph-1-0" x="53.746886" y="42.380233"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="57.435357" y="42.380233"/>
|
||||
<use xlink:href="#glyph-2-0" x="57.816191" y="42.380233"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-1" x="63.691922" y="42.380233"/>
|
||||
<use xlink:href="#glyph-1-1" x="64.072756" y="42.380233"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.01221 -14.173235 L 69.030116 -14.173235 L 69.030116 14.17502 L 35.01221 14.17502 Z M 35.01221 -14.173235 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="151.581319" y="38.862005"/>
|
||||
<use xlink:href="#glyph-0-1" x="151.199488" y="38.862005"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-3" x="158.043532" y="34.614013"/>
|
||||
<use xlink:href="#glyph-1-3" x="158.469228" y="34.614013"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="164.251429" y="34.614013"/>
|
||||
<use xlink:href="#glyph-3-0" x="164.677126" y="34.614013"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="157.088456" y="42.244648"/>
|
||||
<use xlink:href="#glyph-1-0" x="157.46929" y="42.244648"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="161.157761" y="42.244648"/>
|
||||
<use xlink:href="#glyph-2-0" x="161.538595" y="42.244648"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-1" x="167.414326" y="42.244648"/>
|
||||
<use xlink:href="#glyph-1-1" x="167.79516" y="42.244648"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip-1)">
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -74.160899 -0.00106637 L -109.213214 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054842 -0.00106637 L 1.607673 1.683764 L 3.088756 -0.00106637 L 1.607673 -1.681979 Z M 6.054842 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 33.155048, 37.057531)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-0" x="4.848611" y="29.719001"/>
|
||||
<use xlink:href="#glyph-4-0" x="4.848611" y="29.719001"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="13.944759" y="31.512509"/>
|
||||
@ -134,12 +134,12 @@
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.512524 -0.00106637 L -22.138814 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052379 -0.00106637 L 1.609128 1.683764 L 3.086294 -0.00106637 L 1.609128 -1.681979 Z M 6.052379 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 85.016878, 37.057531)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-1" x="82.147922" y="33.251186"/>
|
||||
<use xlink:href="#glyph-0-2" x="82.147922" y="33.251186"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.505644 -0.00106637 L 29.879354 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053845 -0.00106637 L 1.610594 1.683764 L 3.087759 -0.00106637 L 1.610594 -1.681979 Z M 6.053845 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 136.878698, 37.057531)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-1" x="132.692157" y="33.251186"/>
|
||||
<use xlink:href="#glyph-4-1" x="132.692157" y="33.251186"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.527729 -0.00106637 L 104.580044 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 109.918888, 37.057531)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 217.382812 37.058594 L 212.953125 35.378906 L 214.425781 37.058594 L 212.953125 38.734375 Z M 217.382812 37.058594 "/>
|
||||
@ -147,7 +147,7 @@
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052896 -0.00106637 L 1.609645 1.683764 L 3.086811 -0.00106637 L 1.609645 -1.681979 Z M 6.052896 -0.00106637 " transform="matrix(0.996947, 0, 0, -0.996947, 211.348393, 37.057531)"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-2" x="190.526071" y="29.719998"/>
|
||||
<use xlink:href="#glyph-4-2" x="190.526071" y="29.719998"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="200.098759" y="31.512509"/>
|
||||
|
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 9.1 KiB After Width: | Height: | Size: 16 KiB |
@ -1,114 +1,192 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="197.741" height="54.778" viewBox="0 0 197.741 54.778">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="335.796" height="54.778" viewBox="0 0 335.796 54.778">
|
||||
<defs>
|
||||
<g>
|
||||
<g id="glyph-0-0">
|
||||
<path d="M 7.296875 -2.078125 C 7.328125 -2.234375 7.34375 -2.25 7.40625 -2.25 C 7.53125 -2.265625 7.671875 -2.265625 7.78125 -2.265625 C 8.03125 -2.265625 8.203125 -2.265625 8.203125 -2.5625 C 8.203125 -2.609375 8.171875 -2.734375 7.984375 -2.734375 C 7.765625 -2.734375 7.546875 -2.71875 7.3125 -2.71875 C 7.09375 -2.71875 6.859375 -2.703125 6.640625 -2.703125 C 6.25 -2.703125 5.28125 -2.734375 4.875 -2.734375 C 4.765625 -2.734375 4.578125 -2.734375 4.578125 -2.453125 C 4.578125 -2.265625 4.75 -2.265625 4.90625 -2.265625 L 5.28125 -2.265625 C 5.390625 -2.265625 5.9375 -2.265625 5.9375 -2.21875 C 5.9375 -2.203125 5.9375 -2.1875 5.859375 -1.9375 C 5.859375 -1.875 5.6875 -1.234375 5.6875 -1.234375 C 5.515625 -0.5625 4.71875 -0.296875 4.09375 -0.296875 C 3.515625 -0.296875 2.921875 -0.421875 2.453125 -0.796875 C 1.9375 -1.234375 1.9375 -1.921875 1.9375 -2.140625 C 1.9375 -2.59375 2.140625 -4.359375 3.109375 -5.453125 C 3.6875 -6.09375 4.640625 -6.515625 5.640625 -6.515625 C 6.890625 -6.515625 7.359375 -5.546875 7.359375 -4.734375 C 7.359375 -4.625 7.328125 -4.46875 7.328125 -4.375 C 7.328125 -4.234375 7.46875 -4.234375 7.59375 -4.234375 C 7.8125 -4.234375 7.828125 -4.234375 7.875 -4.4375 L 8.4375 -6.671875 C 8.453125 -6.734375 8.46875 -6.78125 8.46875 -6.84375 C 8.46875 -6.96875 8.328125 -6.96875 8.21875 -6.96875 L 7.296875 -6.265625 C 7.109375 -6.453125 6.59375 -6.96875 5.484375 -6.96875 C 2.3125 -6.96875 0.546875 -4.546875 0.546875 -2.515625 C 0.546875 -0.6875 1.9375 0.171875 3.796875 0.171875 C 4.828125 0.171875 5.53125 -0.171875 5.84375 -0.515625 C 6.09375 -0.265625 6.59375 0 6.671875 0 C 6.765625 0 6.78125 -0.078125 6.828125 -0.234375 Z M 7.296875 -2.078125 "/>
|
||||
</g>
|
||||
<g id="glyph-0-1">
|
||||
<path d="M 3.46875 -3.453125 L 5.296875 -3.453125 C 5.5 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.765625 6 -4 6 -4.015625 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.921875 C 0.6875 -3.609375 0.3125 -3.109375 0.3125 -3 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.6875 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.890625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.890625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
|
||||
<path d="M 5.96875 -6.15625 C 6.015625 -6.296875 6.015625 -6.3125 6.09375 -6.3125 C 6.21875 -6.34375 6.34375 -6.34375 6.46875 -6.34375 C 6.734375 -6.34375 6.890625 -6.34375 6.890625 -6.625 C 6.890625 -6.640625 6.875 -6.8125 6.671875 -6.8125 C 6.484375 -6.8125 6.265625 -6.78125 6.046875 -6.78125 C 5.828125 -6.78125 5.59375 -6.78125 5.375 -6.78125 C 4.984375 -6.78125 4.03125 -6.8125 3.640625 -6.8125 C 3.515625 -6.8125 3.34375 -6.8125 3.34375 -6.515625 C 3.34375 -6.34375 3.5 -6.34375 3.6875 -6.34375 L 4.03125 -6.34375 C 4.421875 -6.34375 4.4375 -6.34375 4.671875 -6.3125 L 3.46875 -1.5 C 3.21875 -0.484375 2.59375 -0.1875 2.140625 -0.1875 C 2.046875 -0.1875 1.625 -0.203125 1.328125 -0.421875 C 1.859375 -0.5625 2.046875 -1.015625 2.046875 -1.296875 C 2.046875 -1.625 1.78125 -1.859375 1.4375 -1.859375 C 1.046875 -1.859375 0.5625 -1.53125 0.5625 -0.90625 C 0.5625 -0.234375 1.234375 0.171875 2.1875 0.171875 C 3.296875 0.171875 4.5 -0.28125 4.796875 -1.453125 Z M 5.96875 -6.15625 "/>
|
||||
</g>
|
||||
<g id="glyph-0-2">
|
||||
<path d="M 5.71875 -3.734375 C 5.78125 -3.921875 5.78125 -3.9375 5.78125 -3.96875 C 5.78125 -4.1875 5.609375 -4.40625 5.3125 -4.40625 C 4.796875 -4.40625 4.671875 -3.9375 4.609375 -3.671875 L 4.34375 -2.640625 C 4.234375 -2.15625 4.03125 -1.40625 3.921875 -0.984375 C 3.875 -0.78125 3.578125 -0.53125 3.546875 -0.515625 C 3.4375 -0.453125 3.1875 -0.28125 2.875 -0.28125 C 2.28125 -0.28125 2.265625 -0.78125 2.265625 -1 C 2.265625 -1.609375 2.578125 -2.375 2.859375 -3.09375 C 2.953125 -3.359375 2.984375 -3.421875 2.984375 -3.59375 C 2.984375 -4.171875 2.40625 -4.484375 1.859375 -4.484375 C 0.8125 -4.484375 0.3125 -3.140625 0.3125 -2.9375 C 0.3125 -2.796875 0.46875 -2.796875 0.5625 -2.796875 C 0.671875 -2.796875 0.75 -2.796875 0.78125 -2.921875 C 1.109375 -4.03125 1.65625 -4.125 1.8125 -4.125 C 1.875 -4.125 1.96875 -4.125 1.96875 -3.921875 C 1.96875 -3.6875 1.859375 -3.4375 1.8125 -3.28125 C 1.421875 -2.28125 1.203125 -1.71875 1.203125 -1.203125 C 1.203125 -0.078125 2.203125 0.078125 2.78125 0.078125 C 3.03125 0.078125 3.375 0.046875 3.734375 -0.21875 C 3.46875 1 2.71875 1.640625 2.03125 1.640625 C 1.90625 1.640625 1.625 1.625 1.421875 1.515625 C 1.75 1.375 1.90625 1.109375 1.90625 0.84375 C 1.90625 0.484375 1.625 0.390625 1.421875 0.390625 C 1.046875 0.390625 0.703125 0.703125 0.703125 1.140625 C 0.703125 1.640625 1.234375 2 2.03125 2 C 3.171875 2 4.484375 1.234375 4.796875 0.015625 Z M 5.71875 -3.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-0-3">
|
||||
<path d="M 5.3125 -3.984375 C 4.953125 -3.875 4.78125 -3.546875 4.78125 -3.296875 C 4.78125 -3.078125 4.953125 -2.84375 5.28125 -2.84375 C 5.625 -2.84375 6 -3.125 6 -3.609375 C 6 -4.140625 5.46875 -4.484375 4.859375 -4.484375 C 4.296875 -4.484375 3.921875 -4.0625 3.796875 -3.875 C 3.546875 -4.296875 3 -4.484375 2.4375 -4.484375 C 1.1875 -4.484375 0.5 -3.265625 0.5 -2.9375 C 0.5 -2.796875 0.65625 -2.796875 0.75 -2.796875 C 0.859375 -2.796875 0.9375 -2.796875 0.96875 -2.921875 C 1.265625 -3.828125 1.96875 -4.125 2.375 -4.125 C 2.765625 -4.125 2.9375 -3.953125 2.9375 -3.625 C 2.9375 -3.4375 2.796875 -2.890625 2.703125 -2.546875 L 2.375 -1.1875 C 2.21875 -0.578125 1.859375 -0.28125 1.53125 -0.28125 C 1.484375 -0.28125 1.25 -0.28125 1.046875 -0.421875 C 1.40625 -0.53125 1.59375 -0.859375 1.59375 -1.109375 C 1.59375 -1.328125 1.421875 -1.5625 1.09375 -1.5625 C 0.75 -1.5625 0.375 -1.28125 0.375 -0.796875 C 0.375 -0.265625 0.90625 0.078125 1.515625 0.078125 C 2.078125 0.078125 2.4375 -0.34375 2.5625 -0.53125 C 2.8125 -0.109375 3.375 0.078125 3.9375 0.078125 C 5.1875 0.078125 5.859375 -1.140625 5.859375 -1.46875 C 5.859375 -1.609375 5.71875 -1.609375 5.625 -1.609375 C 5.5 -1.609375 5.4375 -1.609375 5.390625 -1.484375 C 5.109375 -0.578125 4.390625 -0.28125 3.984375 -0.28125 C 3.609375 -0.28125 3.4375 -0.453125 3.4375 -0.78125 C 3.4375 -0.984375 3.5625 -1.515625 3.65625 -1.875 C 3.71875 -2.140625 3.953125 -3.0625 4 -3.21875 C 4.140625 -3.8125 4.5 -4.125 4.84375 -4.125 C 4.890625 -4.125 5.125 -4.125 5.3125 -3.984375 Z M 5.3125 -3.984375 "/>
|
||||
<path d="M 3.46875 -3.453125 L 5.296875 -3.453125 C 5.5 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.765625 6 -4 6 -4.015625 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.921875 C 0.6875 -3.609375 0.3125 -3.109375 0.3125 -3 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.6875 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.890625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.890625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
|
||||
</g>
|
||||
<g id="glyph-1-0">
|
||||
<path d="M 6.703125 -1 C 6.703125 -1.078125 6.625 -1.078125 6.59375 -1.078125 C 6.5 -1.078125 6.5 -1.046875 6.46875 -0.96875 C 6.3125 -0.40625 6 -0.125 5.734375 -0.125 C 5.578125 -0.125 5.5625 -0.21875 5.5625 -0.375 C 5.5625 -0.53125 5.59375 -0.625 5.71875 -0.9375 C 5.796875 -1.140625 6.078125 -1.890625 6.078125 -2.28125 C 6.078125 -2.390625 6.078125 -2.671875 5.828125 -2.875 C 5.703125 -2.96875 5.5 -3.0625 5.1875 -3.0625 C 4.546875 -3.0625 4.171875 -2.65625 3.953125 -2.359375 C 3.890625 -2.953125 3.40625 -3.0625 3.046875 -3.0625 C 2.46875 -3.0625 2.078125 -2.71875 1.875 -2.4375 C 1.828125 -2.90625 1.40625 -3.0625 1.125 -3.0625 C 0.828125 -3.0625 0.671875 -2.84375 0.578125 -2.6875 C 0.421875 -2.4375 0.328125 -2.03125 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.9375 0.59375 -2.125 C 0.703125 -2.53125 0.828125 -2.875 1.109375 -2.875 C 1.28125 -2.875 1.328125 -2.71875 1.328125 -2.53125 C 1.328125 -2.40625 1.265625 -2.140625 1.21875 -1.953125 L 1.078125 -1.328125 L 0.84375 -0.4375 C 0.828125 -0.34375 0.78125 -0.171875 0.78125 -0.15625 C 0.78125 0 0.90625 0.0625 1.015625 0.0625 C 1.140625 0.0625 1.25 -0.015625 1.28125 -0.078125 C 1.328125 -0.140625 1.375 -0.375 1.40625 -0.515625 L 1.5625 -1.140625 C 1.609375 -1.296875 1.640625 -1.453125 1.6875 -1.609375 C 1.765625 -1.890625 1.765625 -1.953125 1.96875 -2.234375 C 2.171875 -2.515625 2.5 -2.875 3.015625 -2.875 C 3.421875 -2.875 3.421875 -2.515625 3.421875 -2.390625 C 3.421875 -2.21875 3.40625 -2.125 3.3125 -1.734375 L 3.015625 -0.5625 C 2.984375 -0.421875 2.921875 -0.1875 2.921875 -0.15625 C 2.921875 0 3.046875 0.0625 3.15625 0.0625 C 3.28125 0.0625 3.390625 -0.015625 3.421875 -0.078125 C 3.46875 -0.140625 3.515625 -0.375 3.546875 -0.515625 L 3.703125 -1.140625 C 3.75 -1.296875 3.796875 -1.453125 3.828125 -1.609375 C 3.90625 -1.90625 3.90625 -1.921875 4.046875 -2.140625 C 4.265625 -2.46875 4.609375 -2.875 5.15625 -2.875 C 5.546875 -2.875 5.5625 -2.546875 5.5625 -2.390625 C 5.5625 -1.96875 5.265625 -1.203125 5.15625 -0.90625 C 5.078125 -0.703125 5.046875 -0.640625 5.046875 -0.53125 C 5.046875 -0.15625 5.359375 0.0625 5.703125 0.0625 C 6.40625 0.0625 6.703125 -0.890625 6.703125 -1 Z M 6.703125 -1 "/>
|
||||
</g>
|
||||
<g id="glyph-1-1">
|
||||
<path d="M 2.59375 -1 C 2.59375 -1.078125 2.515625 -1.078125 2.484375 -1.078125 C 2.40625 -1.078125 2.40625 -1.078125 2.34375 -0.953125 C 2.15625 -0.515625 1.796875 -0.125 1.40625 -0.125 C 1.265625 -0.125 1.171875 -0.21875 1.171875 -0.46875 C 1.171875 -0.53125 1.203125 -0.6875 1.203125 -0.75 L 1.703125 -2.75 L 2.421875 -2.75 C 2.546875 -2.75 2.640625 -2.75 2.640625 -2.90625 C 2.640625 -3 2.546875 -3 2.4375 -3 L 1.765625 -3 L 2.03125 -4.03125 C 2.03125 -4.0625 2.046875 -4.09375 2.046875 -4.125 C 2.046875 -4.25 1.953125 -4.34375 1.8125 -4.34375 C 1.640625 -4.34375 1.53125 -4.234375 1.484375 -4.046875 C 1.4375 -3.875 1.53125 -4.203125 1.21875 -3 L 0.515625 -3 C 0.375 -3 0.296875 -3 0.296875 -2.84375 C 0.296875 -2.75 0.375 -2.75 0.5 -2.75 L 1.15625 -2.75 L 0.75 -1.109375 C 0.703125 -0.9375 0.640625 -0.6875 0.640625 -0.59375 C 0.640625 -0.1875 1 0.0625 1.390625 0.0625 C 2.15625 0.0625 2.59375 -0.90625 2.59375 -1 Z M 2.59375 -1 "/>
|
||||
</g>
|
||||
<g id="glyph-1-2">
|
||||
<path d="M 7.921875 -4.640625 C 7.921875 -4.75 7.84375 -4.75 7.71875 -4.75 L 6.765625 -4.75 C 6.578125 -4.75 6.5625 -4.734375 6.46875 -4.609375 L 3.796875 -0.640625 L 3.09375 -4.5625 C 3.0625 -4.734375 3.0625 -4.75 2.859375 -4.75 L 1.859375 -4.75 C 1.71875 -4.75 1.640625 -4.75 1.640625 -4.59375 C 1.640625 -4.5 1.71875 -4.5 1.875 -4.5 C 1.984375 -4.5 2.015625 -4.5 2.140625 -4.484375 C 2.28125 -4.46875 2.28125 -4.453125 2.28125 -4.390625 C 2.28125 -4.390625 2.28125 -4.34375 2.265625 -4.234375 L 1.390625 -0.75 C 1.328125 -0.5 1.21875 -0.265625 0.65625 -0.25 C 0.609375 -0.25 0.515625 -0.25 0.515625 -0.09375 C 0.515625 -0.09375 0.515625 0 0.625 0 C 0.828125 0 1.125 -0.03125 1.34375 -0.03125 C 1.515625 -0.03125 1.90625 0 2.078125 0 C 2.109375 0 2.21875 0 2.21875 -0.15625 C 2.21875 -0.25 2.125 -0.25 2.0625 -0.25 C 1.625 -0.265625 1.625 -0.4375 1.625 -0.546875 C 1.625 -0.5625 1.625 -0.609375 1.640625 -0.71875 L 2.578125 -4.421875 L 3.328125 -0.1875 C 3.34375 -0.0625 3.359375 0 3.46875 0 C 3.5625 0 3.609375 -0.078125 3.671875 -0.15625 L 6.578125 -4.484375 L 6.59375 -4.484375 L 5.609375 -0.546875 C 5.5625 -0.3125 5.546875 -0.25 5 -0.25 C 4.875 -0.25 4.796875 -0.25 4.796875 -0.09375 C 4.796875 -0.09375 4.796875 0 4.90625 0 C 5.03125 0 5.1875 -0.015625 5.328125 -0.015625 L 5.765625 -0.03125 C 5.96875 -0.03125 6.453125 0 6.65625 0 C 6.703125 0 6.796875 0 6.796875 -0.15625 C 6.796875 -0.25 6.71875 -0.25 6.578125 -0.25 C 6.578125 -0.25 6.4375 -0.25 6.3125 -0.265625 C 6.15625 -0.28125 6.15625 -0.296875 6.15625 -0.375 C 6.15625 -0.40625 6.171875 -0.484375 6.1875 -0.515625 L 7.09375 -4.1875 C 7.15625 -4.4375 7.171875 -4.5 7.6875 -4.5 C 7.84375 -4.5 7.921875 -4.5 7.921875 -4.640625 Z M 7.921875 -4.640625 "/>
|
||||
</g>
|
||||
<g id="glyph-2-0">
|
||||
<path d="M 6.96875 -2.140625 C 6.96875 -2.859375 6.390625 -3.4375 5.421875 -3.546875 C 6.453125 -3.734375 7.5 -4.46875 7.5 -5.40625 C 7.5 -6.140625 6.84375 -6.78125 5.65625 -6.78125 L 2.328125 -6.78125 C 2.140625 -6.78125 2.03125 -6.78125 2.03125 -6.578125 C 2.03125 -6.46875 2.125 -6.46875 2.3125 -6.46875 C 2.3125 -6.46875 2.515625 -6.46875 2.6875 -6.453125 C 2.875 -6.421875 2.953125 -6.421875 2.953125 -6.296875 C 2.953125 -6.25 2.953125 -6.21875 2.921875 -6.109375 L 1.59375 -0.78125 C 1.484375 -0.390625 1.46875 -0.3125 0.6875 -0.3125 C 0.515625 -0.3125 0.421875 -0.3125 0.421875 -0.109375 C 0.421875 0 0.5 0 0.6875 0 L 4.234375 0 C 5.796875 0 6.96875 -1.171875 6.96875 -2.140625 Z M 6.59375 -5.453125 C 6.59375 -4.578125 5.75 -3.625 4.53125 -3.625 L 3.078125 -3.625 L 3.703125 -6.09375 C 3.796875 -6.4375 3.8125 -6.46875 4.234375 -6.46875 L 5.515625 -6.46875 C 6.390625 -6.46875 6.59375 -5.890625 6.59375 -5.453125 Z M 6.046875 -2.25 C 6.046875 -1.265625 5.15625 -0.3125 3.984375 -0.3125 L 2.640625 -0.3125 C 2.5 -0.3125 2.484375 -0.3125 2.421875 -0.3125 C 2.328125 -0.328125 2.296875 -0.34375 2.296875 -0.421875 C 2.296875 -0.453125 2.296875 -0.46875 2.34375 -0.640625 L 3.03125 -3.40625 L 4.90625 -3.40625 C 5.859375 -3.40625 6.046875 -2.671875 6.046875 -2.25 Z M 6.046875 -2.25 "/>
|
||||
<path d="M 3.40625 1.640625 C 3.40625 1.546875 3.34375 1.546875 3.296875 1.546875 C 2.46875 1.5 2.3125 1.03125 2.296875 0.859375 L 2.296875 -0.9375 C 2.296875 -1.25 2.046875 -1.578125 1.484375 -1.734375 C 2.296875 -1.984375 2.296875 -2.421875 2.296875 -2.75 L 2.296875 -4 C 2.296875 -4.421875 2.296875 -4.59375 2.5625 -4.78125 C 2.75 -4.9375 3 -5 3.265625 -5.015625 C 3.34375 -5.03125 3.40625 -5.03125 3.40625 -5.125 C 3.40625 -5.21875 3.34375 -5.21875 3.234375 -5.21875 C 2.453125 -5.21875 1.765625 -4.875 1.765625 -4.34375 L 1.765625 -2.71875 C 1.765625 -2.546875 1.765625 -2.3125 1.578125 -2.140625 C 1.296875 -1.90625 1.03125 -1.84375 0.796875 -1.828125 C 0.703125 -1.828125 0.65625 -1.828125 0.65625 -1.734375 C 0.65625 -1.640625 0.71875 -1.640625 0.765625 -1.640625 C 1.515625 -1.59375 1.703125 -1.1875 1.75 -1.046875 C 1.765625 -0.96875 1.765625 -0.953125 1.765625 -0.703125 L 1.765625 0.703125 C 1.765625 0.953125 1.765625 1.21875 2.171875 1.484375 C 2.46875 1.671875 2.953125 1.734375 3.234375 1.734375 C 3.34375 1.734375 3.40625 1.734375 3.40625 1.640625 Z M 3.40625 1.640625 "/>
|
||||
</g>
|
||||
<g id="glyph-2-1">
|
||||
<path d="M 6.421875 -2.375 C 6.421875 -2.484375 6.296875 -2.484375 6.296875 -2.484375 C 6.234375 -2.484375 6.1875 -2.453125 6.171875 -2.375 C 6.078125 -2.09375 5.859375 -1.390625 5.171875 -0.8125 C 4.484375 -0.265625 3.859375 -0.09375 3.34375 -0.09375 C 2.453125 -0.09375 1.40625 -0.609375 1.40625 -2.15625 C 1.40625 -2.71875 1.609375 -4.328125 2.59375 -5.484375 C 3.203125 -6.1875 4.140625 -6.6875 5.015625 -6.6875 C 6.03125 -6.6875 6.625 -5.921875 6.625 -4.765625 C 6.625 -4.375 6.59375 -4.359375 6.59375 -4.265625 C 6.59375 -4.171875 6.703125 -4.171875 6.734375 -4.171875 C 6.859375 -4.171875 6.859375 -4.1875 6.921875 -4.359375 L 7.546875 -6.890625 C 7.546875 -6.921875 7.515625 -7 7.4375 -7 C 7.40625 -7 7.390625 -6.984375 7.28125 -6.875 L 6.59375 -6.109375 C 6.5 -6.25 6.046875 -7 4.9375 -7 C 2.734375 -7 0.5 -4.796875 0.5 -2.5 C 0.5 -0.859375 1.671875 0.21875 3.1875 0.21875 C 4.046875 0.21875 4.796875 -0.171875 5.328125 -0.640625 C 6.25 -1.453125 6.421875 -2.34375 6.421875 -2.375 Z M 6.421875 -2.375 "/>
|
||||
<path d="M 5.125 -0.984375 C 5.125 -1.015625 5.109375 -1.046875 5.0625 -1.046875 C 4.953125 -1.046875 4.5 -0.890625 4.421875 -0.609375 C 4.3125 -0.3125 4.234375 -0.3125 4.0625 -0.3125 C 3.6875 -0.3125 3.1875 -0.4375 2.84375 -0.53125 C 2.484375 -0.625 2.109375 -0.703125 1.75 -0.703125 C 1.71875 -0.703125 1.578125 -0.703125 1.484375 -0.6875 C 1.859375 -1.234375 1.953125 -1.578125 2.0625 -2.015625 C 2.203125 -2.53125 2.40625 -3.25 2.75 -3.828125 C 3.09375 -4.390625 3.265625 -4.421875 3.5 -4.421875 C 3.828125 -4.421875 4.046875 -4.1875 4.046875 -3.84375 C 4.046875 -3.734375 4.03125 -3.65625 4.03125 -3.625 C 4.03125 -3.59375 4.046875 -3.5625 4.109375 -3.5625 C 4.125 -3.5625 4.296875 -3.59375 4.546875 -3.765625 C 4.6875 -3.859375 4.765625 -3.9375 4.765625 -4.203125 C 4.765625 -4.46875 4.609375 -4.890625 4.0625 -4.890625 C 3.453125 -4.890625 2.78125 -4.484375 2.421875 -4.046875 C 1.953125 -3.515625 1.640625 -2.8125 1.359375 -1.671875 C 1.1875 -1.03125 0.9375 -0.5 0.609375 -0.234375 C 0.546875 -0.171875 0.359375 0 0.359375 0.09375 C 0.359375 0.140625 0.421875 0.140625 0.4375 0.140625 C 0.6875 0.140625 1 -0.15625 1.09375 -0.25 C 1.296875 -0.25 1.578125 -0.234375 2.203125 -0.078125 C 2.734375 0.0625 3.109375 0.140625 3.5 0.140625 C 4.375 0.140625 5.125 -0.65625 5.125 -0.984375 Z M 5.125 -0.984375 "/>
|
||||
</g>
|
||||
<g id="glyph-2-2">
|
||||
<path d="M 3.40625 -1.734375 C 3.40625 -1.828125 3.34375 -1.828125 3.296875 -1.828125 C 2.484375 -1.875 2.3125 -2.359375 2.296875 -2.546875 L 2.296875 -4.09375 C 2.296875 -4.453125 2.296875 -4.703125 1.890625 -4.96875 C 1.59375 -5.15625 1.09375 -5.21875 0.828125 -5.21875 C 0.71875 -5.21875 0.65625 -5.21875 0.65625 -5.125 C 0.65625 -5.03125 0.71875 -5.015625 0.765625 -5.015625 C 1.625 -4.984375 1.765625 -4.484375 1.765625 -4.328125 L 1.765625 -2.546875 C 1.765625 -2.21875 2.046875 -1.890625 2.59375 -1.734375 C 1.765625 -1.5 1.765625 -1.046875 1.765625 -0.71875 L 1.765625 0.53125 C 1.765625 0.96875 1.765625 1.09375 1.515625 1.296875 C 1.390625 1.40625 1.140625 1.515625 0.796875 1.546875 C 0.703125 1.546875 0.65625 1.546875 0.65625 1.640625 C 0.65625 1.734375 0.71875 1.734375 0.828125 1.734375 C 1.59375 1.734375 2.296875 1.421875 2.296875 0.859375 L 2.296875 -0.765625 C 2.296875 -0.984375 2.296875 -1.578125 3.328125 -1.640625 C 3.328125 -1.640625 3.40625 -1.640625 3.40625 -1.734375 Z M 3.40625 -1.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-2-3">
|
||||
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-3-0">
|
||||
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
|
||||
<path d="M 6.046875 -6.34375 L 6.046875 -6.8125 C 5.609375 -6.78125 4.546875 -6.78125 4.0625 -6.78125 C 3.578125 -6.78125 2.515625 -6.78125 2.078125 -6.8125 L 2.078125 -6.34375 L 3.40625 -6.34375 L 3.40625 -5.28125 C 1.859375 -5.1875 0.640625 -4.46875 0.640625 -3.40625 C 0.640625 -2.34375 1.859375 -1.625 3.40625 -1.515625 L 3.40625 -0.46875 L 2.078125 -0.46875 L 2.078125 0 C 2.515625 -0.03125 3.578125 -0.03125 4.0625 -0.03125 C 4.546875 -0.03125 5.609375 -0.03125 6.046875 0 L 6.046875 -0.46875 L 4.71875 -0.46875 L 4.71875 -1.515625 C 7.28125 -1.703125 7.59375 -2.9375 7.59375 -3.40625 C 7.59375 -3.890625 7.265625 -5.09375 4.71875 -5.296875 L 4.71875 -6.34375 Z M 3.40625 -1.890625 C 2.171875 -2.0625 2.09375 -2.84375 2.09375 -3.40625 C 2.09375 -3.984375 2.171875 -4.75 3.40625 -4.921875 Z M 4.71875 -4.9375 C 5.96875 -4.78125 6.140625 -4.125 6.140625 -3.40625 C 6.140625 -2.671875 5.96875 -2.03125 4.71875 -1.875 Z M 4.71875 -4.9375 "/>
|
||||
</g>
|
||||
<g id="glyph-4-0">
|
||||
<path d="M 3.28125 0 L 3.28125 -0.25 L 3.03125 -0.25 C 2.328125 -0.25 2.328125 -0.34375 2.328125 -0.5625 L 2.328125 -4.421875 C 2.328125 -4.609375 2.3125 -4.609375 2.125 -4.609375 C 1.671875 -4.171875 1.046875 -4.171875 0.765625 -4.171875 L 0.765625 -3.921875 C 0.921875 -3.921875 1.390625 -3.921875 1.765625 -4.109375 L 1.765625 -0.5625 C 1.765625 -0.34375 1.765625 -0.25 1.078125 -0.25 L 0.8125 -0.25 L 0.8125 0 L 2.046875 -0.03125 Z M 3.28125 0 "/>
|
||||
</g>
|
||||
<g id="glyph-5-0">
|
||||
<path d="M 9.21875 -6.40625 C 9.328125 -6.8125 8.609375 -6.8125 8.03125 -6.8125 L 3.5625 -6.8125 C 3.09375 -6.765625 2.625 -6.625 2.203125 -6.328125 C 2 -6.1875 1.8125 -6 1.75 -5.78125 C 1.75 -5.65625 1.8125 -5.609375 1.921875 -5.609375 C 2.078125 -5.609375 2.296875 -5.6875 2.515625 -5.8125 C 2.59375 -5.859375 2.65625 -5.90625 2.71875 -5.9375 C 2.890625 -5.96875 3.09375 -5.96875 3.28125 -5.96875 L 4.328125 -5.96875 L 4.171875 -5.203125 C 4 -4.484375 3.765625 -3.78125 3.5 -3.078125 C 3.1875 -2.265625 2.796875 -1.453125 2.359375 -0.65625 C 2.34375 -0.625 2.328125 -0.578125 2.296875 -0.5625 C 1.921875 -0.578125 1.625 -0.765625 1.421875 -1.046875 C 1.40625 -1.09375 1.34375 -1.109375 1.265625 -1.109375 C 1.109375 -1.109375 0.890625 -1.03125 0.671875 -0.90625 C 0.359375 -0.734375 0.15625 -0.5 0.15625 -0.359375 C 0.15625 -0.359375 0.15625 -0.328125 0.171875 -0.3125 C 0.453125 0.109375 0.9375 0.328125 1.515625 0.3125 C 1.59375 0.3125 1.65625 0.296875 1.734375 0.28125 C 2.296875 0.1875 2.84375 -0.140625 3.25 -0.59375 C 3.390625 -0.734375 3.5 -0.890625 3.578125 -1.046875 C 3.921875 -1.65625 4.21875 -2.265625 4.484375 -2.890625 L 6.4375 -2.890625 C 6.4375 -2.78125 6.515625 -2.75 6.625 -2.75 C 6.765625 -2.75 7 -2.8125 7.21875 -2.953125 C 7.484375 -3.109375 7.6875 -3.296875 7.734375 -3.4375 L 7.765625 -3.59375 C 7.765625 -3.703125 7.703125 -3.75 7.59375 -3.75 L 4.828125 -3.75 C 5.078125 -4.40625 5.28125 -5.0625 5.453125 -5.734375 L 5.5 -5.96875 L 7.078125 -5.96875 C 7.453125 -5.96875 7.96875 -5.96875 7.9375 -5.859375 C 7.9375 -5.734375 8 -5.6875 8.109375 -5.6875 C 8.265625 -5.6875 8.5 -5.78125 8.71875 -5.90625 C 8.984375 -6.046875 9.1875 -6.265625 9.21875 -6.40625 Z M 9.21875 -6.40625 "/>
|
||||
</g>
|
||||
<g id="glyph-5-1">
|
||||
<path d="M 7.453125 -1.53125 C 7.453125 -1.640625 7.328125 -1.65625 7.28125 -1.65625 C 6.96875 -1.65625 6.109375 -1.265625 6 -0.75 C 5.515625 -0.75 5.171875 -0.796875 4.375 -0.953125 C 4.015625 -1.015625 3.21875 -1.171875 2.65625 -1.171875 C 2.578125 -1.171875 2.46875 -1.171875 2.390625 -1.15625 C 2.71875 -1.71875 2.84375 -2.1875 3.015625 -2.84375 C 3.21875 -3.625 3.609375 -5.015625 4.359375 -5.859375 C 4.5 -6 4.53125 -6.046875 4.796875 -6.046875 C 5.25 -6.046875 5.421875 -5.6875 5.421875 -5.375 C 5.421875 -5.265625 5.390625 -5.15625 5.390625 -5.109375 C 5.390625 -5 5.515625 -4.984375 5.5625 -4.984375 C 5.703125 -4.984375 6 -5.0625 6.390625 -5.3125 C 6.78125 -5.59375 6.84375 -5.765625 6.84375 -6.046875 C 6.84375 -6.5625 6.53125 -6.96875 5.875 -6.96875 C 5.25 -6.96875 4.34375 -6.671875 3.53125 -5.953125 C 2.390625 -4.953125 1.890625 -3.3125 1.609375 -2.1875 C 1.453125 -1.59375 1.25 -0.78125 0.828125 -0.453125 C 0.71875 -0.359375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.15625 0.5 0.171875 0.5625 0.171875 C 0.640625 0.171875 0.9375 0.15625 1.5 -0.25 C 1.859375 -0.25 2.203125 -0.234375 3.109375 -0.0625 C 3.546875 0.03125 4.28125 0.171875 4.84375 0.171875 C 6.171875 0.171875 7.453125 -1 7.453125 -1.53125 Z M 7.453125 -1.53125 "/>
|
||||
</g>
|
||||
<g id="glyph-5-2">
|
||||
<path d="M 7.71875 -1.0625 C 7.71875 -1.171875 7.609375 -1.1875 7.546875 -1.1875 C 7.375 -1.1875 7.046875 -1.078125 6.765625 -0.859375 C 6.375 -0.859375 6.046875 -0.859375 5.890625 -2.09375 L 5.71875 -3.625 C 8.34375 -5.046875 9 -5.703125 9 -6.234375 C 9 -6.640625 8.625 -6.8125 8.328125 -6.8125 C 7.890625 -6.8125 7.203125 -6.3125 7.203125 -6.078125 C 7.203125 -6.015625 7.21875 -5.953125 7.375 -5.9375 C 7.6875 -5.90625 7.703125 -5.671875 7.703125 -5.609375 C 7.703125 -5.5 7.671875 -5.4375 7.4375 -5.265625 C 7.03125 -4.953125 6.3125 -4.546875 5.671875 -4.1875 C 5.53125 -5.09375 5.53125 -5.578125 5.40625 -6.015625 C 5.171875 -6.8125 4.65625 -6.8125 4.359375 -6.8125 C 3 -6.8125 2.40625 -6 2.40625 -5.75 C 2.40625 -5.640625 2.53125 -5.609375 2.59375 -5.609375 C 2.59375 -5.609375 2.921875 -5.609375 3.359375 -5.9375 C 3.6875 -5.9375 4.0625 -5.9375 4.203125 -4.96875 L 4.375 -3.484375 C 3.703125 -3.109375 2.78125 -2.625 2.046875 -2.140625 C 1.609375 -1.859375 0.5625 -1.1875 0.5625 -0.578125 C 0.5625 -0.171875 0.90625 0 1.21875 0 C 1.65625 0 2.34375 -0.484375 2.34375 -0.734375 C 2.34375 -0.84375 2.234375 -0.859375 2.15625 -0.859375 C 1.96875 -0.890625 1.84375 -1.015625 1.84375 -1.203125 C 1.84375 -1.3125 1.890625 -1.375 2.15625 -1.5625 C 2.625 -1.921875 3.375 -2.328125 4.4375 -2.921875 C 4.640625 -1.125 4.65625 -1 4.6875 -0.890625 C 4.921875 0 5.453125 0 5.78125 0 C 7.140625 0 7.71875 -0.828125 7.71875 -1.0625 Z M 7.71875 -1.0625 "/>
|
||||
</g>
|
||||
</g>
|
||||
<clipPath id="clip-0">
|
||||
<path clip-rule="nonzero" d="M 25 15 L 173 15 L 173 54.558594 L 25 54.558594 Z M 25 15 "/>
|
||||
<path clip-rule="nonzero" d="M 25 15 L 311 15 L 311 54.558594 L 25 54.558594 Z M 25 15 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip-1">
|
||||
<path clip-rule="nonzero" d="M 0.269531 34 L 26 34 L 26 36 L 0.269531 36 Z M 0.269531 34 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip-2">
|
||||
<path clip-rule="nonzero" d="M 176 19 L 197.214844 19 L 197.214844 51 L 176 51 Z M 176 19 "/>
|
||||
<path clip-rule="nonzero" d="M 314 19 L 335.015625 19 L 335.015625 51 L 314 51 Z M 314 19 "/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" d="M 25.527344 53.5625 L 171.957031 53.5625 L 171.957031 16.398438 L 25.527344 16.398438 Z M 25.527344 53.5625 "/>
|
||||
<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" d="M 25.832031 53.5625 L 309.761719 53.5625 L 309.761719 16.398438 L 25.832031 16.398438 Z M 25.832031 53.5625 "/>
|
||||
<g clip-path="url(#clip-0)">
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -73.510396 -18.656574 L 73.512731 -18.656574 L 73.512731 18.658104 L -73.510396 18.658104 Z M -73.510396 -18.656574 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -142.539723 -18.656574 L 142.540653 -18.656574 L 142.540653 18.658104 L -142.539723 18.658104 Z M -142.539723 -18.656574 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="90.574123" y="10.612989"/>
|
||||
<use xlink:href="#glyph-0-0" x="159.628514" y="10.612989"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="99.372466" y="12.100958"/>
|
||||
<use xlink:href="#glyph-1-0" x="168.426857" y="12.100958"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.008898 -14.173635 L 17.00731 -14.173635 L 17.00731 14.175166 L -17.008898 14.175166 Z M -17.008898 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.0096 -14.173635 L 17.006608 -14.173635 L 17.006608 14.175166 L -17.0096 14.175166 Z M -17.0096 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="94.341853" y="38.385435"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.027457 -14.173635 L -35.011249 -14.173635 L -35.011249 14.175166 L -69.027457 14.175166 Z M -69.027457 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="37.592841" y="37.793832"/>
|
||||
<use xlink:href="#glyph-0-0" x="156.333866" y="36.621583"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="45.61732" y="34.192428"/>
|
||||
<use xlink:href="#glyph-2-0" x="165.133205" y="38.413321"/>
|
||||
<use xlink:href="#glyph-2-1" x="169.198495" y="38.413321"/>
|
||||
<use xlink:href="#glyph-2-2" x="174.697367" y="38.413321"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.028159 -14.173635 L -35.011951 -14.173635 L -35.011951 14.175166 L -69.028159 14.175166 Z M -69.028159 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-1" x="104.385399" y="36.69628"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="51.819092" y="34.192428"/>
|
||||
<use xlink:href="#glyph-2-3" x="111.647966" y="32.451483"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="45.119339" y="40.246891"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.013584 -14.173635 L 69.029792 -14.173635 L 69.029792 14.175166 L 35.013584 14.175166 Z M 35.013584 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-1" x="141.324446" y="37.793832"/>
|
||||
<use xlink:href="#glyph-1-1" x="117.849738" y="32.451483"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="149.125829" y="34.192428"/>
|
||||
<use xlink:href="#glyph-2-0" x="110.649014" y="40.075585"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="155.327601" y="34.192428"/>
|
||||
<use xlink:href="#glyph-1-2" x="114.714304" y="40.075585"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="148.415707" y="40.246891"/>
|
||||
<use xlink:href="#glyph-2-2" x="123.024081" y="40.075585"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -138.056784 -14.173635 L -104.040576 -14.173635 L -104.040576 14.175166 L -138.056784 14.175166 Z M -138.056784 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="38.269349" y="38.932219"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-3" x="46.510948" y="35.330814"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-1" x="52.71272" y="35.330814"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.012882 -14.173635 L 69.02909 -14.173635 L 69.02909 14.175166 L 35.012882 14.175166 Z M 35.012882 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-1" x="208.005456" y="36.783925"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-3" x="215.268022" y="32.540124"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="221.469794" y="32.540124"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="214.269071" y="40.16323"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-2" x="218.334361" y="40.16323"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-2" x="226.644138" y="40.16323"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 104.041506 -14.173635 L 138.057714 -14.173635 L 138.057714 14.175166 L 104.041506 14.175166 Z M 104.041506 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="278.908107" y="39.019863"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-3" x="287.149706" y="35.419455"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="293.351478" y="35.419455"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -143.190788 0.000765138 L -166.903689 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052658 0.000765138 L 1.608941 1.683338 L 3.087565 0.000765138 L 1.608941 -1.681808 Z M 6.052658 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 22.358491, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-2" x="5.373666" y="29.689676"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="10.541721" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -103.542472 0.000765138 L -74.162163 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052833 0.000765138 L 1.609115 1.683338 L 3.08774 0.000765138 L 1.609115 -1.681808 Z M 6.052833 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 91.108317, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-0" x="68.721933" y="27.649942"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="77.809105" y="29.441681"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-2" x="81.874395" y="29.441681"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-2" x="90.184172" y="29.441681"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.513847 0.000765138 L -22.139682 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054685 0.000765138 L 1.607045 1.683338 L 3.085669 0.000765138 L 1.607045 -1.681808 Z M 6.054685 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 142.918973, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-2" x="140.052849" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.504712 0.000765138 L 29.878878 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052624 0.000765138 L 1.608906 1.683338 L 3.087531 0.000765138 L 1.608906 -1.681808 Z M 6.052624 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 194.729619, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-1" x="190.547209" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.527194 0.000765138 L 98.907502 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052789 0.000765138 L 1.609071 1.683338 L 3.087696 0.000765138 L 1.609071 -1.681808 Z M 6.052789 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 263.479455, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-5-2" x="240.615297" y="27.649942"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="250.17854" y="29.441681"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-2" x="254.24383" y="29.441681"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-2" x="262.553607" y="29.441681"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 138.555819 0.000765138 L 162.26872 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 167.796412, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 332.613281 34.980469 L 328.183594 33.304688 L 329.65625 34.980469 L 328.183594 36.65625 Z M 332.613281 34.980469 "/>
|
||||
<g clip-path="url(#clip-1)">
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -74.161461 0.000765138 L -97.874362 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053535 0.000765138 L 1.609818 1.683338 L 3.088442 0.000765138 L 1.609818 -1.681808 Z M 6.053535 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 22.05293, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-1" x="5.067657" y="29.689676"/>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054826 0.000765138 L 1.607187 1.683338 L 3.085811 0.000765138 L 1.607187 -1.681808 Z M 6.054826 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 326.582894, 34.981231)"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="10.235712" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.513145 0.000765138 L -22.138979 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051465 0.000765138 L 1.607747 1.683338 L 3.086372 0.000765138 L 1.607747 -1.681808 Z M 6.051465 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 73.863586, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-1" x="70.998458" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.505415 0.000765138 L 29.87958 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053326 0.000765138 L 1.609609 1.683338 L 3.088233 0.000765138 L 1.609609 -1.681808 Z M 6.053326 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 125.674232, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-2" x="123.087356" y="29.24946"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.527896 0.000765138 L 93.240798 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 98.741025, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 194.804688 34.980469 L 190.378906 33.304688 L 191.851562 34.980469 L 190.378906 36.65625 Z M 194.804688 34.980469 "/>
|
||||
<g clip-path="url(#clip-2)">
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051442 0.000765138 L 1.607724 1.683338 L 3.086349 0.000765138 L 1.607724 -1.681808 Z M 6.051442 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 188.777671, 34.981231)"/>
|
||||
<use xlink:href="#glyph-5-2" x="313.119458" y="29.689676"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-3" x="178.339435" y="29.689676"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="184.877936" y="31.178642"/>
|
||||
<use xlink:href="#glyph-1-0" x="322.682701" y="31.178642"/>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 29 KiB |
BIN
figs/detail_control_decoupling_svd.pdf
Normal file
Before Width: | Height: | Size: 8.1 KiB After Width: | Height: | Size: 9.0 KiB |
@ -5,42 +5,51 @@
|
||||
<g id="glyph-0-0">
|
||||
<path d="M 7.296875 -2.078125 C 7.328125 -2.234375 7.34375 -2.25 7.40625 -2.25 C 7.53125 -2.265625 7.671875 -2.265625 7.78125 -2.265625 C 8.03125 -2.265625 8.203125 -2.265625 8.203125 -2.5625 C 8.203125 -2.609375 8.171875 -2.734375 7.984375 -2.734375 C 7.765625 -2.734375 7.546875 -2.71875 7.3125 -2.71875 C 7.09375 -2.71875 6.859375 -2.703125 6.640625 -2.703125 C 6.25 -2.703125 5.28125 -2.734375 4.875 -2.734375 C 4.765625 -2.734375 4.578125 -2.734375 4.578125 -2.453125 C 4.578125 -2.265625 4.75 -2.265625 4.90625 -2.265625 L 5.28125 -2.265625 C 5.390625 -2.265625 5.9375 -2.265625 5.9375 -2.21875 C 5.9375 -2.203125 5.9375 -2.1875 5.859375 -1.9375 C 5.859375 -1.875 5.6875 -1.234375 5.6875 -1.234375 C 5.515625 -0.5625 4.71875 -0.296875 4.09375 -0.296875 C 3.515625 -0.296875 2.921875 -0.421875 2.453125 -0.796875 C 1.9375 -1.234375 1.9375 -1.921875 1.9375 -2.140625 C 1.9375 -2.59375 2.140625 -4.359375 3.109375 -5.453125 C 3.6875 -6.09375 4.640625 -6.515625 5.640625 -6.515625 C 6.890625 -6.515625 7.359375 -5.546875 7.359375 -4.734375 C 7.359375 -4.625 7.328125 -4.46875 7.328125 -4.375 C 7.328125 -4.234375 7.46875 -4.234375 7.59375 -4.234375 C 7.8125 -4.234375 7.828125 -4.234375 7.875 -4.4375 L 8.4375 -6.671875 C 8.453125 -6.734375 8.46875 -6.78125 8.46875 -6.84375 C 8.46875 -6.96875 8.328125 -6.96875 8.21875 -6.96875 L 7.296875 -6.265625 C 7.109375 -6.453125 6.59375 -6.96875 5.484375 -6.96875 C 2.3125 -6.96875 0.546875 -4.546875 0.546875 -2.515625 C 0.546875 -0.6875 1.9375 0.171875 3.796875 0.171875 C 4.828125 0.171875 5.53125 -0.171875 5.84375 -0.515625 C 6.09375 -0.265625 6.59375 0 6.671875 0 C 6.765625 0 6.78125 -0.078125 6.828125 -0.234375 Z M 7.296875 -2.078125 "/>
|
||||
</g>
|
||||
<g id="glyph-0-1">
|
||||
<path d="M 7.53125 -5.9375 C 7.671875 -6.15625 7.796875 -6.328125 8.484375 -6.34375 C 8.609375 -6.34375 8.78125 -6.34375 8.78125 -6.625 C 8.78125 -6.6875 8.734375 -6.8125 8.609375 -6.8125 C 8.3125 -6.8125 8 -6.78125 7.703125 -6.78125 C 7.34375 -6.78125 6.953125 -6.8125 6.609375 -6.8125 C 6.53125 -6.8125 6.34375 -6.8125 6.34375 -6.515625 C 6.34375 -6.34375 6.515625 -6.34375 6.59375 -6.34375 C 6.640625 -6.34375 6.9375 -6.34375 7.15625 -6.234375 L 3.875 -1.484375 L 3 -6.125 C 3 -6.15625 2.984375 -6.234375 2.984375 -6.265625 C 2.984375 -6.34375 3.515625 -6.34375 3.59375 -6.34375 C 3.8125 -6.34375 3.96875 -6.34375 3.96875 -6.625 C 3.96875 -6.75 3.875 -6.8125 3.75 -6.8125 C 3.5 -6.8125 3.25 -6.78125 3 -6.78125 C 2.765625 -6.78125 2.515625 -6.78125 2.265625 -6.78125 C 2.046875 -6.78125 1.8125 -6.78125 1.59375 -6.78125 C 1.375 -6.78125 1.140625 -6.8125 0.9375 -6.8125 C 0.84375 -6.8125 0.65625 -6.8125 0.65625 -6.515625 C 0.65625 -6.34375 0.8125 -6.34375 1.015625 -6.34375 C 1.15625 -6.34375 1.265625 -6.34375 1.40625 -6.328125 C 1.515625 -6.3125 1.53125 -6.3125 1.5625 -6.140625 L 2.6875 -0.109375 C 2.734375 0.171875 2.84375 0.171875 3.03125 0.171875 C 3.3125 0.171875 3.359375 0.09375 3.5 -0.09375 Z M 7.53125 -5.9375 "/>
|
||||
</g>
|
||||
<g id="glyph-0-2">
|
||||
<path d="M 7.484375 -6.03125 C 7.546875 -6.21875 7.546875 -6.234375 7.78125 -6.296875 C 7.953125 -6.3125 8.203125 -6.34375 8.359375 -6.34375 C 8.546875 -6.34375 8.703125 -6.34375 8.703125 -6.625 C 8.703125 -6.734375 8.625 -6.8125 8.5 -6.8125 C 8.140625 -6.8125 7.765625 -6.78125 7.40625 -6.78125 C 7.15625 -6.78125 6.515625 -6.8125 6.265625 -6.8125 C 6.203125 -6.8125 6 -6.8125 6 -6.515625 C 6 -6.34375 6.171875 -6.34375 6.3125 -6.34375 C 6.40625 -6.34375 6.765625 -6.34375 7 -6.234375 L 6.015625 -2.328125 C 5.671875 -0.890625 4.5 -0.296875 3.296875 -0.296875 C 2.375 -0.296875 1.9375 -0.6875 1.9375 -1.40625 C 1.9375 -1.640625 1.96875 -1.890625 2.03125 -2.140625 L 3.078125 -6.296875 C 3.296875 -6.34375 3.640625 -6.34375 3.75 -6.34375 C 4.09375 -6.34375 4.234375 -6.34375 4.234375 -6.625 C 4.234375 -6.75 4.125 -6.8125 4.015625 -6.8125 C 3.765625 -6.8125 3.5 -6.78125 3.25 -6.78125 C 3 -6.78125 2.765625 -6.78125 2.515625 -6.78125 C 2.25 -6.78125 2 -6.78125 1.75 -6.78125 C 1.484375 -6.78125 1.21875 -6.8125 0.96875 -6.8125 C 0.859375 -6.8125 0.671875 -6.8125 0.671875 -6.515625 C 0.671875 -6.34375 0.796875 -6.34375 1.125 -6.34375 C 1.375 -6.34375 1.6875 -6.34375 1.6875 -6.296875 C 1.6875 -6.265625 1.59375 -5.90625 1.53125 -5.71875 L 1.3125 -4.84375 L 0.71875 -2.390625 C 0.625 -2.03125 0.625 -1.953125 0.625 -1.765625 C 0.625 -0.46875 1.734375 0.171875 3.234375 0.171875 C 5.015625 0.171875 6.203125 -0.890625 6.53125 -2.25 Z M 7.484375 -6.03125 "/>
|
||||
</g>
|
||||
<g id="glyph-0-3">
|
||||
<path d="M 5.59375 -3.140625 C 5.65625 -3.421875 5.78125 -3.90625 5.78125 -3.96875 C 5.78125 -4.171875 5.609375 -4.40625 5.3125 -4.40625 C 5.15625 -4.40625 4.78125 -4.3125 4.65625 -3.875 C 4.609375 -3.734375 4.171875 -1.9375 4.09375 -1.625 C 4.03125 -1.390625 3.953125 -1.09375 3.9375 -0.921875 C 3.765625 -0.6875 3.375 -0.28125 2.875 -0.28125 C 2.28125 -0.28125 2.265625 -0.78125 2.265625 -1 C 2.265625 -1.609375 2.578125 -2.375 2.859375 -3.09375 C 2.953125 -3.359375 2.984375 -3.421875 2.984375 -3.59375 C 2.984375 -4.171875 2.40625 -4.484375 1.859375 -4.484375 C 0.8125 -4.484375 0.3125 -3.140625 0.3125 -2.9375 C 0.3125 -2.796875 0.46875 -2.796875 0.5625 -2.796875 C 0.671875 -2.796875 0.75 -2.796875 0.78125 -2.921875 C 1.109375 -4.03125 1.640625 -4.125 1.8125 -4.125 C 1.875 -4.125 1.96875 -4.125 1.96875 -3.921875 C 1.96875 -3.6875 1.859375 -3.40625 1.8125 -3.296875 C 1.40625 -2.25 1.203125 -1.703125 1.203125 -1.203125 C 1.203125 -0.078125 2.203125 0.078125 2.78125 0.078125 C 3.078125 0.078125 3.515625 0.046875 4.046875 -0.46875 C 4.359375 0.015625 4.9375 0.078125 5.171875 0.078125 C 5.546875 0.078125 5.828125 -0.125 6.046875 -0.484375 C 6.296875 -0.890625 6.421875 -1.421875 6.421875 -1.46875 C 6.421875 -1.609375 6.265625 -1.609375 6.1875 -1.609375 C 6.078125 -1.609375 6.03125 -1.609375 5.984375 -1.5625 C 5.96875 -1.53125 5.96875 -1.515625 5.90625 -1.265625 C 5.703125 -0.5 5.484375 -0.28125 5.234375 -0.28125 C 5.078125 -0.28125 5 -0.375 5 -0.640625 C 5 -0.8125 5.046875 -0.96875 5.140625 -1.375 C 5.203125 -1.640625 5.3125 -2.046875 5.359375 -2.265625 Z M 5.59375 -3.140625 "/>
|
||||
</g>
|
||||
<g id="glyph-0-4">
|
||||
<path d="M 3.46875 -3.453125 L 5.296875 -3.453125 C 5.5 -3.453125 5.640625 -3.453125 5.796875 -3.609375 C 6 -3.765625 6 -4 6 -4.015625 C 6 -4.40625 5.640625 -4.40625 5.46875 -4.40625 L 2.203125 -4.40625 C 2 -4.40625 1.5625 -4.40625 1.046875 -3.921875 C 0.6875 -3.609375 0.3125 -3.109375 0.3125 -3 C 0.3125 -2.875 0.421875 -2.875 0.53125 -2.875 C 0.6875 -2.875 0.6875 -2.875 0.78125 -2.984375 C 1.15625 -3.453125 1.8125 -3.453125 2 -3.453125 L 2.890625 -3.453125 L 2.546875 -2.40625 C 2.453125 -2.15625 2.234375 -1.515625 2.15625 -1.265625 C 2.046875 -0.953125 1.859375 -0.421875 1.859375 -0.3125 C 1.859375 -0.046875 2.078125 0.125 2.328125 0.125 C 2.390625 0.125 2.890625 0.125 3 -0.53125 Z M 3.46875 -3.453125 "/>
|
||||
</g>
|
||||
<g id="glyph-0-5">
|
||||
<path d="M 5.71875 -3.734375 C 5.78125 -3.921875 5.78125 -3.9375 5.78125 -3.96875 C 5.78125 -4.1875 5.609375 -4.40625 5.3125 -4.40625 C 4.796875 -4.40625 4.671875 -3.9375 4.609375 -3.671875 L 4.34375 -2.640625 C 4.234375 -2.15625 4.03125 -1.40625 3.921875 -0.984375 C 3.875 -0.78125 3.578125 -0.53125 3.546875 -0.515625 C 3.4375 -0.453125 3.1875 -0.28125 2.875 -0.28125 C 2.28125 -0.28125 2.265625 -0.78125 2.265625 -1 C 2.265625 -1.609375 2.578125 -2.375 2.859375 -3.09375 C 2.953125 -3.359375 2.984375 -3.421875 2.984375 -3.59375 C 2.984375 -4.171875 2.40625 -4.484375 1.859375 -4.484375 C 0.8125 -4.484375 0.3125 -3.140625 0.3125 -2.9375 C 0.3125 -2.796875 0.46875 -2.796875 0.5625 -2.796875 C 0.671875 -2.796875 0.75 -2.796875 0.78125 -2.921875 C 1.109375 -4.03125 1.65625 -4.125 1.8125 -4.125 C 1.875 -4.125 1.96875 -4.125 1.96875 -3.921875 C 1.96875 -3.6875 1.859375 -3.4375 1.8125 -3.28125 C 1.421875 -2.28125 1.203125 -1.71875 1.203125 -1.203125 C 1.203125 -0.078125 2.203125 0.078125 2.78125 0.078125 C 3.03125 0.078125 3.375 0.046875 3.734375 -0.21875 C 3.46875 1 2.71875 1.640625 2.03125 1.640625 C 1.90625 1.640625 1.625 1.625 1.421875 1.515625 C 1.75 1.375 1.90625 1.109375 1.90625 0.84375 C 1.90625 0.484375 1.625 0.390625 1.421875 0.390625 C 1.046875 0.390625 0.703125 0.703125 0.703125 1.140625 C 0.703125 1.640625 1.234375 2 2.03125 2 C 3.171875 2 4.484375 1.234375 4.796875 0.015625 Z M 5.71875 -3.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-1-0">
|
||||
<path d="M 4.3125 -1.578125 C 4.3125 -1.890625 4.1875 -2.171875 4.046875 -2.328125 C 3.796875 -2.578125 3.6875 -2.609375 2.796875 -2.8125 C 2.65625 -2.84375 2.421875 -2.90625 2.359375 -2.921875 C 2.1875 -2.984375 1.890625 -3.15625 1.890625 -3.5625 C 1.890625 -4.109375 2.515625 -4.671875 3.234375 -4.671875 C 3.984375 -4.671875 4.34375 -4.234375 4.34375 -3.578125 C 4.34375 -3.484375 4.3125 -3.328125 4.3125 -3.265625 C 4.3125 -3.171875 4.40625 -3.171875 4.4375 -3.171875 C 4.546875 -3.171875 4.546875 -3.203125 4.578125 -3.328125 L 4.9375 -4.796875 C 4.9375 -4.828125 4.921875 -4.890625 4.84375 -4.890625 C 4.8125 -4.890625 4.796875 -4.875 4.703125 -4.796875 L 4.359375 -4.390625 C 4.109375 -4.765625 3.671875 -4.890625 3.234375 -4.890625 C 2.265625 -4.890625 1.390625 -4.09375 1.390625 -3.296875 C 1.390625 -3.1875 1.40625 -2.90625 1.625 -2.65625 C 1.859375 -2.375 2.109375 -2.3125 2.59375 -2.203125 L 3.171875 -2.0625 C 3.40625 -2.015625 3.828125 -1.859375 3.828125 -1.328125 C 3.828125 -0.765625 3.234375 -0.109375 2.4375 -0.109375 C 1.828125 -0.109375 1.09375 -0.328125 1.09375 -1.09375 C 1.09375 -1.171875 1.109375 -1.328125 1.140625 -1.453125 C 1.140625 -1.46875 1.140625 -1.484375 1.140625 -1.484375 C 1.140625 -1.578125 1.0625 -1.578125 1.03125 -1.578125 C 0.9375 -1.578125 0.921875 -1.5625 0.890625 -1.4375 L 0.546875 -0.046875 C 0.53125 -0.015625 0.515625 0.015625 0.515625 0.0625 C 0.515625 0.09375 0.546875 0.140625 0.625 0.140625 C 0.65625 0.140625 0.671875 0.125 0.765625 0.046875 C 0.828125 -0.046875 1.015625 -0.265625 1.09375 -0.34375 C 1.453125 0.0625 2 0.140625 2.421875 0.140625 C 3.46875 0.140625 4.3125 -0.765625 4.3125 -1.578125 Z M 4.3125 -1.578125 "/>
|
||||
<path d="M 3.890625 -1.28125 C 3.890625 -1.90625 3.453125 -2.5 2.765625 -2.65625 L 1.734375 -2.90625 C 1.125 -3.03125 0.9375 -3.484375 0.9375 -3.765625 C 0.9375 -4.234375 1.359375 -4.671875 1.984375 -4.671875 C 2.921875 -4.671875 3.328125 -4.046875 3.4375 -3.3125 C 3.453125 -3.203125 3.46875 -3.171875 3.5625 -3.171875 C 3.6875 -3.171875 3.6875 -3.21875 3.6875 -3.34375 L 3.6875 -4.703125 C 3.6875 -4.828125 3.6875 -4.890625 3.59375 -4.890625 C 3.53125 -4.890625 3.515625 -4.875 3.46875 -4.796875 L 3.21875 -4.40625 C 2.765625 -4.875 2.1875 -4.890625 1.984375 -4.890625 C 1.109375 -4.890625 0.484375 -4.265625 0.484375 -3.5625 C 0.484375 -3.171875 0.65625 -2.875 0.90625 -2.640625 C 1.1875 -2.359375 1.421875 -2.3125 2.171875 -2.15625 C 2.796875 -2.015625 2.9375 -1.984375 3.140625 -1.78125 C 3.296875 -1.625 3.453125 -1.40625 3.453125 -1.09375 C 3.453125 -0.609375 3.046875 -0.109375 2.375 -0.109375 C 1.703125 -0.109375 0.765625 -0.375 0.71875 -1.421875 C 0.71875 -1.53125 0.71875 -1.578125 0.609375 -1.578125 C 0.484375 -1.578125 0.484375 -1.53125 0.484375 -1.390625 L 0.484375 -0.046875 C 0.484375 0.078125 0.484375 0.140625 0.578125 0.140625 C 0.640625 0.140625 0.65625 0.125 0.703125 0.0625 C 0.765625 -0.03125 0.890625 -0.25 0.953125 -0.34375 C 1.390625 0.046875 1.921875 0.140625 2.375 0.140625 C 3.296875 0.140625 3.890625 -0.546875 3.890625 -1.28125 Z M 3.890625 -1.28125 "/>
|
||||
</g>
|
||||
<g id="glyph-1-1">
|
||||
<path d="M 5.984375 -4.65625 C 5.984375 -4.671875 5.96875 -4.75 5.890625 -4.75 C 5.71875 -4.75 5.5 -4.71875 5.328125 -4.71875 C 5.109375 -4.71875 4.8125 -4.75 4.609375 -4.75 C 4.546875 -4.75 4.46875 -4.734375 4.46875 -4.59375 C 4.46875 -4.5 4.5625 -4.5 4.59375 -4.5 C 4.8125 -4.484375 4.875 -4.40625 4.875 -4.296875 C 4.875 -4.203125 4.828125 -4.125 4.75 -4.015625 L 2.46875 -0.65625 L 1.84375 -4.203125 C 1.828125 -4.265625 1.828125 -4.28125 1.828125 -4.3125 C 1.828125 -4.5 2.21875 -4.5 2.265625 -4.5 C 2.390625 -4.5 2.46875 -4.5 2.46875 -4.65625 C 2.46875 -4.65625 2.46875 -4.75 2.359375 -4.75 C 2.15625 -4.75 1.65625 -4.71875 1.453125 -4.71875 C 1.28125 -4.71875 0.859375 -4.75 0.6875 -4.75 C 0.625 -4.75 0.546875 -4.734375 0.546875 -4.59375 C 0.546875 -4.5 0.640625 -4.5 0.71875 -4.5 C 1.109375 -4.5 1.125 -4.453125 1.15625 -4.28125 L 1.90625 -0.046875 C 1.9375 0.09375 1.953125 0.140625 2.078125 0.140625 C 2.21875 0.140625 2.25 0.09375 2.3125 -0.015625 L 4.96875 -3.921875 C 5.234375 -4.296875 5.453125 -4.46875 5.828125 -4.5 C 5.90625 -4.5 5.984375 -4.515625 5.984375 -4.65625 Z M 5.984375 -4.65625 "/>
|
||||
<path d="M 5.640625 -4.5 L 5.640625 -4.75 C 5.4375 -4.734375 5.171875 -4.71875 4.96875 -4.71875 C 4.6875 -4.71875 4.171875 -4.75 4.125 -4.75 L 4.125 -4.5 C 4.390625 -4.5 4.609375 -4.390625 4.609375 -4.171875 C 4.609375 -4.125 4.59375 -4.078125 4.578125 -4.03125 L 3.140625 -0.671875 L 1.640625 -4.1875 C 1.59375 -4.28125 1.59375 -4.296875 1.59375 -4.3125 C 1.59375 -4.5 1.953125 -4.5 2.140625 -4.5 L 2.140625 -4.75 L 1.109375 -4.71875 C 0.765625 -4.71875 0.234375 -4.75 0.21875 -4.75 L 0.21875 -4.5 L 0.328125 -4.5 C 0.703125 -4.5 0.828125 -4.46875 0.921875 -4.25 L 2.71875 -0.015625 C 2.78125 0.09375 2.796875 0.140625 2.921875 0.140625 C 3 0.140625 3.0625 0.140625 3.125 0 L 4.859375 -4.046875 C 4.9375 -4.25 5.109375 -4.484375 5.640625 -4.5 Z M 5.640625 -4.5 "/>
|
||||
</g>
|
||||
<g id="glyph-1-2">
|
||||
<path d="M 6.203125 -2.9375 C 6.203125 -3.953125 5.5 -4.75 4.375 -4.75 L 1.84375 -4.75 C 1.703125 -4.75 1.625 -4.75 1.625 -4.59375 C 1.625 -4.5 1.703125 -4.5 1.84375 -4.5 C 1.953125 -4.5 1.984375 -4.5 2.109375 -4.484375 C 2.25 -4.46875 2.265625 -4.453125 2.265625 -4.390625 C 2.265625 -4.390625 2.265625 -4.34375 2.234375 -4.234375 L 1.3125 -0.546875 C 1.265625 -0.3125 1.25 -0.25 0.703125 -0.25 C 0.578125 -0.25 0.5 -0.25 0.5 -0.09375 C 0.5 0 0.578125 0 0.703125 0 L 3.1875 0 C 4.734375 0 6.203125 -1.421875 6.203125 -2.9375 Z M 5.546875 -3.15625 C 5.546875 -3 5.484375 -1.796875 4.78125 -1.015625 C 4.515625 -0.703125 3.921875 -0.25 3.0625 -0.25 L 2.109375 -0.25 C 1.890625 -0.25 1.890625 -0.25 1.890625 -0.3125 C 1.890625 -0.3125 1.890625 -0.359375 1.921875 -0.46875 L 2.875 -4.265625 C 2.921875 -4.484375 2.9375 -4.5 3.21875 -4.5 L 4.109375 -4.5 C 4.890625 -4.5 5.546875 -4.109375 5.546875 -3.15625 Z M 5.546875 -3.15625 "/>
|
||||
</g>
|
||||
<g id="glyph-1-3">
|
||||
<path d="M 5.3125 -3.28125 L 5.5 -4.609375 C 5.5 -4.703125 5.40625 -4.703125 5.28125 -4.703125 L 1.015625 -4.703125 C 0.828125 -4.703125 0.828125 -4.703125 0.765625 -4.546875 L 0.328125 -3.328125 C 0.328125 -3.296875 0.296875 -3.234375 0.296875 -3.203125 C 0.296875 -3.171875 0.3125 -3.09375 0.421875 -3.09375 C 0.5 -3.09375 0.515625 -3.140625 0.5625 -3.265625 C 0.96875 -4.375 1.203125 -4.453125 2.25 -4.453125 L 2.546875 -4.453125 C 2.75 -4.453125 2.765625 -4.4375 2.765625 -4.375 C 2.765625 -4.375 2.765625 -4.34375 2.734375 -4.234375 L 1.8125 -0.578125 C 1.75 -0.3125 1.734375 -0.25 1 -0.25 C 0.75 -0.25 0.6875 -0.25 0.6875 -0.09375 C 0.6875 -0.078125 0.703125 0 0.8125 0 C 1 0 1.203125 -0.015625 1.40625 -0.015625 L 2 -0.03125 L 2.625 -0.015625 C 2.8125 -0.015625 3.03125 0 3.21875 0 C 3.265625 0 3.375 0 3.375 -0.15625 C 3.375 -0.25 3.296875 -0.25 3.09375 -0.25 C 2.953125 -0.25 2.8125 -0.25 2.6875 -0.265625 C 2.453125 -0.28125 2.4375 -0.3125 2.4375 -0.390625 C 2.4375 -0.4375 2.4375 -0.453125 2.46875 -0.5625 L 3.375 -4.203125 C 3.421875 -4.40625 3.4375 -4.421875 3.59375 -4.4375 C 3.625 -4.453125 3.875 -4.453125 4.015625 -4.453125 C 4.4375 -4.453125 4.609375 -4.453125 4.796875 -4.390625 C 5.109375 -4.296875 5.125 -4.09375 5.125 -3.84375 C 5.125 -3.734375 5.125 -3.640625 5.0625 -3.28125 L 5.0625 -3.203125 C 5.0625 -3.140625 5.109375 -3.09375 5.171875 -3.09375 C 5.28125 -3.09375 5.296875 -3.15625 5.3125 -3.28125 Z M 5.3125 -3.28125 "/>
|
||||
<path d="M 5.484375 -2.34375 C 5.484375 -3.65625 4.4375 -4.75 3.140625 -4.75 L 0.40625 -4.75 L 0.40625 -4.5 L 0.5625 -4.5 C 1.109375 -4.5 1.125 -4.421875 1.125 -4.1875 L 1.125 -0.5625 C 1.125 -0.328125 1.109375 -0.25 0.5625 -0.25 L 0.40625 -0.25 L 0.40625 0 L 3.140625 0 C 4.421875 0 5.484375 -1.03125 5.484375 -2.34375 Z M 4.765625 -2.34375 C 4.765625 -1.53125 4.5625 -1.109375 4.328125 -0.828125 C 4.015625 -0.46875 3.515625 -0.25 2.953125 -0.25 L 2.09375 -0.25 C 1.765625 -0.25 1.75 -0.3125 1.75 -0.515625 L 1.75 -4.234375 C 1.75 -4.4375 1.765625 -4.5 2.09375 -4.5 L 2.953125 -4.5 C 3.546875 -4.5 4.046875 -4.25 4.375 -3.84375 C 4.65625 -3.46875 4.765625 -2.9375 4.765625 -2.34375 Z M 4.765625 -2.34375 "/>
|
||||
</g>
|
||||
<g id="glyph-2-0">
|
||||
<path d="M 7.625 -6.65625 C 7.625 -6.734375 7.578125 -6.78125 7.5 -6.78125 C 7.25 -6.78125 6.953125 -6.75 6.6875 -6.75 C 6.359375 -6.75 6.015625 -6.78125 5.703125 -6.78125 C 5.640625 -6.78125 5.515625 -6.78125 5.515625 -6.59375 C 5.515625 -6.484375 5.609375 -6.46875 5.671875 -6.46875 C 5.9375 -6.453125 6.125 -6.34375 6.125 -6.140625 C 6.125 -6 5.984375 -5.765625 5.984375 -5.765625 L 2.9375 -0.921875 L 2.265625 -6.171875 C 2.265625 -6.34375 2.484375 -6.46875 2.953125 -6.46875 C 3.078125 -6.46875 3.1875 -6.46875 3.1875 -6.671875 C 3.1875 -6.75 3.109375 -6.78125 3.0625 -6.78125 C 2.65625 -6.78125 2.234375 -6.75 1.828125 -6.75 C 1.640625 -6.75 1.453125 -6.75 1.28125 -6.75 C 1.09375 -6.75 0.90625 -6.78125 0.75 -6.78125 C 0.671875 -6.78125 0.5625 -6.78125 0.5625 -6.59375 C 0.5625 -6.46875 0.640625 -6.46875 0.796875 -6.46875 C 1.359375 -6.46875 1.375 -6.375 1.40625 -6.125 L 2.1875 -0.015625 C 2.21875 0.1875 2.25 0.21875 2.375 0.21875 C 2.546875 0.21875 2.578125 0.171875 2.65625 0.046875 L 6.234375 -5.640625 C 6.71875 -6.421875 7.140625 -6.453125 7.5 -6.46875 C 7.625 -6.484375 7.625 -6.65625 7.625 -6.65625 Z M 7.625 -6.65625 "/>
|
||||
<path d="M 3.40625 1.640625 C 3.40625 1.546875 3.34375 1.546875 3.296875 1.546875 C 2.46875 1.5 2.3125 1.03125 2.296875 0.859375 L 2.296875 -0.9375 C 2.296875 -1.25 2.046875 -1.578125 1.484375 -1.734375 C 2.296875 -1.984375 2.296875 -2.421875 2.296875 -2.75 L 2.296875 -4 C 2.296875 -4.421875 2.296875 -4.59375 2.5625 -4.78125 C 2.75 -4.9375 3 -5 3.265625 -5.015625 C 3.34375 -5.03125 3.40625 -5.03125 3.40625 -5.125 C 3.40625 -5.21875 3.34375 -5.21875 3.234375 -5.21875 C 2.453125 -5.21875 1.765625 -4.875 1.765625 -4.34375 L 1.765625 -2.71875 C 1.765625 -2.546875 1.765625 -2.3125 1.578125 -2.140625 C 1.296875 -1.90625 1.03125 -1.84375 0.796875 -1.828125 C 0.703125 -1.828125 0.65625 -1.828125 0.65625 -1.734375 C 0.65625 -1.640625 0.71875 -1.640625 0.765625 -1.640625 C 1.515625 -1.59375 1.703125 -1.1875 1.75 -1.046875 C 1.765625 -0.96875 1.765625 -0.953125 1.765625 -0.703125 L 1.765625 0.703125 C 1.765625 0.953125 1.765625 1.21875 2.171875 1.484375 C 2.46875 1.671875 2.953125 1.734375 3.234375 1.734375 C 3.34375 1.734375 3.40625 1.734375 3.40625 1.640625 Z M 3.40625 1.640625 "/>
|
||||
</g>
|
||||
<g id="glyph-2-1">
|
||||
<path d="M 7.546875 -6.671875 C 7.546875 -6.671875 7.546875 -6.78125 7.40625 -6.78125 C 7.078125 -6.78125 6.734375 -6.75 6.40625 -6.75 C 6.0625 -6.75 5.6875 -6.78125 5.375 -6.78125 C 5.3125 -6.78125 5.1875 -6.78125 5.1875 -6.578125 C 5.1875 -6.46875 5.28125 -6.46875 5.375 -6.46875 C 5.9375 -6.453125 6.046875 -6.25 6.046875 -6.03125 C 6.046875 -6 6.015625 -5.859375 6.015625 -5.828125 L 5.125 -2.28125 C 4.78125 -0.953125 3.640625 -0.09375 2.65625 -0.09375 C 1.96875 -0.09375 1.4375 -0.53125 1.4375 -1.375 C 1.4375 -1.375 1.4375 -1.71875 1.546875 -2.15625 L 2.515625 -6.015625 C 2.59375 -6.375 2.625 -6.46875 3.34375 -6.46875 C 3.609375 -6.46875 3.6875 -6.46875 3.6875 -6.671875 C 3.6875 -6.78125 3.578125 -6.78125 3.546875 -6.78125 L 2.265625 -6.75 L 0.984375 -6.78125 C 0.90625 -6.78125 0.796875 -6.78125 0.796875 -6.578125 C 0.796875 -6.46875 0.890625 -6.46875 1.078125 -6.46875 C 1.078125 -6.46875 1.296875 -6.46875 1.453125 -6.453125 C 1.640625 -6.421875 1.71875 -6.421875 1.71875 -6.296875 C 1.71875 -6.234375 1.625 -5.8125 1.5625 -5.59375 L 1.34375 -4.71875 L 0.734375 -2.265625 C 0.671875 -1.984375 0.671875 -1.828125 0.671875 -1.6875 C 0.671875 -0.46875 1.5625 0.21875 2.609375 0.21875 C 3.859375 0.21875 5.09375 -0.90625 5.421875 -2.21875 L 6.296875 -5.734375 C 6.40625 -6.140625 6.578125 -6.4375 7.375 -6.46875 C 7.421875 -6.46875 7.546875 -6.484375 7.546875 -6.671875 Z M 7.546875 -6.671875 "/>
|
||||
<path d="M 5.125 -0.984375 C 5.125 -1.015625 5.109375 -1.046875 5.0625 -1.046875 C 4.953125 -1.046875 4.5 -0.890625 4.421875 -0.609375 C 4.3125 -0.3125 4.234375 -0.3125 4.0625 -0.3125 C 3.6875 -0.3125 3.1875 -0.4375 2.84375 -0.53125 C 2.484375 -0.625 2.109375 -0.703125 1.75 -0.703125 C 1.71875 -0.703125 1.578125 -0.703125 1.484375 -0.6875 C 1.859375 -1.234375 1.953125 -1.578125 2.0625 -2.015625 C 2.203125 -2.53125 2.40625 -3.25 2.75 -3.828125 C 3.09375 -4.390625 3.265625 -4.421875 3.5 -4.421875 C 3.828125 -4.421875 4.046875 -4.1875 4.046875 -3.84375 C 4.046875 -3.734375 4.03125 -3.65625 4.03125 -3.625 C 4.03125 -3.59375 4.046875 -3.5625 4.109375 -3.5625 C 4.125 -3.5625 4.296875 -3.59375 4.546875 -3.765625 C 4.6875 -3.859375 4.765625 -3.9375 4.765625 -4.203125 C 4.765625 -4.46875 4.609375 -4.890625 4.0625 -4.890625 C 3.453125 -4.890625 2.78125 -4.484375 2.421875 -4.046875 C 1.953125 -3.515625 1.640625 -2.8125 1.359375 -1.671875 C 1.1875 -1.03125 0.9375 -0.5 0.609375 -0.234375 C 0.546875 -0.171875 0.359375 0 0.359375 0.09375 C 0.359375 0.140625 0.421875 0.140625 0.4375 0.140625 C 0.6875 0.140625 1 -0.15625 1.09375 -0.25 C 1.296875 -0.25 1.578125 -0.234375 2.203125 -0.078125 C 2.734375 0.0625 3.109375 0.140625 3.5 0.140625 C 4.375 0.140625 5.125 -0.65625 5.125 -0.984375 Z M 5.125 -0.984375 "/>
|
||||
</g>
|
||||
<g id="glyph-2-2">
|
||||
<path d="M 5.390625 -1.421875 C 5.390625 -1.515625 5.296875 -1.515625 5.265625 -1.515625 C 5.171875 -1.515625 5.15625 -1.484375 5.125 -1.34375 C 4.984375 -0.78125 4.796875 -0.109375 4.390625 -0.109375 C 4.171875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.203125 -1.25 4.28125 -1.59375 L 4.546875 -2.671875 C 4.578125 -2.8125 4.6875 -3.1875 4.71875 -3.34375 C 4.765625 -3.578125 4.875 -3.953125 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.578125 -4.28125 C 4.53125 -4.28125 4.28125 -4.265625 4.203125 -3.921875 L 3.453125 -0.9375 C 3.4375 -0.90625 3.046875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.484375 1.984375 -2.265625 2.25 -2.953125 C 2.359375 -3.25 2.40625 -3.390625 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.796875 1.1875 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.609375 1.703125 -3.3125 1.640625 -3.171875 C 1.28125 -2.1875 1.078125 -1.5625 1.078125 -1.078125 C 1.078125 -0.140625 1.75 0.109375 2.296875 0.109375 C 2.953125 0.109375 3.296875 -0.34375 3.46875 -0.5625 C 3.578125 -0.15625 3.921875 0.109375 4.359375 0.109375 C 4.703125 0.109375 4.9375 -0.125 5.09375 -0.4375 C 5.265625 -0.796875 5.390625 -1.421875 5.390625 -1.421875 Z M 5.390625 -1.421875 "/>
|
||||
<path d="M 3.40625 -1.734375 C 3.40625 -1.828125 3.34375 -1.828125 3.296875 -1.828125 C 2.484375 -1.875 2.3125 -2.359375 2.296875 -2.546875 L 2.296875 -4.09375 C 2.296875 -4.453125 2.296875 -4.703125 1.890625 -4.96875 C 1.59375 -5.15625 1.09375 -5.21875 0.828125 -5.21875 C 0.71875 -5.21875 0.65625 -5.21875 0.65625 -5.125 C 0.65625 -5.03125 0.71875 -5.015625 0.765625 -5.015625 C 1.625 -4.984375 1.765625 -4.484375 1.765625 -4.328125 L 1.765625 -2.546875 C 1.765625 -2.21875 2.046875 -1.890625 2.59375 -1.734375 C 1.765625 -1.5 1.765625 -1.046875 1.765625 -0.71875 L 1.765625 0.53125 C 1.765625 0.96875 1.765625 1.09375 1.515625 1.296875 C 1.390625 1.40625 1.140625 1.515625 0.796875 1.546875 C 0.703125 1.546875 0.65625 1.546875 0.65625 1.640625 C 0.65625 1.734375 0.71875 1.734375 0.828125 1.734375 C 1.59375 1.734375 2.296875 1.421875 2.296875 0.859375 L 2.296875 -0.765625 C 2.296875 -0.984375 2.296875 -1.578125 3.328125 -1.640625 C 3.328125 -1.640625 3.40625 -1.640625 3.40625 -1.734375 Z M 3.40625 -1.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-2-3">
|
||||
<path d="M 5.0625 -4.03125 C 5.0625 -4.28125 4.859375 -4.28125 4.671875 -4.28125 L 1.890625 -4.28125 C 1.703125 -4.28125 1.3125 -4.28125 0.875 -3.8125 C 0.546875 -3.453125 0.265625 -2.96875 0.265625 -2.921875 C 0.265625 -2.921875 0.265625 -2.8125 0.390625 -2.8125 C 0.46875 -2.8125 0.484375 -2.859375 0.546875 -2.9375 C 1.03125 -3.703125 1.59375 -3.703125 1.8125 -3.703125 L 2.625 -3.703125 L 1.65625 -0.515625 C 1.625 -0.390625 1.5625 -0.1875 1.5625 -0.15625 C 1.5625 -0.046875 1.625 0.125 1.84375 0.125 C 2.171875 0.125 2.21875 -0.15625 2.25 -0.3125 L 2.921875 -3.703125 L 4.578125 -3.703125 C 4.71875 -3.703125 5.0625 -3.703125 5.0625 -4.03125 Z M 5.0625 -4.03125 "/>
|
||||
</g>
|
||||
<g id="glyph-2-4">
|
||||
<path d="M 4.9375 -1.421875 C 4.9375 -1.515625 4.859375 -1.515625 4.828125 -1.515625 C 4.71875 -1.515625 4.71875 -1.484375 4.6875 -1.34375 C 4.515625 -0.6875 4.328125 -0.109375 3.921875 -0.109375 C 3.65625 -0.109375 3.625 -0.359375 3.625 -0.5625 C 3.625 -0.78125 3.65625 -0.859375 3.765625 -1.296875 L 3.984375 -2.1875 L 4.328125 -3.578125 C 4.40625 -3.859375 4.40625 -3.875 4.40625 -3.921875 C 4.40625 -4.09375 4.28125 -4.1875 4.125 -4.1875 C 3.875 -4.1875 3.734375 -3.96875 3.703125 -3.75 C 3.515625 -4.125 3.234375 -4.390625 2.78125 -4.390625 C 1.625 -4.390625 0.390625 -2.921875 0.390625 -1.484375 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.40625 0.0625 3 -0.640625 C 3.078125 -0.21875 3.4375 0.109375 3.90625 0.109375 C 4.25 0.109375 4.484375 -0.125 4.640625 -0.4375 C 4.8125 -0.796875 4.9375 -1.421875 4.9375 -1.421875 Z M 3.546875 -3.125 L 3.0625 -1.1875 C 3 -1 3 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.234375 -0.109375 1.09375 -0.65625 1.09375 -1.046875 C 1.09375 -1.53125 1.421875 -2.765625 1.640625 -3.21875 C 1.953125 -3.796875 2.40625 -4.171875 2.796875 -4.171875 C 3.4375 -4.171875 3.578125 -3.359375 3.578125 -3.296875 C 3.578125 -3.234375 3.5625 -3.171875 3.546875 -3.125 Z M 3.546875 -3.125 "/>
|
||||
</g>
|
||||
<g id="glyph-2-5">
|
||||
<path d="M 4.828125 -3.78125 C 4.859375 -3.921875 4.859375 -3.9375 4.859375 -4.015625 C 4.859375 -4.1875 4.71875 -4.28125 4.578125 -4.28125 C 4.46875 -4.28125 4.3125 -4.21875 4.234375 -4.0625 C 4.203125 -4.015625 4.125 -3.703125 4.09375 -3.53125 L 3.890625 -2.734375 L 3.4375 -0.953125 C 3.40625 -0.796875 2.96875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.90625 C 1.703125 -1.375 1.875 -1.984375 2.21875 -2.859375 C 2.375 -3.265625 2.40625 -3.375 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.875 1.234375 -4.171875 1.5625 -4.171875 C 1.640625 -4.171875 1.8125 -4.171875 1.8125 -3.84375 C 1.8125 -3.609375 1.71875 -3.34375 1.640625 -3.15625 C 1.25 -2.109375 1.078125 -1.53125 1.078125 -1.078125 C 1.078125 -0.1875 1.703125 0.109375 2.28125 0.109375 C 2.671875 0.109375 3 -0.0625 3.28125 -0.34375 C 3.15625 0.171875 3.03125 0.671875 2.640625 1.1875 C 2.375 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.96875 1.78125 0.796875 1.40625 C 0.953125 1.40625 1.078125 1.40625 1.21875 1.28125 C 1.3125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.5625 2.03125 3.59375 1.125 3.875 0.015625 Z M 4.828125 -3.78125 "/>
|
||||
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
|
||||
</g>
|
||||
<g id="glyph-3-0">
|
||||
<path d="M 5.453125 -1.734375 C 5.453125 -1.90625 5.296875 -1.90625 5.1875 -1.90625 L 1.015625 -1.90625 C 0.90625 -1.90625 0.75 -1.90625 0.75 -1.734375 C 0.75 -1.578125 0.921875 -1.578125 1.015625 -1.578125 L 5.1875 -1.578125 C 5.28125 -1.578125 5.453125 -1.578125 5.453125 -1.734375 Z M 5.453125 -1.734375 "/>
|
||||
<path d="M 2.59375 -1 C 2.59375 -1.078125 2.515625 -1.078125 2.484375 -1.078125 C 2.40625 -1.078125 2.40625 -1.078125 2.34375 -0.953125 C 2.15625 -0.515625 1.796875 -0.125 1.40625 -0.125 C 1.265625 -0.125 1.171875 -0.21875 1.171875 -0.46875 C 1.171875 -0.53125 1.203125 -0.6875 1.203125 -0.75 L 1.703125 -2.75 L 2.421875 -2.75 C 2.546875 -2.75 2.640625 -2.75 2.640625 -2.90625 C 2.640625 -3 2.546875 -3 2.4375 -3 L 1.765625 -3 L 2.03125 -4.03125 C 2.03125 -4.0625 2.046875 -4.09375 2.046875 -4.125 C 2.046875 -4.25 1.953125 -4.34375 1.8125 -4.34375 C 1.640625 -4.34375 1.53125 -4.234375 1.484375 -4.046875 C 1.4375 -3.875 1.53125 -4.203125 1.21875 -3 L 0.515625 -3 C 0.375 -3 0.296875 -3 0.296875 -2.84375 C 0.296875 -2.75 0.375 -2.75 0.5 -2.75 L 1.15625 -2.75 L 0.75 -1.109375 C 0.703125 -0.9375 0.640625 -0.6875 0.640625 -0.59375 C 0.640625 -0.1875 1 0.0625 1.390625 0.0625 C 2.15625 0.0625 2.59375 -0.90625 2.59375 -1 Z M 2.59375 -1 "/>
|
||||
</g>
|
||||
<g id="glyph-4-0">
|
||||
<path d="M 3.28125 0 L 3.28125 -0.25 L 3.03125 -0.25 C 2.328125 -0.25 2.328125 -0.34375 2.328125 -0.5625 L 2.328125 -4.421875 C 2.328125 -4.609375 2.3125 -4.609375 2.125 -4.609375 C 1.671875 -4.171875 1.046875 -4.171875 0.765625 -4.171875 L 0.765625 -3.921875 C 0.921875 -3.921875 1.390625 -3.921875 1.765625 -4.109375 L 1.765625 -0.5625 C 1.765625 -0.34375 1.765625 -0.25 1.078125 -0.25 L 0.8125 -0.25 L 0.8125 0 L 2.046875 -0.03125 Z M 3.28125 0 "/>
|
||||
</g>
|
||||
<g id="glyph-5-0">
|
||||
<path d="M 7.453125 -1.53125 C 7.453125 -1.640625 7.328125 -1.65625 7.28125 -1.65625 C 6.96875 -1.65625 6.109375 -1.265625 6 -0.75 C 5.515625 -0.75 5.171875 -0.796875 4.375 -0.953125 C 4.015625 -1.015625 3.21875 -1.171875 2.65625 -1.171875 C 2.578125 -1.171875 2.46875 -1.171875 2.390625 -1.15625 C 2.71875 -1.71875 2.84375 -2.1875 3.015625 -2.84375 C 3.21875 -3.625 3.609375 -5.015625 4.359375 -5.859375 C 4.5 -6 4.53125 -6.046875 4.796875 -6.046875 C 5.25 -6.046875 5.421875 -5.6875 5.421875 -5.375 C 5.421875 -5.265625 5.390625 -5.15625 5.390625 -5.109375 C 5.390625 -5 5.515625 -4.984375 5.5625 -4.984375 C 5.703125 -4.984375 6 -5.0625 6.390625 -5.3125 C 6.78125 -5.59375 6.84375 -5.765625 6.84375 -6.046875 C 6.84375 -6.5625 6.53125 -6.96875 5.875 -6.96875 C 5.25 -6.96875 4.34375 -6.671875 3.53125 -5.953125 C 2.390625 -4.953125 1.890625 -3.3125 1.609375 -2.1875 C 1.453125 -1.59375 1.25 -0.78125 0.828125 -0.453125 C 0.71875 -0.359375 0.390625 -0.109375 0.390625 0.046875 C 0.390625 0.15625 0.5 0.171875 0.5625 0.171875 C 0.640625 0.171875 0.9375 0.15625 1.5 -0.25 C 1.859375 -0.25 2.203125 -0.234375 3.109375 -0.0625 C 3.546875 0.03125 4.28125 0.171875 4.84375 0.171875 C 6.171875 0.171875 7.453125 -1 7.453125 -1.53125 Z M 7.453125 -1.53125 "/>
|
||||
</g>
|
||||
</g>
|
||||
<clipPath id="clip-0">
|
||||
<path clip-rule="nonzero" d="M 19 15 L 167 15 L 167 54.558594 L 19 54.558594 Z M 19 15 "/>
|
||||
@ -57,57 +66,58 @@
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -73.512932 -18.656574 L 73.510195 -18.656574 L 73.510195 18.658104 L -73.512932 18.658104 Z M -73.512932 -18.656574 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="79.082719" y="10.612989"/>
|
||||
<use xlink:href="#glyph-0-0" x="80.149397" y="10.612989"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-0" x="87.881062" y="12.100958"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-1" x="93.135447" y="12.100958"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-2" x="99.529614" y="12.100958"/>
|
||||
<use xlink:href="#glyph-1-0" x="88.947739" y="12.100958"/>
|
||||
<use xlink:href="#glyph-1-1" x="93.330445" y="12.100958"/>
|
||||
<use xlink:href="#glyph-1-2" x="99.187713" y="12.100958"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.007512 -14.173635 L 17.008696 -14.173635 L 17.008696 14.175166 L -17.007512 14.175166 Z M -17.007512 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-0-0" x="88.504535" y="38.385435"/>
|
||||
<use xlink:href="#glyph-0-0" x="81.442157" y="36.621583"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="90.2405" y="38.413321"/>
|
||||
<use xlink:href="#glyph-2-1" x="94.30579" y="38.413321"/>
|
||||
<use xlink:href="#glyph-2-2" x="99.804662" y="38.413321"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -69.029993 -14.173635 L -35.013785 -14.173635 L -35.013785 14.175166 L -69.029993 14.175166 Z M -69.029993 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-0" x="30.871108" y="39.155314"/>
|
||||
<use xlink:href="#glyph-0-1" x="31.616089" y="38.932219"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="38.864712" y="35.554906"/>
|
||||
<use xlink:href="#glyph-2-3" x="40.876558" y="35.330814"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-1-3" x="45.066484" y="35.554906"/>
|
||||
<use xlink:href="#glyph-3-0" x="47.07833" y="35.330814"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.011048 -14.173635 L 69.027256 -14.173635 L 69.027256 14.175166 L 35.011048 14.175166 Z M 35.011048 -14.173635 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-1" x="135.459241" y="39.019863"/>
|
||||
<use xlink:href="#glyph-0-2" x="134.850707" y="39.019863"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-3-0" x="143.315402" y="35.419455"/>
|
||||
<use xlink:href="#glyph-2-3" x="143.924932" y="35.419455"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-4-0" x="149.517174" y="35.419455"/>
|
||||
<use xlink:href="#glyph-4-0" x="150.126704" y="35.419455"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip-1)">
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -74.160075 0.000765138 L -92.20557 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
</g>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054921 0.000765138 L 1.607281 1.683338 L 3.085906 0.000765138 L 1.607281 -1.681808 Z M 6.054921 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 16.215612, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-2" x="4.876457" y="31.178642"/>
|
||||
<use xlink:href="#glyph-0-3" x="4.876457" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -34.515681 0.000765138 L -22.141516 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052851 0.000765138 L 1.609133 1.683338 L 3.087758 0.000765138 L 1.609133 -1.681808 Z M 6.052851 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 68.026268, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-3" x="66.20491" y="31.178642"/>
|
||||
<use xlink:href="#glyph-0-4" x="65.16114" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.506801 0.000765138 L 29.880966 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054712 0.000765138 L 1.607073 1.683338 L 3.085697 0.000765138 L 1.607073 -1.681808 Z M 6.054712 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 119.836914, 34.981231)"/>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-4" x="118.230066" y="31.178642"/>
|
||||
<use xlink:href="#glyph-5-0" x="115.654504" y="31.178642"/>
|
||||
</g>
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.52536 0.000765138 L 87.570855 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 92.903707, 34.981231)"/>
|
||||
<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 183.324219 34.980469 L 178.894531 33.304688 L 180.367188 34.980469 L 178.894531 36.65625 Z M 183.324219 34.980469 "/>
|
||||
@ -115,6 +125,6 @@
|
||||
<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054711 0.000765138 L 1.607071 1.683338 L 3.085696 0.000765138 L 1.607071 -1.681808 Z M 6.054711 0.000765138 " transform="matrix(0.995964, 0, 0, -0.995964, 177.293947, 34.981231)"/>
|
||||
</g>
|
||||
<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
|
||||
<use xlink:href="#glyph-2-5" x="175.711111" y="29.24946"/>
|
||||
<use xlink:href="#glyph-0-5" x="174.70718" y="29.24946"/>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 24 KiB |
@ -3,7 +3,7 @@
|
||||
1 0 obj
|
||||
<<
|
||||
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
|
||||
/CreationDate (D:20250405113120+02'00')
|
||||
/CreationDate (D:20250405145932+02'00')
|
||||
>>
|
||||
endobj
|
||||
2 0 obj
|
||||
@ -1293,7 +1293,7 @@ trailer
|
||||
<<
|
||||
/Root 141 0 R
|
||||
/Info 1 0 R
|
||||
/ID [<3C649F7AB780C0FB015D2FD74A06C8A5> <3C649F7AB780C0FB015D2FD74A06C8A5>]
|
||||
/ID [<067AA37DE86FBEE24A057C343F93B2CD> <067AA37DE86FBEE24A057C343F93B2CD>]
|
||||
/Size 142
|
||||
>>
|
||||
startxref
|
||||
|
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 63 KiB |
@ -25,9 +25,9 @@
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="5.6568542"
|
||||
inkscape:cx="65.142212"
|
||||
inkscape:cy="69.473241"
|
||||
inkscape:zoom="4"
|
||||
inkscape:cx="71.125"
|
||||
inkscape:cy="98.75"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
inkscape:document-rotation="0"
|
||||
@ -43,6 +43,25 @@
|
||||
inkscape:deskcolor="#d1d1d1" />
|
||||
<defs
|
||||
id="defs1197">
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker6"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto-start-reverse"
|
||||
inkscape:stockid="Concave triangle arrow"
|
||||
markerWidth="1"
|
||||
markerHeight="1"
|
||||
viewBox="0 0 1 1"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always"
|
||||
preserveAspectRatio="xMidYMid">
|
||||
<path
|
||||
transform="scale(0.7)"
|
||||
d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z"
|
||||
style="fill:context-stroke;fill-rule:evenodd;stroke:none"
|
||||
id="path6" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker2"
|
||||
@ -2189,6 +2208,15 @@
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-39.198222,-19.196785)">
|
||||
<rect
|
||||
style="fill:#ccebff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.264999;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:0.529998, 0.529998;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect17717"
|
||||
width="28.12863"
|
||||
height="35.424496"
|
||||
x="49.934708"
|
||||
y="20.428562"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#000000;fill-opacity:0.2;stroke:#000000;stroke-width:0.264999;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1"
|
||||
d="m 41.521197,64.330608 h 36.067752 v 2.190475 H 39.330722 v -23.993507 0 h 2.190475 v 21.803032"
|
||||
@ -2357,15 +2385,6 @@
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<rect
|
||||
style="fill:#ccebff;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.264999;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:0.529998, 0.529998;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect17717"
|
||||
width="28.12863"
|
||||
height="35.424496"
|
||||
x="49.934708"
|
||||
y="20.428562"
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<rect
|
||||
style="fill:#faddd1;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.264999;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;stop-color:#000000"
|
||||
id="rect2"
|
||||
@ -2542,17 +2561,17 @@
|
||||
inkscape:export-xdpi="252"
|
||||
inkscape:export-ydpi="252" />
|
||||
<path
|
||||
style="font-variation-settings:normal;vector-effect:none;fill:none;fill-opacity:1;stroke:#000000;stroke-width:0.264999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;marker-start:url(#marker2)"
|
||||
style="font-variation-settings:normal;vector-effect:none;fill:none;fill-opacity:1;stroke:#000000;stroke-width:0.264999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;marker-start:url(#marker2);marker-end:url(#marker6)"
|
||||
id="path5"
|
||||
sodipodi:type="arc"
|
||||
sodipodi:cx="63.999023"
|
||||
sodipodi:cy="38.140812"
|
||||
sodipodi:rx="4.732007"
|
||||
sodipodi:ry="4.732007"
|
||||
sodipodi:start="5.2538284"
|
||||
sodipodi:end="6.0592263"
|
||||
sodipodi:start="5.2020562"
|
||||
sodipodi:end="5.8516597"
|
||||
sodipodi:arc-type="arc"
|
||||
d="m 66.437758,34.085635 a 4.732007,4.732007 0 0 1 2.175095,3.004238"
|
||||
d="m 66.224639,33.964866 a 4.732007,4.732007 0 0 1 2.072602,2.196751"
|
||||
sodipodi:open="true" />
|
||||
<g
|
||||
inkscape:label=""
|
||||
|
Before Width: | Height: | Size: 187 KiB After Width: | Height: | Size: 188 KiB |
BIN
figs/detail_control_model_test_decoupling_acc.pdf
Normal file
BIN
figs/detail_control_model_test_decoupling_acc.png
Normal file
After Width: | Height: | Size: 10 KiB |
2656
figs/detail_control_model_test_decoupling_acc.svg
Normal file
After Width: | Height: | Size: 172 KiB |
BIN
figs/detail_control_model_test_decoupling_alt.pdf
Normal file
BIN
figs/detail_control_model_test_decoupling_alt.png
Normal file
After Width: | Height: | Size: 8.9 KiB |
2559
figs/detail_control_model_test_decoupling_alt.svg
Normal file
After Width: | Height: | Size: 169 KiB |
BIN
figs/detail_control_model_test_modal.pdf
Normal file
BIN
figs/detail_control_model_test_modal.png
Normal file
After Width: | Height: | Size: 11 KiB |
2586
figs/detail_control_model_test_modal.svg
Normal file
After Width: | Height: | Size: 183 KiB |
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 78 KiB |
BIN
matlab/detail_control_decoupling_test_model.slx
Normal file
616
nass-control.org
@ -408,10 +408,11 @@ disp('Symbolic Jacobian Matrix (J_CoK):');
|
||||
disp(J_CoK);
|
||||
#+end_src
|
||||
|
||||
*** Analytical formulas for modal decoupling
|
||||
|
||||
#+begin_src matlab
|
||||
%% Analytical Formula for the Modal Decoupling
|
||||
syms l h la ha m I k c s real
|
||||
syms omega1 omega2 omega3 real % Natural frequencies
|
||||
|
||||
% Unit vectors of the actuators
|
||||
s1 = [1; 0]; % Actuator 1 direction (horizontal)
|
||||
@ -421,7 +422,7 @@ s3 = [0; 1]; % Actuator 3 direction (vertical)
|
||||
% Location of the joints with respect to the center of mass (symbolic)
|
||||
Mb1 = [-l/2; -ha]; % Joint 1 position vector
|
||||
Mb2 = [-la; -h/2]; % Joint 2 position vector
|
||||
Mb3 = [la; -h/2]; % Joint 3 position vector
|
||||
Mb3 = [ la; -h/2]; % Joint 3 position vector
|
||||
|
||||
% Calculate the Jacobian matrix (Center of Mass) symbolically
|
||||
J_CoM = [s1', Mb1(1)*s1(2) - Mb1(2)*s1(1);
|
||||
@ -434,11 +435,9 @@ disp(J_CoM);
|
||||
% Define system matrices
|
||||
M = diag([m, m, I]);
|
||||
K_struts = diag([k, k, k]);
|
||||
C_struts = diag([c, c, c]);
|
||||
|
||||
% Transform stiffness and damping to Cartesian space
|
||||
K = J_CoM' * K_struts * J_CoM;
|
||||
C = J_CoM' * C_struts * J_CoM;
|
||||
|
||||
disp('Mass Matrix (M):');
|
||||
disp(M);
|
||||
@ -446,68 +445,21 @@ disp(M);
|
||||
disp('Stiffness Matrix (K):');
|
||||
disp(K);
|
||||
|
||||
disp('Damping Matrix (C):');
|
||||
disp(C);
|
||||
|
||||
% Define the plant in the frame of the struts
|
||||
% G_L = J_CoM * inv(M*s^2 + C*s + K) * J_CoM'
|
||||
D_cart = M*s^2 + C*s + K; % Denominator in Cartesian space
|
||||
disp('Dynamic Matrix in Cartesian Space (M*s^2 + C*s + K):');
|
||||
disp(D_cart);
|
||||
|
||||
% Modal Decomposition
|
||||
% Calculate the eigenvalues and eigenvectors of M\K
|
||||
% For a symbolic approach, we'll use the general form of eigenvectors
|
||||
% [V,D] = eig(M\K)
|
||||
|
||||
% Instead of direct symbolic eigendecomposition (which is complex),
|
||||
% we'll use known properties of modal analysis for analytical expressions
|
||||
|
||||
% First, calculate M\K (inverse mass matrix times stiffness matrix)
|
||||
MK = simplify(M\K);
|
||||
disp('M\K Matrix:');
|
||||
disp(MK);
|
||||
|
||||
% For a mechanical system with 3 DOF, we expect 3 eigenmodes
|
||||
% Let's define symbolic eigenvectors in a general form
|
||||
% According to vibration theory, the eigenvectors should be orthogonal with respect to M
|
||||
[V, ~] = eig(MK);
|
||||
disp(simplify(V));
|
||||
disp('1st eigen vector:');
|
||||
disp(simplify(V(:,1)));
|
||||
disp('2nd eigen vector:');
|
||||
disp(simplify(V(:,2)));
|
||||
disp('3rd eigen vector:');
|
||||
disp(simplify(V(:,3)));
|
||||
|
||||
% Define symbolic eigenvectors
|
||||
V = sym('v', [3, 3]);
|
||||
|
||||
% Define the symbolic eigenvalues (squared natural frequencies)
|
||||
D = diag([omega1^2, omega2^2, omega3^2]);
|
||||
|
||||
% The eigenvectors should satisfy the equation (M\K)*V = V*D
|
||||
% This is equivalent to K*V = M*V*D
|
||||
% We can derive this symbolically, but it's complex for 3D systems
|
||||
|
||||
% For an analytical approach, we can use physics to guide us
|
||||
% For this system, we expect modes corresponding to:
|
||||
% 1. Horizontal translation
|
||||
% 2. Vertical translation
|
||||
% 3. Rotation
|
||||
|
||||
% Calculate modal mass matrix (mu = V'*M*V)
|
||||
mu = simplify(V' * M * V);
|
||||
disp('Modal Mass Matrix (mu):');
|
||||
disp(mu);
|
||||
|
||||
% Modal output matrix
|
||||
Cm = simplify(J_CoM * V);
|
||||
disp('Modal Output Matrix (Cm):');
|
||||
disp(Cm);
|
||||
|
||||
% Modal input matrix
|
||||
Bm = simplify(inv(mu) * V' * J_CoM');
|
||||
disp('Modal Input Matrix (Bm):');
|
||||
disp(Bm);
|
||||
|
||||
% Plant in the modal space
|
||||
% For a fully decoupled system, Gm should be diagonal
|
||||
Gm = simplify(inv(Cm) * J_CoM * inv(D_cart) * J_CoM' * inv(Bm'));
|
||||
disp('Plant in Modal Space (Gm):');
|
||||
disp(Gm);
|
||||
Vinv = inv(V);
|
||||
disp(simplify(Vinv));
|
||||
#+end_src
|
||||
|
||||
** DONE [#A] Fix the outline
|
||||
@ -571,8 +523,19 @@ Especially [[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org:
|
||||
- [X] equations
|
||||
- [X] tables
|
||||
|
||||
** TODO [#A] Verify why SVD decomposition on the proposed example gives such good performance
|
||||
** TODO [#A] Try to apply SVD on the experimental ID31 plant
|
||||
** DONE [#A] Verify why SVD decomposition on the proposed example gives such good performance
|
||||
CLOSED: [2025-04-05 Sat 17:43]
|
||||
|
||||
Could be due to symmetry in the system.
|
||||
|
||||
** TODO [#B] Rename figures/sections/equations to have more clear separation between the three sections
|
||||
|
||||
Prefixes:
|
||||
- =detail_control_sensor_fusion=
|
||||
- =detail_control_decoupling=
|
||||
- =detail_control_??=
|
||||
|
||||
** TODO [#B] Review of control for Stewart platforms?
|
||||
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Control][Control]]
|
||||
@ -2038,7 +2001,8 @@ freqs = logspace(0, 3, 1000);
|
||||
|
||||
- Instead of comparing the decoupling strategies using the Stewart platform, a similar yet much simpler parallel manipulator is used instead
|
||||
- to render the analysis simpler, the system of Figure ref:fig:detail_control_model_test_decoupling_detail is used
|
||||
- It has 3DoF, and has 3 parallels struts whose model is shown in Figure ref:fig:detail_control_strut_model
|
||||
- Fully parallel manipulator: it has 3DoF, and has 3 parallels struts whose model is shown in Figure ref:fig:detail_control_strut_model
|
||||
As many DoF as actuators and sensors
|
||||
- It is quite similar to the Stewart platform (parallel architecture, as many struts as DoF)
|
||||
|
||||
Two frames are defined:
|
||||
@ -2067,7 +2031,7 @@ First, the equation of motion are derived.
|
||||
Expressing the second law of Newton on the suspended mass, expressed at its center of mass gives
|
||||
|
||||
\begin{equation}
|
||||
M_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) = \sum \bm{\mathcal{F}}_{\{M\}}(t)
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) = \sum \bm{\mathcal{F}}_{\{M\}}(t)
|
||||
\end{equation}
|
||||
|
||||
with $\bm{\mathcal{X}}_{\{M\}}$ the two translation and one rotation expressed with respect to the center of mass and $\bm{\mathcal{F}}_{\{M\}}$ forces and torque applied at the center of mass.
|
||||
@ -2097,7 +2061,7 @@ In order to map the spring, damping and actuator forces to XY forces and Z torqu
|
||||
Then, the equation of motion linking the actuator forces $\tau$ to the motion of the mass $\bm{\mathcal{X}}_{\{M\}}$ is obtained.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_cartesian}
|
||||
M_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\end{equation}
|
||||
|
||||
Matrices representing the payload inertia as well as the actuator stiffness and damping are shown in
|
||||
@ -2156,7 +2120,7 @@ The transfer function from $\bm{\mathcal{\tau}}$ to $\bm{\mathcal{L}}$ is shown
|
||||
[[file:figs/detail_control_decoupling_control_struts.png]]
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_decentralized}
|
||||
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-t} M_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
|
||||
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-t} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
|
||||
\end{equation}
|
||||
|
||||
At low frequency the plant converges to a diagonal constant matrix whose diagonal elements are linked to the actuator stiffnesses eqref:eq:detail_control_decoupling_plant_decentralized_low_freq.
|
||||
@ -2176,15 +2140,8 @@ ha = 0.2; % Vertical of actuators [m]
|
||||
m = 40; % Payload mass [kg]
|
||||
I = 5; % Payload rotational inertia [kg m^2]
|
||||
|
||||
% Actuator Damping [N/(m/s)]
|
||||
c1 = 2e2;
|
||||
c2 = 2e2;
|
||||
c3 = 2e2;
|
||||
|
||||
% Actuator Stiffness [N/m]
|
||||
k1 = 1e6;
|
||||
k2 = 1e6;
|
||||
k3 = 1e6;
|
||||
c = 2e2; % Actuator Damping [N/(m/s)]
|
||||
k = 1e6; % Actuator Stiffness [N/m]
|
||||
|
||||
% Unit vectors of the actuators
|
||||
s1 = [1;0];
|
||||
@ -2192,8 +2149,8 @@ s2 = [0;1];
|
||||
s3 = [0;1];
|
||||
|
||||
% Stiffnesss and Damping matrices of the struts
|
||||
Kr = diag([k1,k2,k3]);
|
||||
Cr = diag([c1,c2,c3]);
|
||||
Kr = diag([k,k,k]);
|
||||
Cr = diag([c,c,c]);
|
||||
|
||||
% Location of the joints with respect to the center of mass
|
||||
Mb1 = [-l/2;-ha];
|
||||
@ -2269,8 +2226,8 @@ As already explained, the Jacobian matrix can be used to both convert strut velo
|
||||
|
||||
\begin{subequations}\label{eq:detail_control_decoupling_jacobian}
|
||||
\begin{align}
|
||||
\dot{\bm{\mathcal{X}}}_{\{O\}} &= J_{\{O\}} \dot{\bm{\mathcal{L}}}, \quad \dot{\bm{\mathcal{L}}} = J_{\{O\}}^{-1} \dot{\bm{\mathcal{X}}}_{\{O\}} \\
|
||||
\bm{\mathcal{F}}_{\{O\}} &= J_{\{O\}}^t \bm{\tau}, \quad \bm{\tau} = J_{\{O\}}^{-t} \bm{\mathcal{F}}_{\{O\}}
|
||||
\dot{\bm{\mathcal{X}}}_{\{O\}} &= \bm{J}_{\{O\}} \dot{\bm{\mathcal{L}}}, \quad \dot{\bm{\mathcal{L}}} = \bm{J}_{\{O\}}^{-1} \dot{\bm{\mathcal{X}}}_{\{O\}} \\
|
||||
\bm{\mathcal{F}}_{\{O\}} &= \bm{J}_{\{O\}}^t \bm{\tau}, \quad \bm{\tau} = \bm{J}_{\{O\}}^{-t} \bm{\mathcal{F}}_{\{O\}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
@ -2281,8 +2238,8 @@ The obtained plan (Figure ref:fig:detail_control_jacobian_decoupling_arch) has i
|
||||
#+begin_src latex :file detail_control_decoupling_control_jacobian.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$J_{\{O\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$J_{\{O\}}^{-1}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{O\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{O\}}^{-1}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{O\}}$};
|
||||
@ -2316,11 +2273,11 @@ If the center of mass is chosen as the decoupling frame.
|
||||
The Jacobian matrix and its inverse are expressed in eqref:eq:detail_control_decoupling_jacobian_CoM_inverse.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_jacobian_CoM_inverse}
|
||||
J_{\{M\}} = \begin{bmatrix}
|
||||
\bm{J}_{\{M\}} = \begin{bmatrix}
|
||||
1 & 0 & h_a \\
|
||||
0 & 1 & -l_a \\
|
||||
0 & 1 & l_a \\
|
||||
\end{bmatrix}, \quad J_{\{M\}}^{-1} = \begin{bmatrix}
|
||||
\end{bmatrix}, \quad \bm{J}_{\{M\}}^{-1} = \begin{bmatrix}
|
||||
1 & \frac{h_a}{2 l_a} & \frac{-h_a}{2 l_a} \\
|
||||
0 & \frac{1}{2} & \frac{1}{2} \\
|
||||
0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a} \\
|
||||
@ -2330,8 +2287,8 @@ The Jacobian matrix and its inverse are expressed in eqref:eq:detail_control_dec
|
||||
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoM.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$J_{\{M\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$J_{\{M\}}^{-1}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{M\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{M\}}^{-1}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$};
|
||||
@ -2426,8 +2383,8 @@ exportFig('figs/detail_control_jacobian_plant_CoM.pdf', 'width', 'half', 'height
|
||||
#+begin_src latex :file detail_control_decoupling_control_jacobian_CoK.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$J_{\{K\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$J_{\{K\}}^{-1}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{K\}}^{-T}$};
|
||||
\node[block, right=0.6 of G] (Ja) {$\bm{J}_{\{K\}}^{-1}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (Jt.west) -- ++(-1.4, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$};
|
||||
@ -2446,11 +2403,11 @@ exportFig('figs/detail_control_jacobian_plant_CoM.pdf', 'width', 'half', 'height
|
||||
# [[file:figs/detail_control_decoupling_control_jacobian_CoK.png]]
|
||||
|
||||
\begin{equation}
|
||||
J_{\{K\}} = \begin{bmatrix}
|
||||
\bm{J}_{\{K\}} = \begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & -l_a \\
|
||||
0 & 1 & l_a
|
||||
\end{bmatrix}, \quad J_{\{K\}}^{-1} = \begin{bmatrix}
|
||||
\end{bmatrix}, \quad \bm{J}_{\{K\}}^{-1} = \begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & \frac{1}{2} & \frac{1}{2} \\
|
||||
0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a}
|
||||
@ -2544,91 +2501,53 @@ The physical interpretation of the above two equations is that any motion of the
|
||||
#+end_quote
|
||||
- Mode superposition [[cite:&preumont94_random_vibrat_spect_analy;&preumont18_vibrat_contr_activ_struc_fourt_edition, chapt. 2]]
|
||||
- The idea is to control the system in the "modal space"
|
||||
[[cite:&heertjes05_activ_vibrat_isolat_metrol_frames]]
|
||||
IFF in modal space [[cite:&holterman05_activ_dampin_based_decoup_colloc_contr]] very interesting paper
|
||||
[[cite:&pu11_six_degree_of_freed_activ]]
|
||||
|
||||
|
||||
|
||||
Let's consider a system with the following equations of motion:
|
||||
\begin{equation}
|
||||
M \bm{\ddot{x}} + C \bm{\dot{x}} + K \bm{x} = J^T \bm{\tau}
|
||||
\begin{equation}\label{eq:detail_control_equation_motion_CoM}
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{C}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{K}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\end{equation}
|
||||
|
||||
And the measurement output is a combination of the motion variable $\bm{x}$:
|
||||
\begin{equation}
|
||||
\bm{y} = C_{ox} \bm{x} + C_{ov} \dot{\bm{x}}
|
||||
\end{equation}
|
||||
|
||||
Let's make a *change of variables*:
|
||||
\begin{equation}
|
||||
\boxed{\bm{x} = \Phi \bm{x}_m}
|
||||
Let's make a change of variables:
|
||||
\begin{equation}\label{eq:detail_control_modal_coordinates}
|
||||
\bm{\mathcal{X}}_{\{M\}} = \bm{\Phi} \bm{\mathcal{X}}_{m}
|
||||
\end{equation}
|
||||
with:
|
||||
- $\bm{x}_m$ the modal amplitudes
|
||||
- $\Phi$ a matrix whose columns are the modes shapes of the system
|
||||
- $\bm{\mathcal{X}}_{m}$ the modal amplitudes
|
||||
- $\bm{\Phi}$ a matrix whose columns are the modes shapes of the system which can be computed from $\bm{M}_{\{M\}}$ and $\bm{K}_{\{M\}}$.
|
||||
|
||||
The equations of motion become:
|
||||
\begin{equation}
|
||||
M \Phi \bm{\ddot{x}}_m + C \Phi \bm{\dot{x}}_m + K \Phi \bm{x}_m = J^T \bm{\tau}
|
||||
\end{equation}
|
||||
And the measured output is:
|
||||
\begin{equation}
|
||||
\bm{y} = C_{ox} \Phi \bm{x}_m + C_{ov} \Phi \dot{\bm{x}}_m
|
||||
By pre-multiplying the equation of motion eqref:eq:detail_control_equation_motion_CoM by $\bm{\Phi}^t$ and using the change of variable eqref:eq:detail_control_modal_coordinates, a new set of equation of motion are obtained
|
||||
|
||||
\begin{equation}\label{eq:detail_control_equation_modal_coordinates}
|
||||
\underbrace{\bm{\Phi}^t \bm{M} \bm{\Phi}}_{\bm{M}_m} \bm{\ddot{\mathcal{X}}}_m(t) + \underbrace{\bm{\Phi}^t \bm{C} \bm{\Phi}}_{\bm{C}_m} \bm{\dot{\mathcal{X}}}_m(t) + \underbrace{\bm{\Phi}^t \bm{K} \bm{\Phi}}_{\bm{K}_m} \bm{\mathcal{X}}_m(t) = \underbrace{\bm{\Phi}^t \bm{J}^t \bm{\tau}(t)}_{\bm{\tau}_m(t)}
|
||||
\end{equation}
|
||||
|
||||
By pre-multiplying the EoM by $\Phi^T$:
|
||||
\begin{equation}
|
||||
\Phi^T M \Phi \bm{\ddot{x}}_m + \Phi^T C \Phi \bm{\dot{x}}_m + \Phi^T K \Phi \bm{x}_m = \Phi^T J^T \bm{\tau}
|
||||
\end{equation}
|
||||
- $\bm{\tau}_m$ is the modal input
|
||||
- $\bm{M}_m$, $\bm{C}_m$ and $\bm{K}_m$ are the modal mass, damping and stiffness matrices
|
||||
|
||||
And we note:
|
||||
- $M_m = \Phi^T M \Phi = \text{diag}(\mu_i)$ the modal mass matrix
|
||||
- $C_m = \Phi^T C \Phi = \text{diag}(2 \xi_i \mu_i \omega_i)$ (classical damping)
|
||||
- $K_m = \Phi^T K \Phi = \text{diag}(\mu_i \omega_i^2)$ the modal stiffness matrix
|
||||
Orthogonality of normal modes gives that the "the modal
|
||||
vectors uncouple the equations of motion making each dynamic equation independent of all the others" [[cite:&lang17_under]].
|
||||
The modal matrices are diagonal.
|
||||
|
||||
And we have:
|
||||
\begin{equation}
|
||||
\ddot{\bm{x}}_m + 2 \Xi \Omega \dot{\bm{x}}_m + \Omega^2 \bm{x}_m = \mu^{-1} \Phi^T J^T \bm{\tau}
|
||||
\end{equation}
|
||||
with:
|
||||
- $\mu = \text{diag}(\mu_i)$
|
||||
- $\Omega = \text{diag}(\omega_i)$
|
||||
- $\Xi = \text{diag}(\xi_i)$
|
||||
|
||||
And we call the *modal input matrix*:
|
||||
\begin{equation}
|
||||
\boxed{B_m = \mu^{-1} \Phi^T J^T}
|
||||
\end{equation}
|
||||
And the *modal output matrices*:
|
||||
\begin{equation}
|
||||
\boxed{C_m = C_{ox} \Phi + C_{ov} \Phi s}
|
||||
\end{equation}
|
||||
|
||||
|
||||
Let's note the "modal input":
|
||||
\begin{equation}
|
||||
\bm{\tau}_m = B_m \bm{\tau}
|
||||
\end{equation}
|
||||
|
||||
The transfer function from $\bm{\tau}_m$ to $\bm{x}_m$ is:
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_modal}
|
||||
\boxed{\frac{\bm{x}_m}{\bm{\tau}_m} = \left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}}
|
||||
\end{equation}
|
||||
which is a *diagonal* transfer function matrix.
|
||||
We therefore have decoupling of the dynamics from $\bm{\tau}_m$ to $\bm{x}_m$.
|
||||
|
||||
|
||||
By inverting $B_m$ and $C_m$ and using them as shown in Figure ref:fig:modal_decoupling_architecture, we can see that we control the system in the "modal space" in which it is decoupled.
|
||||
In order to implement such modal decoupling from the decentralized plant, architecture shown in Figure ref:fig:detail_control_decoupling_modal can be used.
|
||||
The dynamics from modal inputs $\bm{\tau}_m$ to modal amplitudes $\bm{\mathcal{X}}_m$ is fully decoupled.
|
||||
|
||||
#+begin_src latex :file detail_control_decoupling_modal.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block] (G) {$\bm{G}$};
|
||||
\node[block, left=0.6 of G] (Bm) {$B_m^{-1}$};
|
||||
\node[block, right=0.6 of G] (Cm) {$C_m^{-1}$};
|
||||
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
|
||||
\node[block, left=0.6 of G] (Jt) {$\bm{J}_{\{M\}}^{-t}$};
|
||||
\node[block, left=1.2 of Jt] (Bm) {$\bm{\Phi}^{-t}$};
|
||||
\node[block, right=0.6 of G] (J) {$\bm{J}_{\{M\}}^{-1}$};
|
||||
\node[block, right=1.2 of J] (Cm) {$\bm{\Phi}^{-1}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (Bm.west) -- ++(-1.0, 0) node[above right]{$\bm{\tau}_m$};
|
||||
\draw[->] (Bm.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
\draw[->] (G.east) -- (Cm.west) node[above left]{$\bm{y}$};
|
||||
\draw[->] (Cm.east) -- ++( 1.0, 0) node[above left]{$\bm{x}_m$};
|
||||
\draw[->] (Bm.east) -- (Jt.west) node[above left]{$\bm{\mathcal{F}}_{\{M\}}$};
|
||||
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
\draw[->] (G.east) -- (J.west) node[above left]{$\bm{\mathcal{L}}$};
|
||||
\draw[->] (J.east) -- (Cm.west) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$};
|
||||
\draw[->] (Cm.east) -- ++( 1.0, 0) node[above left]{$\bm{\mathcal{X}}_m$};
|
||||
|
||||
\begin{scope}[on background layer]
|
||||
\node[fit={(Bm.south west) (Cm.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gm) {};
|
||||
@ -2637,13 +2556,11 @@ By inverting $B_m$ and $C_m$ and using them as shown in Figure ref:fig:modal_dec
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:modal_decoupling_architecture
|
||||
#+name: fig:detail_control_decoupling_modal
|
||||
#+caption: Modal Decoupling Architecture
|
||||
#+RESULTS:
|
||||
[[file:figs/detail_control_decoupling_modal.png]]
|
||||
|
||||
The system $\bm{G}_m(s)$ shown in Figure ref:fig:modal_decoupling_architecture is diagonal eqref:eq:modal_eq.
|
||||
|
||||
Modal decoupling requires to have the equations of motion of the system.
|
||||
From the equations of motion (and more precisely the mass and stiffness matrices), the mode shapes $\Phi$ are computed.
|
||||
|
||||
@ -2652,165 +2569,180 @@ The obtained system on the diagonal are second order resonant systems which can
|
||||
|
||||
Using this decoupling strategy, it is possible to control each mode individually.
|
||||
|
||||
- [ ] Do we need to measure all the states?
|
||||
I think so
|
||||
- [ ] Say that the eigen vectors are unitary
|
||||
Are they orthogonal?
|
||||
- [ ] Say that the obtained plant are second order systems
|
||||
|
||||
**** Example
|
||||
|
||||
For the system in Figure ref:fig:detail_control_model_test_decoupling, we have:
|
||||
\begin{align}
|
||||
\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\
|
||||
\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\
|
||||
M &= \begin{bmatrix}
|
||||
m & 0 & 0 \\
|
||||
0 & m & 0 \\
|
||||
0 & 0 & I
|
||||
\end{bmatrix}; \quad K = J' \begin{bmatrix}
|
||||
k & 0 & 0 \\
|
||||
0 & k & 0 \\
|
||||
0 & 0 & k
|
||||
\end{bmatrix} J; \quad C = J' \begin{bmatrix}
|
||||
c & 0 & 0 \\
|
||||
0 & c & 0 \\
|
||||
0 & 0 & c
|
||||
\end{bmatrix} J
|
||||
\end{align}
|
||||
From the mass matrix $\bm{M}_{\{M\}}$ and stiffness matrix $\bm{K}_{\{M\}}$ expressed at the center of mass, the eigenvectors of $\bm{M}_{\{M\}}^{-1}\bm{K}_{\{M\}}$ are computed.
|
||||
|
||||
In order to apply the architecture shown in Figure ref:fig:modal_decoupling_architecture, we need to compute $C_{ox}$, $C_{ov}$, $\Phi$, $\mu$ and $J$.
|
||||
\begin{equation}
|
||||
\bm{M}_{\{M\}} = \begin{bmatrix}
|
||||
m & 0 & 0 \\
|
||||
0 & m & 0 \\
|
||||
0 & 0 & I
|
||||
\end{bmatrix}, \quad
|
||||
\bm{K}_{\{M\}} = \begin{bmatrix}
|
||||
k & 0 & 0 \\
|
||||
0 & k & 0 \\
|
||||
0 & 0 & k
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
- [ ] Is it possible to obtained the analytical formulas for decoupling matrices?
|
||||
Obtained
|
||||
|
||||
\begin{equation}
|
||||
\bm{\Phi} = \begin{bmatrix}
|
||||
\frac{I - h_a^2 m - 2 l_a^2 m - \alpha}{2 h_a m} & 0 & \frac{I - h_a^2 m - 2 l_a^2 m + \alpha}{2 h_a m} \\
|
||||
0 & 1 & 0 \\
|
||||
1 & 0 & 1
|
||||
\end{bmatrix},\ \alpha = \sqrt{\left( I + m (h_a^2 - 2 l_a^2) \right)^2 + 8 m^2 h_a^2 l_a^2}
|
||||
\end{equation}
|
||||
|
||||
It may be very difficult to obtain eigenvectors analytically, so typically these can be computed numerically.
|
||||
|
||||
For the present test system, obtained eigen vectors are
|
||||
|
||||
Eigenvectors are arranged for increasing eigenvalues (i.e. resonance frequencies).
|
||||
|
||||
\begin{equation}\label{eq:}
|
||||
\bm{\phi} = \begin{bmatrix}
|
||||
-0.905 & 0 & -0.058 \\
|
||||
0 & 1 & 0 \\
|
||||
0.424 & 0 & -0.998
|
||||
\end{bmatrix}, \quad
|
||||
\bm{\phi}^{-1} = \begin{bmatrix}
|
||||
-1.075 & 0 & 0.063 \\
|
||||
0 & 1 & 0 \\
|
||||
-0.457 & 0 & -0.975
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
#+begin_src matlab
|
||||
%% Modal Decoupling
|
||||
% Modal Decomposition
|
||||
[V,D] = eig(M\K);
|
||||
|
||||
% Modal Mass Matrix
|
||||
mu = V'*M*V;
|
||||
|
||||
% Modal output matrix
|
||||
Cm = J_CoM*V;
|
||||
|
||||
% Modal input matrix
|
||||
Bm = inv(mu)*V'*J_CoM';
|
||||
%% Modal decoupling
|
||||
% Compute the eigen vectors
|
||||
[phi, wi] = eig(M\K);
|
||||
% Sort the eigen vectors by increasing associated frequency
|
||||
[~, i] = sort(diag(wi));
|
||||
phi = phi(:, i);
|
||||
|
||||
% Plant in the modal space
|
||||
Gm = inv(Cm)*G_L*inv(Bm);
|
||||
Gm = inv(phi)*inv(J_CoM)*G_L*inv(J_CoM')*inv(phi');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no
|
||||
data2orgtable(Bm, {}, {}, ' %.4f ');
|
||||
#+end_src
|
||||
|
||||
#+name: tab:modal_decoupling_Bm
|
||||
#+caption: $B_m$ matrix
|
||||
#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc
|
||||
#+attr_latex: :center t :booktabs t :float t
|
||||
#+RESULTS:
|
||||
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no
|
||||
data2orgtable(Cm, {}, {}, ' %.1f ');
|
||||
#+end_src
|
||||
|
||||
#+name: tab:modal_decoupling_Cm
|
||||
#+caption: $C_m$ matrix
|
||||
#+attr_latex: :environment tabularx :width 0.2\linewidth :align ccc
|
||||
#+attr_latex: :center t :booktabs t :float t
|
||||
#+RESULTS:
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
%% Modal decoupled plant
|
||||
figure;
|
||||
hold on;
|
||||
for i_in = 1:3
|
||||
for i_out = [i_in+1:3]
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_m(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_m(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(1,1), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$\mathcal{X}_{m,1}/\tau_{m,1}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(2,2), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', '$\mathcal{X}_{m,2}/\tau_{m,2}$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gm(3,3), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$\mathcal{X}_{m,3}/\tau_{m,3}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
ylim([1e-7, 1e0]);
|
||||
ylim([1e-8, 1e-4]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8);
|
||||
leg.ItemTokenSize(1) = 18;
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/detail_control_modal_plant.pdf', 'width', 'wide', 'height', 'normal');
|
||||
exportFig('figs/detail_control_modal_plant.pdf', 'width', 'half', 'height', 'normal');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:detail_control_modal_plant
|
||||
#+caption: Modal plant $G_m(s)$
|
||||
#+RESULTS:
|
||||
#+name: fig:detail_control_modal_plant_decoupling
|
||||
#+caption: Caption with reference to sub figure (\subref{fig:fig_label_a})
|
||||
#+attr_latex: :options [htbp]
|
||||
#+begin_figure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_control_modal_plant}sub caption a}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_control_modal_plant.png]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_control_model_test_modal}sub caption b}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_control_model_test_modal.png]]
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
|
||||
** SVD Decoupling
|
||||
<<ssec:detail_control_comp_svd>>
|
||||
|
||||
**** Singular Value Decomposition
|
||||
|
||||
- Introduction to SVD [[cite:&brunton22_data]]
|
||||
- Applied to parallel manipulator?
|
||||
Singular Value Decomposition (SVD)
|
||||
- Introduction to SVD [[cite:&brunton22_data, chapt. 1]]
|
||||
- Singular value is used a lot for multivariable control [[cite:&skogestad07_multiv_feedb_contr]].
|
||||
Used to study directions in multivariable systems.
|
||||
- [ ] Applied to parallel manipulator?
|
||||
- [ ] Should I consider only real matrices?
|
||||
|
||||
Singular value is used a lot for multivariable control [[cite:&skogestad07_multiv_feedb_contr]].
|
||||
Used to study directions in multivariable systems
|
||||
The SVD is a unique matrix decomposition that exists for every complex matrix $\bm{X} \in \mathbb{C}^{n \times m}$.
|
||||
|
||||
**** Control Architecture
|
||||
\begin{equation}\label{eq:detail_control_svd}
|
||||
\bm{X} = \bm{U} \bm{\Sigma} \bm{V}^H
|
||||
\end{equation}
|
||||
|
||||
where $\bm{U} \in \mathbb{C}^{n \times n}$ and $\bm{V} \in \mathbb{C}^{m \times m}$ are unitary matrices with orthonormal columns, and $\bm{\Sigma} \in \mathbb{R}^{n \times n}$ is a diagonal matrix with real, non-negative entries on the diagonal.
|
||||
|
||||
If the matrix $\bm{X}$ is a real matrix, the obtained $\bm{U}$ and $\bm{V}$ matrices are real and can be used for decoupling purposes.
|
||||
|
||||
The idea to use Singular Value Decomposition as a way to decouple a plant is not new
|
||||
- [ ] Quick review of SVD controllers
|
||||
[[cite:&skogestad07_multiv_feedb_contr, chapt. 3.5.4]]
|
||||
|
||||
**** Decoupling using the SVD
|
||||
|
||||
- [ ] SVD controllers described in [[cite:&skogestad07_multiv_feedb_contr, chapt. 3.5.4]]
|
||||
- [ ] *Check if inverse U and V should be used or just U and V matrices*, Use correct notations.
|
||||
- [ ] Have notation for the measured FRF and for the real approximation
|
||||
|
||||
*Procedure*:
|
||||
Identify the dynamics of the system from inputs to outputs (can be obtained experimentally)
|
||||
Frequency Response Function, which is a complex matrix obtained for several frequency points $\bm{G}(\omega_i)$.
|
||||
|
||||
|
||||
Choose a frequency where we want to decouple the system (usually, the crossover frequency $\omega_c$ is a good choice)
|
||||
|
||||
As /real/ V and U matrices need to be obtained, a real approximation of the complex measured response needs to be computed.
|
||||
Compute a real approximation of the system's response at that frequency.
|
||||
[[cite:&kouvaritakis79_theor_pract_charac_locus_desig_method]]: real matrix that preserves the most orthogonality in directions with the input complex matrix
|
||||
|
||||
Then, a real matrix $\tilde{\bm{G}}(\omega_c)$ is obtained, and the SVD is performed on this real matrix.
|
||||
Unitary $\bm{U}$ and $\bm{V}$ matrices are then obtained such that $\bm{V}^{-t} \tilde{\bm{G}}(\omega_c) \bm{U}^{-1}$ is diagonal.
|
||||
|
||||
Use the singular input and output matrices to decouple the system as shown in Figure ref:fig:detail_control_decoupling_svd
|
||||
|
||||
\begin{equation}
|
||||
\bm{G}(j\omega) = \begin{bmatrix}
|
||||
0 & 0 & 0 \\
|
||||
0 & 0 & 0 \\
|
||||
0 & 0 & 0 \\
|
||||
\end{bmatrix} \xrightarrow[approximation]{real} \begin{bmatrix}
|
||||
0 & 0 & 0 \\
|
||||
0 & 0 & 0 \\
|
||||
0 & 0 & 0 \\
|
||||
\end{bmatrix} \xrightarrow[SVD]{} U = , \ V =
|
||||
G_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}_{\{\mathcal{L}\}}(s) \bm{V}^{-T}
|
||||
\end{equation}
|
||||
|
||||
Procedure:
|
||||
- Identify the dynamics of the system from inputs to outputs (can be obtained experimentally)
|
||||
Frequency Response Function, which is a complex matrix obtained for several frequency points.
|
||||
- Choose a frequency where we want to decouple the system (usually, the crossover frequency is a good choice)
|
||||
- Compute a real approximation of the system's response at that frequency
|
||||
As /real/ V and U matrices need to be obtained, a real approximation of the complex measured response needs to be computed.
|
||||
[[cite:&kouvaritakis79_theor_pract_charac_locus_desig_method]]: real matrix that preserves the most orthogonality in directions with the input complex matrix
|
||||
- Perform a Singular Value Decomposition of the real approximation.
|
||||
Unitary U and V matrices are then obtained such that:
|
||||
V-t Greal U-1 is a diagonal matrix
|
||||
|
||||
- Use the singular input and output matrices to decouple the system as shown in Figure ref:fig:detail_control_decoupling_svd
|
||||
\[ G_{svd}(s) = U^{-1} G(s) V^{-T} \]
|
||||
|
||||
#+begin_src latex :file detail_control_decoupling_svd.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[block] (G) {$\bm{G}$};
|
||||
|
||||
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
|
||||
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
|
||||
\node[block] (G) {$\bm{G}_{\{\mathcal{L}\}}$};
|
||||
\node[block, left=0.6 of G.west] (V) {$\bm{V}^{-t}$};
|
||||
\node[block, right=0.6 of G.east] (U) {$\bm{U}^{-1}$};
|
||||
|
||||
% Connections and labels
|
||||
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$};
|
||||
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
|
||||
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
|
||||
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$};
|
||||
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$\bm{u}$};
|
||||
\draw[->] (V.east) -- (G.west) node[above left]{$\bm{\tau}$};
|
||||
\draw[->] (G.east) -- (U.west) node[above left]{$\bm{\mathcal{L}}$};
|
||||
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$\bm{y}$};
|
||||
|
||||
\begin{scope}[on background layer]
|
||||
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gsvd) {};
|
||||
\node[above] at (Gsvd.north) {$\bm{G}_{SVD}$};
|
||||
\node[above] at (Gsvd.north) {$\bm{G}_{\text{SVD}}$};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:detail_control_decoupling_svd
|
||||
#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
|
||||
#+caption: Decoupled plant $\bm{G}_{\text{SVD}}$ using the Singular Value Decomposition
|
||||
#+RESULTS:
|
||||
[[file:figs/detail_control_decoupling_svd.png]]
|
||||
|
||||
@ -2829,22 +2761,42 @@ The inputs and outputs are ordered from higher gain to lower gain at the chosen
|
||||
|
||||
**** Example
|
||||
|
||||
- [ ] Analytical formulas in this case?
|
||||
- [ ] Maybe show the complex and real response matrices.
|
||||
- [ ] At least, show the obtained matrices
|
||||
- [ ] Do we have something special when applying SVD to a collocated MIMO system?
|
||||
- *Verify why such a good decoupling is obtained!*
|
||||
# - When applying SVD on a non-collocated MIMO system, we obtained a decoupled plant looking like the one in Figure ref:fig:detail_control_gravimeter_svd_plant
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_svd}
|
||||
\bm{G}_{SVD}(s) =
|
||||
\begin{equation}
|
||||
\begin{align}
|
||||
& \bm{G}_{\{\mathcal{L}\}}(\omega_c) = 10^{-9} \begin{bmatrix}
|
||||
-99 - j 2.6 & 74 + j 4.2 & -74 - j 4.2 \\
|
||||
74 + j 4.2 & -247 - j 9.7 & 102 + j 7.0 \\
|
||||
-74 - j 4.2 & 102 + j 7.0 & -247 - j 9.7
|
||||
\end{bmatrix} \\
|
||||
& \xrightarrow[\text{approximation}]{\text{real}} \tilde{\bm{G}}_{\{\mathcal{L}\}(\omega_c)} = 10^{-9} \begin{bmatrix}
|
||||
-99 & 74 & -74 \\
|
||||
74 & -247 & 102 \\
|
||||
-74 & 102 & -247
|
||||
\end{bmatrix} \\
|
||||
& \xrightarrow[\text{SVD}]{\phantom{\text{approximation}}} \bm{U} = \begin{bmatrix}
|
||||
0.34 & 0 & 0.94 \\
|
||||
-0.66 & 0.71 & 0.24 \\
|
||||
0.66 & 0.71 & -0.24
|
||||
\end{bmatrix}, \ \bm{V} = \begin{bmatrix}
|
||||
-0.34 & 0 & -0.94 \\
|
||||
0.66 & -0.71 & -0.24 \\
|
||||
-0.66 & -0.71 & 0.24
|
||||
\end{bmatrix}
|
||||
\end{align}
|
||||
\end{equation}
|
||||
|
||||
Once the $\bm{U}$ and $\bm{V}$ matrices are obtained, the decoupled plant can be computed using eqref:eq:detail_control_decoupling_plant_svd.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_svd}
|
||||
\bm{G}_{\text{SVD}}(s) = \bm{U}^{-1} \bm{G}_{\{\mathcal{L}\}}(s) \bm{V}^{-t}
|
||||
\end{equation}
|
||||
|
||||
The obtained plant shown in Figure ref:fig:detail_control_svd_plant is very well decoupled. and not only around $\omega_c$.
|
||||
|
||||
#+begin_src matlab
|
||||
%% SVD Decoupling
|
||||
|
||||
wc = 2*pi*200; % Decoupling frequency [rad/s]
|
||||
wc = 2*pi*100; % Decoupling frequency [rad/s]
|
||||
% System's response at the decoupling frequency
|
||||
H1 = evalfr(G_L, j*wc);
|
||||
|
||||
@ -2867,10 +2819,10 @@ for i_in = 1:3
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_{svd}(i,j)\ i \neq j$');
|
||||
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -2889,17 +2841,99 @@ exportFig('figs/detail_control_svd_plant.pdf', 'width', 'wide', 'height', 'norma
|
||||
#+RESULTS:
|
||||
[[file:figs/detail_control_svd_plant.png]]
|
||||
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no
|
||||
data2orgtable(H1, {}, {}, ' %.2g ');
|
||||
- [ ] Do we have something special when applying SVD to a collocated MIMO system?
|
||||
Paper by Skogestad mention that.
|
||||
# - When applying SVD on a non-collocated MIMO system, we obtained a decoupled plant looking like the one in Figure ref:fig:detail_control_gravimeter_svd_plant
|
||||
|
||||
|
||||
A second system, identical to the first in terms of dynamics.
|
||||
Just the sensor are changed.
|
||||
Instead of having relative motion sensors in the frame of the struts, three relative motion sensors are used as shown in Figure ref:fig:detail_control_model_test_decoupling_alt.
|
||||
Using Jacobian matrices, it is possible to compute the relative motion of each struts.
|
||||
So theoretically, it should be possible to control both systems the same way.
|
||||
|
||||
#+name: fig:detail_control_model_test_decoupling_alt
|
||||
#+caption: Same test system but with different relative motion sensors.
|
||||
[[file:figs/detail_control_model_test_decoupling_alt.png]]
|
||||
|
||||
#+begin_src matlab
|
||||
%% Simscape model with the accerometers
|
||||
mdl = 'detail_control_decoupling_test_model';
|
||||
open(mdl)
|
||||
|
||||
deq = 0.2; % Length of the actuators [m]
|
||||
g = 0; % Gravity [m/s2]
|
||||
#+end_src
|
||||
|
||||
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
|
||||
#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc
|
||||
#+attr_latex: :center t :booktabs t :float t
|
||||
#+RESULTS:
|
||||
| -8e-06 | 2.1e-06 | -2.1e-06 |
|
||||
| 2.1e-06 | -1.3e-06 | -2.5e-08 |
|
||||
| -2.1e-06 | -2.5e-08 | -1.3e-06 |
|
||||
#+begin_src matlab
|
||||
%% Collocated plant
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Actuator_1'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Actuator_2'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Actuator_3'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G_L_sim = linearize(mdl, io);
|
||||
G_L_sim.InputName = {'F1', 'F2', 'F3'};
|
||||
G_L_sim.OutputName = {'L1', 'L2', 'L3'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% Accelerometer outputs
|
||||
% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
% io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G_acc = linearize(mdl, io);
|
||||
G_acc.InputName = {'F1', 'F2', 'F3'};
|
||||
G_acc.OutputName = {'Ax1', 'Ay1', 'Ax2'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% SVD Decoupling
|
||||
wc = 2*pi*100; % Decoupling frequency [rad/s]
|
||||
% System's response at the decoupling frequency
|
||||
H1 = evalfr(G_acc, j*wc);
|
||||
|
||||
% Real approximation of G(j.wc)
|
||||
D = pinv(real(H1'*H1));
|
||||
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||
|
||||
[U,S,V] = svd(H1);
|
||||
|
||||
Gsvd_acc = inv(U)*G_acc*inv(V');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
hold on;
|
||||
for i_in = 1:3
|
||||
for i_out = [i_in+1:3]
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd_acc(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd_acc(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_{SVD}(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd_acc(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{SVD}(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
ylim([1e-10, 2e-4]);
|
||||
leg = legend('location', 'northeast', 'FontSize', 8);
|
||||
leg.ItemTokenSize(1) = 18;
|
||||
#+end_src
|
||||
|
||||
** Comparison
|
||||
<<ssec:detail_control_decoupling_comp>>
|
||||
|
BIN
nass-control.pdf
253
nass-control.tex
@ -1,4 +1,4 @@
|
||||
% Created 2025-04-05 Sat 11:47
|
||||
% Created 2025-04-05 Sat 15:49
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
@ -671,7 +671,8 @@ It is structured as follow:
|
||||
\begin{itemize}
|
||||
\item Instead of comparing the decoupling strategies using the Stewart platform, a similar yet much simpler parallel manipulator is used instead
|
||||
\item to render the analysis simpler, the system of Figure \ref{fig:detail_control_model_test_decoupling_detail} is used
|
||||
\item It has 3DoF, and has 3 parallels struts whose model is shown in Figure \ref{fig:detail_control_strut_model}
|
||||
\item Fully parallel manipulator: it has 3DoF, and has 3 parallels struts whose model is shown in Figure \ref{fig:detail_control_strut_model}
|
||||
As many DoF as actuators and sensors
|
||||
\item It is quite similar to the Stewart platform (parallel architecture, as many struts as DoF)
|
||||
\end{itemize}
|
||||
|
||||
@ -701,7 +702,7 @@ First, the equation of motion are derived.
|
||||
Expressing the second law of Newton on the suspended mass, expressed at its center of mass gives
|
||||
|
||||
\begin{equation}
|
||||
M_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) = \sum \bm{\mathcal{F}}_{\{M\}}(t)
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) = \sum \bm{\mathcal{F}}_{\{M\}}(t)
|
||||
\end{equation}
|
||||
|
||||
with \(\bm{\mathcal{X}}_{\{M\}}\) the two translation and one rotation expressed with respect to the center of mass and \(\bm{\mathcal{F}}_{\{M\}}\) forces and torque applied at the center of mass.
|
||||
@ -731,7 +732,7 @@ In order to map the spring, damping and actuator forces to XY forces and Z torqu
|
||||
Then, the equation of motion linking the actuator forces \(\tau\) to the motion of the mass \(\bm{\mathcal{X}}_{\{M\}}\) is obtained.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_cartesian}
|
||||
M_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\end{equation}
|
||||
|
||||
Matrices representing the payload inertia as well as the actuator stiffness and damping are shown in
|
||||
@ -786,7 +787,7 @@ The transfer function from \(\bm{\mathcal{\tau}}\) to \(\bm{\mathcal{L}}\) is sh
|
||||
\end{center}
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_decentralized}
|
||||
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-t} M_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
|
||||
\frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-t} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1}
|
||||
\end{equation}
|
||||
|
||||
At low frequency the plant converges to a diagonal constant matrix whose diagonal elements are linked to the actuator stiffnesses \eqref{eq:detail_control_decoupling_plant_decentralized_low_freq}.
|
||||
@ -814,8 +815,8 @@ As already explained, the Jacobian matrix can be used to both convert strut velo
|
||||
|
||||
\begin{subequations}\label{eq:detail_control_decoupling_jacobian}
|
||||
\begin{align}
|
||||
\dot{\bm{\mathcal{X}}}_{\{O\}} &= J_{\{O\}} \dot{\bm{\mathcal{L}}}, \quad \dot{\bm{\mathcal{L}}} = J_{\{O\}}^{-1} \dot{\bm{\mathcal{X}}}_{\{O\}} \\
|
||||
\bm{\mathcal{F}}_{\{O\}} &= J_{\{O\}}^t \bm{\tau}, \quad \bm{\tau} = J_{\{O\}}^{-t} \bm{\mathcal{F}}_{\{O\}}
|
||||
\dot{\bm{\mathcal{X}}}_{\{O\}} &= \bm{J}_{\{O\}} \dot{\bm{\mathcal{L}}}, \quad \dot{\bm{\mathcal{L}}} = \bm{J}_{\{O\}}^{-1} \dot{\bm{\mathcal{X}}}_{\{O\}} \\
|
||||
\bm{\mathcal{F}}_{\{O\}} &= \bm{J}_{\{O\}}^t \bm{\tau}, \quad \bm{\tau} = \bm{J}_{\{O\}}^{-t} \bm{\mathcal{F}}_{\{O\}}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
|
||||
@ -844,22 +845,17 @@ If the center of mass is chosen as the decoupling frame.
|
||||
The Jacobian matrix and its inverse are expressed in \eqref{eq:detail_control_decoupling_jacobian_CoM_inverse}.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_jacobian_CoM_inverse}
|
||||
J_{\{M\}} = \begin{bmatrix}
|
||||
\bm{J}_{\{M\}} = \begin{bmatrix}
|
||||
1 & 0 & h_a \\
|
||||
0 & 1 & -l_a \\
|
||||
0 & 1 & l_a \\
|
||||
\end{bmatrix}, \quad J_{\{M\}}^{-1} = \begin{bmatrix}
|
||||
\end{bmatrix}, \quad \bm{J}_{\{M\}}^{-1} = \begin{bmatrix}
|
||||
1 & \frac{h_a}{2 l_a} & \frac{-h_a}{2 l_a} \\
|
||||
0 & \frac{1}{2} & \frac{1}{2} \\
|
||||
0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a} \\
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[scale=1]{figs/detail_control_decoupling_control_jacobian_CoM.png}
|
||||
\label{}
|
||||
\end{center}
|
||||
|
||||
Analytical formula of the plant is \eqref{eq:detail_control_decoupling_plant_CoM}.
|
||||
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_CoM}
|
||||
@ -904,17 +900,12 @@ this is illustrated in Figure \ref{fig:detail_control_model_test_CoM}.
|
||||
\end{figure}
|
||||
\paragraph{Center Of Stiffness}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[scale=1]{figs/detail_control_decoupling_control_jacobian_CoK.png}
|
||||
\label{}
|
||||
\end{center}
|
||||
|
||||
\begin{equation}
|
||||
J_{\{K\}} = \begin{bmatrix}
|
||||
\bm{J}_{\{K\}} = \begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & -l_a \\
|
||||
0 & 1 & l_a
|
||||
\end{bmatrix}, \quad J_{\{K\}}^{-1} = \begin{bmatrix}
|
||||
\end{bmatrix}, \quad \bm{J}_{\{K\}}^{-1} = \begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & \frac{1}{2} & \frac{1}{2} \\
|
||||
0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a}
|
||||
@ -935,9 +926,10 @@ This is usually suited for systems which high stiffness.
|
||||
\bm{G}_{\{K\}}(j\omega) \xrightarrow[\omega \to 0]{} \bm{J}_{\{K\}}^{-1} \bm{\mathcal{K}}^{-1} \bm{J}_{\{K\}}^{-t}
|
||||
\end{equation}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Make a schematic where the thing is deformed at high frequency rotating about the center of mass
|
||||
\end{itemize}
|
||||
|
||||
The physical reason for high frequency coupling is schematically shown in Figure \ref{fig:detail_control_model_test_CoK}.
|
||||
At high frequency, a force applied on a point which is not aligned with the center of mass.
|
||||
Therefore, it will induce some rotation around the center of mass.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
@ -952,105 +944,65 @@ This is usually suited for systems which high stiffness.
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_control_model_test_CoK}High frequency force applied at the CoK}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:detail_control_jacobian_plant_CoK_results}Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (\subref{fig:detail_control_jacobian_plant_CoK}). The physical reason for low frequency coupling is illustrated in (\subref{fig:detail_control_model_test_CoK}).}
|
||||
\caption{\label{fig:detail_control_jacobian_plant_CoK_results}Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (\subref{fig:detail_control_jacobian_plant_CoK}). The physical reason for high frequency coupling is illustrated in (\subref{fig:detail_control_model_test_CoK}).}
|
||||
\end{figure}
|
||||
\section{Modal Decoupling}
|
||||
\label{ssec:detail_control_comp_modal}
|
||||
Let's consider a system with the following equations of motion:
|
||||
\begin{equation}
|
||||
M \bm{\ddot{x}} + C \bm{\dot{x}} + K \bm{x} = \bm{\mathcal{F}}
|
||||
\begin{itemize}
|
||||
\item A mechanical system consists of several modes:
|
||||
\begin{itemize}
|
||||
\item Modal decomposition \cite{rankers98_machin}
|
||||
\end{itemize}
|
||||
\begin{quote}
|
||||
The physical interpretation of the above two equations is that any motion of the system can be regarded as a combination of the contribution of the various modes.
|
||||
\end{quote}
|
||||
\begin{itemize}
|
||||
\item Mode superposition \cite[, chapt. 2]{preumont94_random_vibrat_spect_analy,preumont18_vibrat_contr_activ_struc_fourt_edition}
|
||||
\end{itemize}
|
||||
\item The idea is to control the system in the ``modal space''
|
||||
\cite{heertjes05_activ_vibrat_isolat_metrol_frames}
|
||||
IFF in modal space \cite{holterman05_activ_dampin_based_decoup_colloc_contr} very interesting paper
|
||||
\cite{pu11_six_degree_of_freed_activ}
|
||||
\end{itemize}
|
||||
|
||||
\begin{equation}\label{eq:detail_control_equation_motion_CoM}
|
||||
\bm{M}_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{C}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}}(t) + \bm{K}_{\{M\}} \bm{\mathcal{X}}_{\{M\}}(t) = \bm{J}_{\{M\}}^t \bm{\tau}(t)
|
||||
\end{equation}
|
||||
|
||||
And the measurement output is a combination of the motion variable \(\bm{x}\):
|
||||
\begin{equation}
|
||||
\bm{y} = C_{ox} \bm{x} + C_{ov} \dot{\bm{x}}
|
||||
\end{equation}
|
||||
|
||||
Let's make a \textbf{change of variables}:
|
||||
\begin{equation}
|
||||
\boxed{\bm{x} = \Phi \bm{x}_m}
|
||||
Let's make a change of variables:
|
||||
\begin{equation}\label{eq:detail_control_modal_coordinates}
|
||||
\bm{\mathcal{X}}_{\{M\}} = \bm{\Phi} \bm{\mathcal{X}}_{m}
|
||||
\end{equation}
|
||||
with:
|
||||
\begin{itemize}
|
||||
\item \(\bm{x}_m\) the modal amplitudes
|
||||
\item \(\Phi\) a matrix whose columns are the modes shapes of the system
|
||||
\item \(\bm{\mathcal{X}}_{m}\) the modal amplitudes
|
||||
\item \(\bm{\Phi}\) a matrix whose columns are the modes shapes of the system which can be computed from \(\bm{M}_{\{M\}}\) and \(\bm{K}_{\{M\}}\).
|
||||
\end{itemize}
|
||||
|
||||
And we map the actuator forces:
|
||||
\begin{equation}
|
||||
\bm{\mathcal{F}} = J^T \bm{\tau}
|
||||
By pre-multiplying the equation of motion \eqref{eq:detail_control_equation_motion_CoM} by \(\bm{\Phi}^t\) and using the change of variable \eqref{eq:detail_control_modal_coordinates}, a new set of equation of motion are obtained
|
||||
|
||||
\begin{equation}\label{eq:detail_control_equation_modal_coordinates}
|
||||
\underbrace{\bm{\Phi}^t \bm{M} \bm{\Phi}}_{\bm{M}_m} \bm{\ddot{\mathcal{X}}}_m(t) + \underbrace{\bm{\Phi}^t \bm{C} \bm{\Phi}}_{\bm{C}_m} \bm{\dot{\mathcal{X}}}_m(t) + \underbrace{\bm{\Phi}^t \bm{K} \bm{\Phi}}_{\bm{K}_m} \bm{\mathcal{X}}_m(t) = \underbrace{\bm{\Phi}^t \bm{J}^t \bm{\tau}(t)}_{\bm{\tau}_m(t)}
|
||||
\end{equation}
|
||||
|
||||
The equations of motion become:
|
||||
\begin{equation}
|
||||
M \Phi \bm{\ddot{x}}_m + C \Phi \bm{\dot{x}}_m + K \Phi \bm{x}_m = J^T \bm{\tau}
|
||||
\end{equation}
|
||||
And the measured output is:
|
||||
\begin{equation}
|
||||
\bm{y} = C_{ox} \Phi \bm{x}_m + C_{ov} \Phi \dot{\bm{x}}_m
|
||||
\end{equation}
|
||||
|
||||
By pre-multiplying the EoM by \(\Phi^T\):
|
||||
\begin{equation}
|
||||
\Phi^T M \Phi \bm{\ddot{x}}_m + \Phi^T C \Phi \bm{\dot{x}}_m + \Phi^T K \Phi \bm{x}_m = \Phi^T J^T \bm{\tau}
|
||||
\end{equation}
|
||||
|
||||
And we note:
|
||||
\begin{itemize}
|
||||
\item \(M_m = \Phi^T M \Phi = \text{diag}(\mu_i)\) the modal mass matrix
|
||||
\item \(C_m = \Phi^T C \Phi = \text{diag}(2 \xi_i \mu_i \omega_i)\) (classical damping)
|
||||
\item \(K_m = \Phi^T K \Phi = \text{diag}(\mu_i \omega_i^2)\) the modal stiffness matrix
|
||||
\item \(\bm{\tau}_m\) is the modal input
|
||||
\item \(\bm{M}_m\), \(\bm{C}_m\) and \(\bm{K}_m\) are the modal mass, damping and stiffness matrices
|
||||
\end{itemize}
|
||||
|
||||
And we have:
|
||||
\begin{equation}
|
||||
\ddot{\bm{x}}_m + 2 \Xi \Omega \dot{\bm{x}}_m + \Omega^2 \bm{x}_m = \mu^{-1} \Phi^T J^T \bm{\tau}
|
||||
\end{equation}
|
||||
with:
|
||||
\begin{itemize}
|
||||
\item \(\mu = \text{diag}(\mu_i)\)
|
||||
\item \(\Omega = \text{diag}(\omega_i)\)
|
||||
\item \(\Xi = \text{diag}(\xi_i)\)
|
||||
\end{itemize}
|
||||
Orthogonality of normal modes gives that the ``the modal
|
||||
vectors uncouple the equations of motion making each dynamic equation independent of all the others'' \cite{lang17_under}.
|
||||
The modal matrices are diagonal.
|
||||
|
||||
And we call the \textbf{modal input matrix}:
|
||||
\begin{equation}
|
||||
\boxed{B_m = \mu^{-1} \Phi^T J^T}
|
||||
\end{equation}
|
||||
And the \textbf{modal output matrices}:
|
||||
\begin{equation}
|
||||
\boxed{C_m = C_{ox} \Phi + C_{ov} \Phi s}
|
||||
\end{equation}
|
||||
|
||||
|
||||
Let's note the ``modal input'':
|
||||
\begin{equation}
|
||||
\bm{\tau}_m = B_m \bm{\tau}
|
||||
\end{equation}
|
||||
|
||||
The transfer function from \(\bm{\tau}_m\) to \(\bm{x}_m\) is:
|
||||
\begin{equation}\label{eq:detail_control_decoupling_plant_modal}
|
||||
\boxed{\frac{\bm{x}_m}{\bm{\tau}_m} = \left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}}
|
||||
\end{equation}
|
||||
which is a \textbf{diagonal} transfer function matrix.
|
||||
We therefore have decoupling of the dynamics from \(\bm{\tau}_m\) to \(\bm{x}_m\).
|
||||
|
||||
|
||||
We now expressed the transfer function from input \(\bm{\tau}\) to output \(\bm{y}\) as a function of the ``modal variables'':
|
||||
\begin{equation}
|
||||
\boxed{\frac{\bm{y}}{\bm{\tau}} = \underbrace{\left( C_{ox} + s C_{ov} \right) \Phi}_{C_m} \underbrace{\left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}}_{\text{diagonal}} \underbrace{\left( \mu^{-1} \Phi^T J^T \right)}_{B_m}}
|
||||
\end{equation}
|
||||
|
||||
By inverting \(B_m\) and \(C_m\) and using them as shown in Figure \ref{fig:modal_decoupling_architecture}, we can see that we control the system in the ``modal space'' in which it is decoupled.
|
||||
In order to implement such modal decoupling from the decentralized plant, architecture shown in Figure \ref{fig:detail_control_decoupling_modal} can be used.
|
||||
The dynamics from modal inputs \(\bm{\tau}_m\) to modal amplitudes \(\bm{\mathcal{X}}_m\) is fully decoupled.
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/detail_control_decoupling_modal.png}
|
||||
\caption{\label{fig:modal_decoupling_architecture}Modal Decoupling Architecture}
|
||||
\caption{\label{fig:detail_control_decoupling_modal}Modal Decoupling Architecture}
|
||||
\end{figure}
|
||||
|
||||
The system \(\bm{G}_m(s)\) shown in Figure \ref{fig:modal_decoupling_architecture} is diagonal \eqref{eq:modal_eq}.
|
||||
|
||||
Modal decoupling requires to have the equations of motion of the system.
|
||||
From the equations of motion (and more precisely the mass and stiffness matrices), the mode shapes \(\Phi\) are computed.
|
||||
|
||||
@ -1058,32 +1010,80 @@ Then, the system can be decoupled in the modal space.
|
||||
The obtained system on the diagonal are second order resonant systems which can be easily controlled.
|
||||
|
||||
Using this decoupling strategy, it is possible to control each mode individually.
|
||||
\paragraph{Example}
|
||||
|
||||
For the system in Figure \ref{fig:detail_control_model_test_decoupling}, we have:
|
||||
\begin{align}
|
||||
\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\
|
||||
\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\
|
||||
M &= \begin{bmatrix}
|
||||
m & 0 & 0 \\
|
||||
0 & m & 0 \\
|
||||
0 & 0 & I
|
||||
\end{bmatrix}; \quad K = J' \begin{bmatrix}
|
||||
k & 0 & 0 \\
|
||||
0 & k & 0 \\
|
||||
0 & 0 & k
|
||||
\end{bmatrix} J; \quad C = J' \begin{bmatrix}
|
||||
c & 0 & 0 \\
|
||||
0 & c & 0 \\
|
||||
0 & 0 & c
|
||||
\end{bmatrix} J
|
||||
\end{align}
|
||||
|
||||
In order to apply the architecture shown in Figure \ref{fig:modal_decoupling_architecture}, we need to compute \(C_{ox}\), \(C_{ov}\), \(\Phi\), \(\mu\) and \(J\).
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Is it possible to obtained the analytical formulas for decoupling matrices?
|
||||
\item[{$\square$}] Do we need to measure all the states?
|
||||
I think so
|
||||
\item[{$\square$}] Say that the eigen vectors are unitary
|
||||
Are they orthogonal?
|
||||
\item[{$\square$}] Say that the obtained plant are second order systems
|
||||
\end{itemize}
|
||||
\paragraph{Example}
|
||||
|
||||
From the mass matrix \(\bm{M}_{\{M\}}\) and stiffness matrix \(\bm{K}_{\{M\}}\) expressed at the center of mass, the eigenvectors of \(\bm{M}_{\{M\}}^{-1}\bm{K}_{\{M\}}\) are computed.
|
||||
|
||||
\begin{equation}
|
||||
\bm{M}_{\{M\}} = \begin{bmatrix}
|
||||
m & 0 & 0 \\
|
||||
0 & m & 0 \\
|
||||
0 & 0 & I
|
||||
\end{bmatrix}, \quad
|
||||
\bm{K}_{\{M\}} = \begin{bmatrix}
|
||||
k & 0 & 0 \\
|
||||
0 & k & 0 \\
|
||||
0 & 0 & k
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
Obtained
|
||||
|
||||
\begin{equation}
|
||||
\bm{\Phi} = \begin{bmatrix}
|
||||
\frac{I - h_a^2 m - 2 l_a^2 m - \alpha}{2 h_a m} & \frac{I - h_a^2 m - 2 l_a^2 m + \alpha}{2 h_a m} & 0 \\
|
||||
0 & 0 & 1 \\
|
||||
1 & 1 & 0
|
||||
\end{bmatrix},\ \alpha = \sqrt{\left( I + m (h_a^2 - 2 l_a^2) \right)^2 + 8 m^2 h_a^2 l_a^2}
|
||||
\end{equation}
|
||||
|
||||
It may be very difficult to obtain eigenvectors analytically, so typically these can be computed numerically.
|
||||
|
||||
For the present test system, obtained eigen vectors are
|
||||
|
||||
Eigenvectors are arranged for increasing eigenvalues (i.e. resonance frequencies).
|
||||
|
||||
\begin{equation}\label{eq:}
|
||||
\bm{\phi} = \begin{bmatrix}
|
||||
-0.905 & -0.058 & 0 \\
|
||||
0 & 0 & 1 \\
|
||||
0.424 & -0.998 & 0
|
||||
\end{bmatrix}, \quad
|
||||
\bm{\phi}^{-1} = \begin{bmatrix}
|
||||
-1.075 & 0 & 0.063 \\
|
||||
-0.457 & 0 & -0.975 \\
|
||||
0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Make a schematic with the three modes
|
||||
Maybe with each force displayed with different amplitudes
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_modal_plant.png}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_control_modal_plant}sub caption a}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_model_test_modal.png}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_control_model_test_modal}sub caption b}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:detail_control_modal_plant_decoupling}Caption with reference to sub figure (\subref{fig:fig_label_a})}
|
||||
\end{figure}
|
||||
\section{SVD Decoupling}
|
||||
\label{ssec:detail_control_comp_svd}
|
||||
\paragraph{Singular Value Decomposition}
|
||||
@ -1238,6 +1238,11 @@ Conclusion about NASS:
|
||||
\item Prefer to use Jacobian decoupling as we get more physical interpretation
|
||||
\item Also, it is possible to take into account different specifications in the different DoF
|
||||
\end{itemize}
|
||||
|
||||
When possible, having a design providing the same CoK and CoM is good.
|
||||
Often, it is not possible and we have to deal with that with control.
|
||||
Idea about using CoK at low frequency and CoM at high frequency ?
|
||||
Maybe with complementary filters?
|
||||
\chapter{Closed-Loop Shaping using Complementary Filters}
|
||||
\label{sec:detail_control_optimization}
|
||||
|
||||
|